-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_tcam.py
200 lines (145 loc) · 6.16 KB
/
test_tcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import sys
from experiments.environ import *
from deeplens.full_manager.condition import Condition
from deeplens.full_manager.full_video_processing import CropSplitter
from deeplens.tracking.background import FixedCameraBGFGSegmenter
from deeplens.optimizer.deeplens import DeepLensOptimizer
from deeplens.struct import *
from deeplens.utils import *
from deeplens.dataflow.map import *
from deeplens.full_manager.full_manager import *
from deeplens.utils.testing_utils import *
from deeplens.dataflow.agg import *
from deeplens.tracking.contour import *
from deeplens.tracking.event import *
from deeplens.core import *
from deeplens.simple_manager.manager import *
import cv2
import numpy as np
# loads directly from the mp4 file
def runNaive(src, tot=-1, sel=0.1):
cleanUp()
c = VideoStream(src, limit=tot)
sel = sel / 2
region = Box(515, 200, 700, 600)
pipelines = \
c[KeyPoints()][ActivityMetric('one', region)][
Filter('one', [-0.25, -0.25, 1, -0.25, -0.25], 1.5, delay=10)]
result = count(pipelines, ['one'], stats=True)
logrecord('naive', ({'file': src}), 'get', str(result), 's')
def runNaiveOpt(src, tot=-1, sel=0.1):
cleanUp()
c = VideoStream(src, limit=tot)
sel = sel / 2
region = Box(515, 200, 700, 600)
pipelines = \
c[KeyPoints()][ActivityMetric('one', region)][
Filter('one', [-0.25, -0.25, 1, -0.25, -0.25], 1.5, delay=10)]
d = DeepLensOptimizer()
pipelines = d.optimize(pipelines)
result = count(pipelines, ['one'], stats=True)
logrecord('naive', ({'file': src}), 'get', str(result), 's')
# Simple storage manager with temporal filters
def runSimple(src, tot=-1, sel=0.1):
cleanUp()
manager = SimpleStorageManager('videos')
now = timer()
manager.put(src, 'test',
args={'encoding': XVID, 'size': -1, 'sample': 1.0, 'offset': 0, 'limit': tot, 'batch_size': 100,
'num_processes': 4})
put_time = timer() - now
print("Put time for simple:", put_time)
region = Box(515, 200, 700, 600)
sel = sel / 2
clips = manager.get('test', lambda f: True)
pipelines = []
for c in clips:
pipelines.append(c[KeyPoints()][ActivityMetric('one', region)][
Filter('one', [-0.25, -0.25, 1, -0.25, -0.25], 1.5, delay=10)])
result = counts(pipelines, ['one'], stats=True)
logrecord('simple', ({'file': src}), 'get', str(result), 's')
# Simple storage manager with temporal filters
def runSimpleOpt(src, tot=-1, sel=0.1):
cleanUp()
manager = SimpleStorageManager('videos')
now = timer()
manager.put(src, 'test',
args={'encoding': XVID, 'size': -1, 'sample': 1.0, 'offset': 0, 'limit': tot, 'batch_size': 100,
'num_processes': 4})
put_time = timer() - now
print("Put time for simple:", put_time)
region = Box(515, 200, 700, 600)
sel = sel / 2
clips = manager.get('test', lambda f: True)
pipelines = []
for c in clips:
pipeline = c[KeyPoints()][ActivityMetric('one', region)][
Filter('one', [-0.25, -0.25, 1, -0.25, -0.25], 1.5, delay=10)]
d = DeepLensOptimizer()
pipelines.append(d.optimize(pipeline))
result = counts(pipelines, ['one'], stats=True)
logrecord('simple', ({'file': src}), 'get', str(result), 's')
# Full storage manager with bg-fg optimization
def runFull(src, tot=-1, sel=0.1):
cleanUp()
manager = FullStorageManager(CustomTagger(FixedCameraBGFGSegmenter().segment, batch_size=100), CropSplitter(),
'videos')
now = timer()
manager.put(src, 'test',
args={'encoding': XVID, 'size': -1, 'sample': 1.0, 'offset': 0, 'limit': tot, 'batch_size': 100,
'num_processes': 12})
put_time = timer() - now
print("Put time for simple:", put_time)
region = Box(515, 200, 700, 600)
sel = sel / 2
clips = manager.get('test', Condition(label='foreground'))
pipelines = []
for c in clips:
pipelines.append(c[KeyPoints()][ActivityMetric('one', region)][
Filter('one', [-0.25, -0.25, 1, -0.25, -0.25], 1.5, delay=10)])
result = counts(pipelines, ['one'], stats=True)
logrecord('full', ({'file': src}), 'get', str(result), 's')
# All optimizations
def runFullOpt(src, tot=-1, sel=0.1):
cleanUp()
manager = FullStorageManager(CustomTagger(FixedCameraBGFGSegmenter().segment, batch_size=100), CropSplitter(),
'vi deos')
now = timer()
manager.put(src, 'test',
args={'encoding': XVID, 'size': -1, 'sample': 1.0, 'offset': 0, 'limit': tot, 'batch_size': 100,
'num_processes': 12})
put_time = timer() - now
print("Put time for simple:", put_time)
region = Box(515, 200, 700, 600)
sel = sel / 2
clips = manager.get('test', Condition(label='foreground'))
pipelines = []
d = DeepLensOptimizer()
for c in clips:
pipeline = c[KeyPoints()][ActivityMetric('one', region)][
Filter('one', [-0.25, -0.25, 1, -0.25, -0.25], 1.5, delay=10)]
pipeline = d.optimize(pipeline)
pipelines.append(pipeline)
result = counts(pipelines, ['one'], stats=True)
logrecord('fullopt', ({'file': src}), 'get', str(result), 's')
#logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(message)s')
#do_experiments(sys.argv[1], [runSimpleOpt], -1, [1])
from deeplens.dataflow.xform import *
from deeplens.utils.ui import play, overlay
from deeplens.extern.vehicle import VehicleType
v = VideoStream('/Users/sanjayk/Dropbox/tcam.mp4')
region = Box(475, 500, 700, 700)
pipeline = v[KeyPoints()]\
[ActivityMetric('one', region)]\
[Filter('one', [-0.25, -0.25, 1, -0.25, -0.25], 1.5, delay=5)]\
[VehicleType('one','type', region)]
prev = "None"
for p in pipeline:
img = p['data']
if p['type']:
prev = p['type']
cv2.rectangle(img, (region.x0,region.y0), (region.x1,region.y1),(0,255,0), 4)
cv2.putText(img, str(prev), (50,50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 4)
cv2.imshow('Player',img)
if cv2.waitKey(1) & 0xFF == ord('q'):
continue