We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
我应该如何在自己的环境中训练resnet,以获得适应于自己设置的环境的权重文件resnet50-0676ba61.pth。主要原因是,我在尝试运行训练代码的时候遇见了以下错误,在网上搜寻的原因是,resnet50-0676ba61.pth该权重文件不适应我目前配置的环境,需要重新训练。 (base) root@autodl-container-71fc468e9e-d11658bc:# cd Deep3DFaceRecon_pytorch (base) root@autodl-container-71fc468e9e-d11658bc:/Deep3DFaceRecon_pytorch# python train.py --name=train1 --gpu_ids=0 ----------------- Options --------------- add_image: True batch_size: 32 batch_size_val: 32 bfm_folder: BFM bfm_model: BFM_model_front.mat camera_d: 10.0 center: 112.0 checkpoints_dir: ./checkpoints continue_train: False data_root: ./ dataset_mode: flist ddp_port: 12355 display_freq: 1000 display_per_batch: True epoch: latest epoch_count: 1 eval_batch_nums: inf evaluation_freq: 5000 flist: datalist/train/masks.txt flist_val: datalist/val/masks.txt focal: 1015.0 gpu_ids: 0 init_path: checkpoints/init_model/resnet50-0676ba61.pth isTrain: True [default: None] lr: 0.0001 lr_decay_epochs: 10 lr_policy: step max_dataset_size: inf model: facerecon n_epochs: 20 name: train1 [default: face_recon] net_recog: r50 net_recog_path: checkpoints/recog_model/ms1mv3_arcface_r50_fp16/backbone.pth net_recon: resnet50 num_threads: 4 phase: train preprocess: shift_scale_rot_flip pretrained_name: None print_freq: 100 rot_angle: 10.0 save_by_iter: False save_epoch_freq: 1 save_latest_freq: 5000 scale_delta: 0.1 serial_batches: False shift_pixs: 10.0 suffix: use_aug: True use_crop_face: True use_ddp: False [default: True] use_last_fc: False use_opengl: True use_predef_M: False verbose: False vis_batch_nums: 1 w_color: 1.92 w_exp: 0.8 w_feat: 0.2 w_gamma: 10.0 w_id: 1.0 w_lm: 0.0016 w_reflc: 5.0 w_reg: 0.0003 w_tex: 0.017 world_size: 1 z_far: 15.0 z_near: 5.0 ----------------- End ------------------- rank 0 train dataset [FlistDataset] was created rank 0 val dataset [FlistDataset] was created loading init net_recon resnet50 from checkpoints/init_model/resnet50-0676ba61.pth Traceback (most recent call last): File "train.py", line 166, in main(0, world_size, train_opt) File "train.py", line 41, in main model = create_model(train_opt) # create a model given train_opt.model and other options File "/root/Deep3DFaceRecon_pytorch/models/init.py", line 65, in create_model instance = model(opt) File "/root/Deep3DFaceRecon_pytorch/models/facerecon_model.py", line 107, in init self.net_recog = networks.define_net_recog( File "/root/Deep3DFaceRecon_pytorch/models/networks.py", line 65, in define_net_recog net = RecogNetWrapper(net_recog=net_recog, pretrained_path=pretrained_path) File "/root/Deep3DFaceRecon_pytorch/models/networks.py", line 112, in init state_dict = torch.load(pretrained_path, map_location='cpu') File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 705, in load with _open_zipfile_reader(opened_file) as opened_zipfile: File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 242, in init super(_open_zipfile_reader, self).init(torch._C.PyTorchFileReader(name_or_buffer)) RuntimeError: PytorchStreamReader failed reading zip archive: failed finding central directory
The text was updated successfully, but these errors were encountered:
No branches or pull requests
我应该如何在自己的环境中训练resnet,以获得适应于自己设置的环境的权重文件resnet50-0676ba61.pth。主要原因是,我在尝试运行训练代码的时候遇见了以下错误,在网上搜寻的原因是,resnet50-0676ba61.pth该权重文件不适应我目前配置的环境,需要重新训练。
(base) root@autodl-container-71fc468e9e-d11658bc:
# cd Deep3DFaceRecon_pytorch/Deep3DFaceRecon_pytorch# python train.py --name=train1 --gpu_ids=0(base) root@autodl-container-71fc468e9e-d11658bc:
----------------- Options ---------------
add_image: True
batch_size: 32
batch_size_val: 32
bfm_folder: BFM
bfm_model: BFM_model_front.mat
camera_d: 10.0
center: 112.0
checkpoints_dir: ./checkpoints
continue_train: False
data_root: ./
dataset_mode: flist
ddp_port: 12355
display_freq: 1000
display_per_batch: True
epoch: latest
epoch_count: 1
eval_batch_nums: inf
evaluation_freq: 5000
flist: datalist/train/masks.txt
flist_val: datalist/val/masks.txt
focal: 1015.0
gpu_ids: 0
init_path: checkpoints/init_model/resnet50-0676ba61.pth
isTrain: True [default: None]
lr: 0.0001
lr_decay_epochs: 10
lr_policy: step
max_dataset_size: inf
model: facerecon
n_epochs: 20
name: train1 [default: face_recon]
net_recog: r50
net_recog_path: checkpoints/recog_model/ms1mv3_arcface_r50_fp16/backbone.pth
net_recon: resnet50
num_threads: 4
phase: train
preprocess: shift_scale_rot_flip
pretrained_name: None
print_freq: 100
rot_angle: 10.0
save_by_iter: False
save_epoch_freq: 1
save_latest_freq: 5000
scale_delta: 0.1
serial_batches: False
shift_pixs: 10.0
suffix:
use_aug: True
use_crop_face: True
use_ddp: False [default: True]
use_last_fc: False
use_opengl: True
use_predef_M: False
verbose: False
vis_batch_nums: 1
w_color: 1.92
w_exp: 0.8
w_feat: 0.2
w_gamma: 10.0
w_id: 1.0
w_lm: 0.0016
w_reflc: 5.0
w_reg: 0.0003
w_tex: 0.017
world_size: 1
z_far: 15.0
z_near: 5.0
----------------- End -------------------
rank 0 train dataset [FlistDataset] was created
rank 0 val dataset [FlistDataset] was created
loading init net_recon resnet50 from checkpoints/init_model/resnet50-0676ba61.pth
Traceback (most recent call last):
File "train.py", line 166, in
main(0, world_size, train_opt)
File "train.py", line 41, in main
model = create_model(train_opt) # create a model given train_opt.model and other options
File "/root/Deep3DFaceRecon_pytorch/models/init.py", line 65, in create_model
instance = model(opt)
File "/root/Deep3DFaceRecon_pytorch/models/facerecon_model.py", line 107, in init
self.net_recog = networks.define_net_recog(
File "/root/Deep3DFaceRecon_pytorch/models/networks.py", line 65, in define_net_recog
net = RecogNetWrapper(net_recog=net_recog, pretrained_path=pretrained_path)
File "/root/Deep3DFaceRecon_pytorch/models/networks.py", line 112, in init
state_dict = torch.load(pretrained_path, map_location='cpu')
File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 705, in load
with _open_zipfile_reader(opened_file) as opened_zipfile:
File "/root/miniconda3/lib/python3.8/site-packages/torch/serialization.py", line 242, in init
super(_open_zipfile_reader, self).init(torch._C.PyTorchFileReader(name_or_buffer))
RuntimeError: PytorchStreamReader failed reading zip archive: failed finding central directory
The text was updated successfully, but these errors were encountered: