-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrewrite.pyx
208 lines (170 loc) · 6.28 KB
/
rewrite.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# cython: language_level=3, boundscheck=False, wraparound=False
from libc.math cimport exp, pi, cos, sin
cimport numpy as np
import numpy as np
from cython.parallel import prange, parallel
from libc.stdlib cimport malloc, free
from typing import List, Dict
cpdef np.ndarray[complex, ndim=1] cython_stable_sdft(complex[::1] signal, int N, int k):
"""
Compute the Stable SDFT of a given signal at frequency bin k.
Parameters:
signal (complex[::1]): Input signal array.
N (int): Number of points in the DFT.
k (int): Frequency bin index.
Returns:
np.ndarray[complex, ndim=1]: The computed SDFT at frequency bin k.
"""
cdef int n = signal.shape[0]
cdef complex exp_factor, cos_factor
cdef complex *B
cdef complex *A
cdef complex *y = <complex *> malloc(n * sizeof(complex))
cdef complex *norm_factor = <complex *> malloc(n * sizeof(complex))
cdef int i, j
if y is NULL or norm_factor is NULL:
raise MemoryError("Could not allocate buffer.")
# Calculate filter coefficients
exp_factor = cos(2 * pi * k / N) + 1j * sin(2 * pi * k / N)
cos_factor = -2 * cos(2 * pi * k / N)
# Allocate coefficient arrays
B = <complex *> malloc(4 * sizeof(complex))
A = <complex *> malloc(3 * sizeof(complex))
if B is NULL or A is NULL:
free(y)
free(norm_factor)
raise MemoryError("Could not allocate coefficient buffers.")
B[0] = exp_factor # Corresponds to z^0 term
B[1] = -1 # Corresponds to z^{-1} term
B[2] = -exp_factor # Corresponds to z^{-2} term
B[3] = 1 # Corresponds to z^{-3} term
A[0] = 1 # Corresponds to z^0 term
A[1] = cos_factor # Corresponds to z^{-1} term
A[2] = 1 # Corresponds to z^{-2} term
# Apply the filter to the signal
cdef complex *x = &signal[0] # Direct pointer to the input signal
# Initialize output array
for i in range(n):
y[i] = 0
norm_factor[i] = 0
cdef complex sum_val
# Apply the filter
with nogil:
for i in range(n):
# Feedforward part
for j in range(4):
if i - j >= 0:
sum_val += B[j] * x[i - j]
# Feedback part
for j in range(1, 3): # Skip A[0] because it's assumed to be 1
if i - j >= 0:
sum_val -= A[j] * y[i - j]
y[i] = sum_val
# Compute normalization factor
with nogil:
for i in range(n):
for j in range(3):
if i - j >= 0:
norm_factor[i] += A[j]
# Normalize the output
with nogil, parallel():
for i in prange(n, schedule='static'):
if norm_factor[i] == 0:
norm_factor[i] = 1e-30 # Prevent division by zero
y[i] /= norm_factor[i]
# Copy data back to a NumPy array
result = np.empty(n, dtype=np.complex128)
for i in range(n):
result[i] = y[i]
# Free allocated memory
free(y)
free(norm_factor)
free(B)
free(A)
return result
cpdef np.ndarray[complex, ndim=1] cython_sdft(complex[::1] signal, int n):
"""
Compute the Sliding Discrete Fourier Transform (SDFT) of a given signal.
Parameters:
signal (complex[::1]): The input complex signal array.
n (int): The number of points for the Fourier Transform.
Returns:
np.ndarray[complex, ndim=1]: The SDFT of the input signal.
"""
cdef complex omega = cos(-2 * pi / n) + 1j * sin(-2 * pi / n)
cdef complex x_prev = 0 + 0j
cdef complex[::1] x = np.empty(len(signal), dtype=complex)
cdef int I
for I in range(n):
x_prev += signal[I] * (cos(-2 * pi * I / n) + 1j * sin(-2 * pi * I / n))
x[I] = x_prev
for I in range(n, len(signal)):
x_prev = x_prev - signal[I - n] + signal[I]
x[I] = x_prev * omega
x_prev = x[I]
return np.asarray(x)
cpdef Dict[str, float] cython_psychoacoustic_mapping(double[::1] freqs, double[::1] mags):
"""
Map frequencies to psychoacoustic bands and sum the magnitudes within each band.
Parameters:
freqs (double[::1]): Array of frequency values.
mags (double[::1]): Array of magnitude values corresponding to the frequencies.
Returns:
Dict[str, float]: Dictionary containing the summed magnitudes for each psychoacoustic band.
"""
cdef Dict[str, tuple] bands = {
"Sub-Bass": (20, 120),
"Bass": (120, 420),
"Low Mid-Bass": (420, 1000),
"Mid-Bass": (1000, 3000),
"Midrange": (3000, 6000),
"Presence": (6000, 8000),
"Upper Midrange": (8000, 12000),
"Brilliance": (12000, 20000)
}
cdef Dict[str, float] band_values = {}
cdef str band
cdef tuple freq_range
cdef double f_low, f_high
cdef double sum_value = 0.0
for band, freq_range in bands.items():
f_low, f_high = freq_range
sum_value = 0.0
for I in range(len(freqs)):
if freqs[I] >= f_low and freqs[I] < f_high:
sum_value += mags[I]
band_values[band] = sum_value
return band_values
cdef double hz_to_mel(double hz):
"""
Convert frequency in Hertz to Mel scale.
Parameters:
hz (double): Frequency in Hertz.
Returns:
double: Frequency in Mel scale.
"""
return 2595 * np.log10(1 + hz / 700)
cdef double mel_to_hz(double mel):
"""
Convert frequency in Mel scale to Hertz.
Parameters:
mel (double): Frequency in Mel scale.
Returns:
double: Frequency in Hertz.
"""
return 700 * (10**(mel / 2595) - 1)
cpdef np.ndarray[double, ndim=1] generate_mel_freqs(int num_bins, int fs):
"""
Generate an array of frequencies in Hertz corresponding to Mel scale bins.
Parameters:
num_bins (int): Number of Mel scale bins.
fs (int): Sampling frequency.
Returns:
np.ndarray[double, ndim=1]: Array of frequencies in Hertz.
"""
cdef double mel_max = hz_to_mel(fs // 2)
cdef np.ndarray[double, ndim=1] mel_bins = np.linspace(0, mel_max, num_bins)
cdef np.ndarray[double, ndim=1] hz_bins = np.empty(num_bins, dtype=np.double)
for I in range(num_bins):
hz_bins[I] = mel_to_hz(mel_bins[I])
return hz_bins