forked from erikhox/blackscholes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblacksholes.py
181 lines (151 loc) · 7.81 KB
/
blacksholes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import streamlit as st
from scipy.stats import norm
import seaborn as sn
import matplotlib.pyplot as plt
import numpy as np
import yfinance as yf
#calculates the d1 of the black scholes formula
def d1(price, strike, rf, years, vol):
return (np.log(price/strike)+years*(rf+np.pow(vol, 2)/2))/(vol*np.sqrt(years))
#calculates the d2 of the black scholes formula
def d2(price, strike, rf, years, vol):
return d1(price, strike, rf, years, vol) - vol*np.sqrt(years)
#calculates the call premium cost using the black scholes formula
def call_value(price, strike, rf, years, vol):
d1_val = d1(price, strike, rf, years, vol)
d2_val = d2(price, strike, rf, years, vol)
return price*norm.cdf(d1_val)-strike*np.exp(-rf*years)*norm.cdf(d2_val)
#calculates the put premium cost using the black scholes formula
def put_value(price, strike, rf, years, vol):
d1_val = d1(price, strike, rf, years, vol)
d2_val = d2(price, strike, rf, years, vol)
return strike*np.exp(-rf*years)*norm.cdf(-d2_val)-price*norm.cdf(-d1_val)
#forms the heat map
def heat_map(col, row, title):
st.title(f"{title} Price Map")
plt.figure(figsize=(10,10))
sn.heatmap(data=data_call, annot=True, fmt=".2f", cmap="flare", xticklabels=col, yticklabels=row, square=True, cbar_kws={"shrink":0.8})
plt.xlabel("Asset Price")
plt.ylabel("Volatility")
st.pyplot(plt)
plt.close(None)
#performs the calculations for delta
def delta(option_type, price, strike, rf, years, vol):
if option_type == "call":
return norm.cdf(d1(price, strike, rf, years, vol))
elif option_type == "put":
return norm.cdf(d1(price, strike, rf, years, vol))-1
#performs the calculations for rho
def rho(option_type, price, strike, rf, years, vol):
if option_type == "call":
return (strike*years*np.exp(-rf*years)*norm.cdf(d2(price, strike, rf, years, vol)))/100
elif option_type == "put":
return (-strike*years*np.exp(-rf*years)*norm.cdf(-d2(price, strike, rf, years, vol)))/100
#setting up the page layout
st.set_page_config(layout="wide")
st.title("Black-Scholes Pricing Model")
col1, col2 = st.columns(2)
#creating needed variables and adding them to the screen
st.sidebar.title("Black-Scholes Model")
st.sidebar.subheader("created by Erik Hoxhaj")
choice = st.sidebar.checkbox("Check if you want to enter a ticker")
if choice:
ticker = st.sidebar.text_input("Type in a ticker", "temp")
#grabbing api data for asset price, and to calculate volatility
data = yf.download(ticker, period="1y", interval="1d")
data['log_return'] = np.log(data['Close'] / data['Close'].shift(1))
#creating the values
rfir = 0.045
cap = data["Close"].iloc[-1]
print_cap = round(cap, 2)
#printing out current stock value
st.sidebar.write(f"Current {ticker.upper()} price: {print_cap}")
#grabbing user inputed data
sp = st.sidebar.number_input("Strike Price", value=100.00, step=0.01, min_value=0.0, max_value=9999.00, format="%.2f")
ty = st.sidebar.number_input("Time to Maturity (Years)", value=1.00, step=0.01, min_value=0.0, max_value=9999.00, format="%.4f")
#performing volatility calculation
vol = data["log_return"].std() * np.sqrt(252)
#printing out the call and put values
with col1:
st.subheader("The call value at these values is")
st.title(f":green-background[{round(call_value(cap, sp, rfir, ty, vol), 2)}]")
with col2:
st.subheader("The put value at these values is")
st.title(f":red-background[{round(put_value(cap, sp, rfir, ty, vol), 2)}]")
else:
#grabbing user inputed data
cap = st.sidebar.number_input("Current Asset Price", value=80.00, step=0.01, min_value=0.0, max_value=9999.00, format="%.2f")
sp = st.sidebar.number_input("Strike Price", value=100.00, step=0.01, min_value=0.0, max_value=9999.00, format="%.2f")
ty = st.sidebar.number_input("Time to Maturity (Years)", value=1.00, step=0.01, min_value=0.0, max_value=9999.00, format="%.4f")
vol = st.sidebar.number_input("Volatility", value=0.20, step=0.01, min_value=0.0, max_value=9999.00, format="%.2f")
rfir = st.sidebar.number_input("Risk-Free Interest rate", value=0.05, step=0.01, min_value=0.0, max_value=9999.00, format="%.2f")
#printing out the call and put values
with col1:
st.subheader("The call value at these values is")
st.title(f":green-background[{round(call_value(cap, sp, rfir, ty, vol), 2)}]")
with col2:
st.subheader("The put value at these values is")
st.title(f":red-background[{round(put_value(cap, sp, rfir, ty, vol), 2)}]")
#grabbing user inputted/generated data for the heatmap parameters
st.sidebar.write("--------------------------")
st.sidebar.subheader("Heatmap Parameters")
min_vol = st.sidebar.slider("Min volatility", 0.01, 1.00, vol*0.5)
max_vol = st.sidebar.slider("Max Volatility", 0.01, 1.00, vol*1.5)
min_price = st.sidebar.number_input("Min Price", value=cap*0.8, step=0.01, min_value=0.0, max_value=9999.00, format="%.2f")
max_price = st.sidebar.number_input("Max Price", value=cap*1.2, step=0.01, min_value=0.0, max_value=9999.00, format="%.2f")
#the heatmaps are being setup here
st.title("Options Heatmap")
st.subheader("An interactive options heatmap to represent the different values you can get at different spot values and volatility")
col1, col2 = st.columns(2)
#creating the values to multiply for the heatmap
rows = [(min_vol + i*(max_vol-min_vol)/9) for i in range(0, 10)] #volatility (y-axis)
columns = [(min_price + i*(max_price-min_price)/9) for i in range(0, 10)] #spot price (x-axis)
#printing out the x and y axis values for the heatmap
rows_print = [round((min_vol + i*(max_vol-min_vol)/9), 2) for i in range(0, 10)]
columns_print = [round((min_price + i*(max_price-min_price)/9), 2) for i in range(0, 10)]
#creating the 2d matrix's for the heat maps
data_call = []
data_put = []
for i in range(len(rows)):
data_call_row = []
data_put_row = []
for j in range(len(columns)):
call_val = call_value(columns[j], sp, rfir, ty, rows[i])
put_val = put_value(columns[j], sp, rfir, ty, rows[i])
data_call_row.append(call_val)
data_put_row.append(put_val)
data_call.append(data_call_row)
data_put.append(data_put_row)
#outputting the heatmaps to the screen
with col1:
heat_map(columns_print, rows_print, "Call")\
with col2:
heat_map(columns_print, rows_print, "Put")
#outputting the values for the greeks
st.title("Here are greek values for the call/put")
col1, col2 = st.columns(2)
with col1:
st.subheader("the delta of the call")
st.header(f":green-background[{round(delta("call", cap, sp, rfir, ty, vol), 3)}]")
st.subheader("the rho of the call")
st.header(f":green-background[{round(rho("call", cap, sp, rfir, ty, vol), 3)}]")
with col2:
st.subheader("the delta of the put")
st.header(f":red-background[{round(delta("put", cap, sp, rfir, ty, vol), 3)}]")
st.subheader("the rho of the put")
st.header(f":red-background[{round(rho("put", cap, sp, rfir, ty, vol), 3)}]")
#creating the information to be downloaded
content = f'''Ticker: {ticker.upper() if choice else "N/A"}
Asset Price: {cap}
Strike Price: {sp}
Time to Maturity (years:days): {ty}:{ty*365}
Risk-Free Interest Rate: {rfir}
Call Premium: {round(call_value(cap, sp, rfir, ty, vol), 4)}
Put Premium: {round(put_value(cap, sp, rfir, ty, vol), 4)}
Call Delta: {round(delta("call", cap, sp, rfir, ty, vol), 3)}
Put Delta: {round(delta("put", cap, sp, rfir, ty, vol), 3)}
Call Rho: {round(rho("call", cap, sp, rfir, ty, vol), 3)}
Put Rho: {round(rho("put", cap, sp, rfir, ty, vol), 3)}
'''
st.sidebar.write("--------------------------")
st.sidebar.download_button("Download information", content, "results.txt")