forked from mattragoza/LiGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
48 lines (38 loc) · 1.36 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python3
import sys, os, argparse, yaml
import liGAN
def parse_args(argv=None):
parser = argparse.ArgumentParser(
description='Generate atomic density grids from generative model'
)
parser.add_argument('config_file')
parser.add_argument('--debug', default=False, action='store_true')
return parser.parse_args(argv)
def main(argv):
args = parse_args(argv)
with open(args.config_file) as f:
config = yaml.safe_load(f)
device = 'cuda'
liGAN.set_random_seed(config.get('random_seed', None))
generator_type = config.get('model_type', None) or 'Molecule'
generator_type = getattr(
liGAN.generating, generator_type + 'Generator'
)
generator = generator_type(
out_prefix=config['out_prefix'],
n_samples=config['generate']['n_samples'],
fit_atoms=config['generate'].get('fit_atoms', True),
data_kws=config['data'],
gen_model_kws=config.get('gen_model', {}),
prior_model_kws=config.get('prior_model', {}),
atom_fitting_kws=config.get('atom_fitting', {}),
bond_adding_kws=config.get('bond_adding', {}),
output_kws=config['output'],
device='cuda',
verbose=config['verbose'],
debug=args.debug,
)
generator.generate(**config['generate'])
print('Done')
if __name__ == '__main__':
main(sys.argv[1:])