forked from hitvoice/DrQA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepro.py
258 lines (227 loc) · 10.2 KB
/
prepro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import re
import json
import spacy
import msgpack
import unicodedata
import numpy as np
import argparse
import collections
import multiprocessing
from multiprocessing import Pool
from tqdm import tqdm
from functools import partial
from drqa.utils import str2bool
import logging
def main():
args, log = setup()
train = flatten_json(args.trn_file, 'train')
dev = flatten_json(args.dev_file, 'dev')
log.info('json data flattened.')
# tokenize & annotate
with Pool(args.threads, initializer=init) as p:
annotate_ = partial(annotate, wv_cased=args.wv_cased)
train = list(tqdm(p.imap(annotate_, train, chunksize=args.batch_size), total=len(train), desc='train'))
dev = list(tqdm(p.imap(annotate_, dev, chunksize=args.batch_size), total=len(dev), desc='dev '))
train = list(map(index_answer, train))
initial_len = len(train)
train = list(filter(lambda x: x[-1] is not None, train))
log.info('drop {} inconsistent samples.'.format(initial_len - len(train)))
log.info('tokens generated')
# load vocabulary from word vector files
wv_vocab = set()
with open(args.wv_file) as f:
for line in f:
token = normalize_text(line.rstrip().split(' ')[0])
wv_vocab.add(token)
log.info('glove vocab loaded.')
# build vocabulary
full = train + dev
vocab, counter = build_vocab([row[5] for row in full], [row[1] for row in full], wv_vocab, args.sort_all)
total = sum(counter.values())
matched = sum(counter[t] for t in vocab)
log.info('vocab coverage {1}/{0} | OOV occurrence {2}/{3} ({4:.4f}%)'.format(
len(counter), len(vocab), (total - matched), total, (total - matched) / total * 100))
counter_tag = collections.Counter(w for row in full for w in row[3])
vocab_tag = sorted(counter_tag, key=counter_tag.get, reverse=True)
counter_ent = collections.Counter(w for row in full for w in row[4])
vocab_ent = sorted(counter_ent, key=counter_ent.get, reverse=True)
w2id = {w: i for i, w in enumerate(vocab)}
tag2id = {w: i for i, w in enumerate(vocab_tag)}
ent2id = {w: i for i, w in enumerate(vocab_ent)}
log.info('Vocabulary size: {}'.format(len(vocab)))
log.info('Found {} POS tags.'.format(len(vocab_tag)))
log.info('Found {} entity tags: {}'.format(len(vocab_ent), vocab_ent))
to_id_ = partial(to_id, w2id=w2id, tag2id=tag2id, ent2id=ent2id)
train = list(map(to_id_, train))
dev = list(map(to_id_, dev))
log.info('converted to ids.')
vocab_size = len(vocab)
embeddings = np.zeros((vocab_size, args.wv_dim))
embed_counts = np.zeros(vocab_size)
embed_counts[:2] = 1 # PADDING & UNK
with open(args.wv_file) as f:
for line in f:
elems = line.rstrip().split(' ')
token = normalize_text(elems[0])
if token in w2id:
word_id = w2id[token]
embed_counts[word_id] += 1
embeddings[word_id] += [float(v) for v in elems[1:]]
embeddings /= embed_counts.reshape((-1, 1))
log.info('got embedding matrix.')
meta = {
'vocab': vocab,
'vocab_tag': vocab_tag,
'vocab_ent': vocab_ent,
'embedding': embeddings.tolist(),
'wv_cased': args.wv_cased,
}
with open('SQuAD/meta.msgpack', 'wb') as f:
msgpack.dump(meta, f)
result = {
'train': train,
'dev': dev
}
# train: id, context_id, context_features, tag_id, ent_id,
# question_id, context, context_token_span, answer_start, answer_end
# dev: id, context_id, context_features, tag_id, ent_id,
# question_id, context, context_token_span, answer
with open('SQuAD/data.msgpack', 'wb') as f:
msgpack.dump(result, f)
if args.sample_size:
sample = {
'train': train[:args.sample_size],
'dev': dev[:args.sample_size]
}
with open('SQuAD/sample.msgpack', 'wb') as f:
msgpack.dump(sample, f)
log.info('saved to disk.')
def setup():
parser = argparse.ArgumentParser(
description='Preprocessing data files, about 10 minitues to run.'
)
parser.add_argument('--trn_file', default='SQuAD/train-v1.1.json',
help='path to train file.')
parser.add_argument('--dev_file', default='SQuAD/dev-v1.1.json',
help='path to dev file.')
parser.add_argument('--wv_file', default='glove/glove.840B.300d.txt',
help='path to word vector file.')
parser.add_argument('--wv_dim', type=int, default=300,
help='word vector dimension.')
parser.add_argument('--wv_cased', type=str2bool, nargs='?',
const=True, default=True,
help='treat the words as cased or not.')
parser.add_argument('--sort_all', action='store_true',
help='sort the vocabulary by frequencies of all words. '
'Otherwise consider question words first.')
parser.add_argument('--sample_size', type=int, default=0,
help='size of sample data (for debugging).')
parser.add_argument('--threads', type=int, default=min(multiprocessing.cpu_count(), 16),
help='number of threads for preprocessing.')
parser.add_argument('--batch_size', type=int, default=64,
help='batch size for multiprocess tokenizing and tagging.')
args = parser.parse_args()
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.DEBUG,
datefmt='%m/%d/%Y %I:%M:%S')
log = logging.getLogger(__name__)
log.info(vars(args))
log.info('start data preparing...')
return args, log
def flatten_json(data_file, mode):
"""Flatten each article in training data."""
with open(data_file) as f:
data = json.load(f)['data']
rows = []
for article in data:
for paragraph in article['paragraphs']:
context = paragraph['context']
for qa in paragraph['qas']:
id_, question, answers = qa['id'], qa['question'], qa['answers']
if mode == 'train':
answer = answers[0]['text'] # in training data there's only one answer
answer_start = answers[0]['answer_start']
answer_end = answer_start + len(answer)
rows.append((id_, context, question, answer, answer_start, answer_end))
else: # mode == 'dev'
answers = [a['text'] for a in answers]
rows.append((id_, context, question, answers))
return rows
def clean_spaces(text):
"""normalize spaces in a string."""
text = re.sub(r'\s', ' ', text)
return text
def normalize_text(text):
return unicodedata.normalize('NFD', text)
nlp = None
def init():
"""initialize spacy in each process"""
global nlp
nlp = spacy.load('en', parser=False)
def annotate(row, wv_cased):
global nlp
id_, context, question = row[:3]
q_doc = nlp(clean_spaces(question))
c_doc = nlp(clean_spaces(context))
question_tokens = [normalize_text(w.text) for w in q_doc]
context_tokens = [normalize_text(w.text) for w in c_doc]
question_tokens_lower = [w.lower() for w in question_tokens]
context_tokens_lower = [w.lower() for w in context_tokens]
context_token_span = [(w.idx, w.idx + len(w.text)) for w in c_doc]
context_tags = [w.tag_ for w in c_doc]
context_ents = [w.ent_type_ for w in c_doc]
question_lemma = {w.lemma_ if w.lemma_ != '-PRON-' else w.text.lower() for w in q_doc}
question_tokens_set = set(question_tokens)
question_tokens_lower_set = set(question_tokens_lower)
match_origin = [w in question_tokens_set for w in context_tokens]
match_lower = [w in question_tokens_lower_set for w in context_tokens_lower]
match_lemma = [(w.lemma_ if w.lemma_ != '-PRON-' else w.text.lower()) in question_lemma for w in c_doc]
# term frequency in document
counter_ = collections.Counter(context_tokens_lower)
total = len(context_tokens_lower)
context_tf = [counter_[w] / total for w in context_tokens_lower]
context_features = list(zip(match_origin, match_lower, match_lemma, context_tf))
if not wv_cased:
context_tokens = context_tokens_lower
question_tokens = question_tokens_lower
return (id_, context_tokens, context_features, context_tags, context_ents,
question_tokens, context, context_token_span) + row[3:]
def index_answer(row):
token_span = row[-4]
starts, ends = zip(*token_span)
answer_start = row[-2]
answer_end = row[-1]
try:
return row[:-3] + (starts.index(answer_start), ends.index(answer_end))
except ValueError:
return row[:-3] + (None, None)
def build_vocab(questions, contexts, wv_vocab, sort_all=False):
"""
Build vocabulary sorted by global word frequency, or consider frequencies in questions first,
which is controlled by `args.sort_all`.
"""
if sort_all:
counter = collections.Counter(w for doc in questions + contexts for w in doc)
vocab = sorted([t for t in counter if t in wv_vocab], key=counter.get, reverse=True)
else:
counter_q = collections.Counter(w for doc in questions for w in doc)
counter_c = collections.Counter(w for doc in contexts for w in doc)
counter = counter_c + counter_q
vocab = sorted([t for t in counter_q if t in wv_vocab], key=counter_q.get, reverse=True)
vocab += sorted([t for t in counter_c.keys() - counter_q.keys() if t in wv_vocab],
key=counter.get, reverse=True)
vocab.insert(0, "<PAD>")
vocab.insert(1, "<UNK>")
return vocab, counter
def to_id(row, w2id, tag2id, ent2id, unk_id=1):
context_tokens = row[1]
context_features = row[2]
context_tags = row[3]
context_ents = row[4]
question_tokens = row[5]
question_ids = [w2id[w] if w in w2id else unk_id for w in question_tokens]
context_ids = [w2id[w] if w in w2id else unk_id for w in context_tokens]
tag_ids = [tag2id[w] for w in context_tags]
ent_ids = [ent2id[w] for w in context_ents]
return (row[0], context_ids, context_features, tag_ids, ent_ids, question_ids) + row[6:]
if __name__ == '__main__':
main()