forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_connectivityplot.m
337 lines (300 loc) · 11.3 KB
/
ft_connectivityplot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
function [cfg] = ft_connectivityplot(cfg, varargin)
% FT_CONNECTIVITYPLOT plots channel-level frequency resolved connectivity. The
% data are rendered in a square grid of subplots, each subplot containing the
% connectivity spectrum between the two respective channels.
%
% Use as
% ft_connectivityplot(cfg, data)
%
% The input data is a structure containing the output to FT_CONNECTIVITYANALYSIS
% using a frequency domain metric of connectivity. Consequently the input
% data should have a dimord of 'chan_chan_freq', or 'chan_chan_freq_time'.
%
% The cfg can have the following options:
% cfg.parameter = string, the functional parameter to be plotted (default = 'cohspctrm')
% cfg.xlim = selection boundaries over first dimension in data (e.g., freq)
% 'maxmin' or [xmin xmax] (default = 'maxmin')
% cfg.ylim = selection boundaries over second dimension in data
% (i.e. ,time, if present), 'maxmin', or [ymin ymax]
% (default = 'maxmin')
% cfg.zlim = plotting limits for color dimension, 'maxmin', 'maxabs' or [zmin zmax] (default = 'maxmin')
% cfg.channel = list of channels to be included for the plotting (default = 'all'), see FT_CHANNELSELECTION for details
%
% See also FT_CONNECTIVITYANALYSIS, FT_CONNECTIVITYSIMULATION, FT_MULTIPLOTCC, FT_TOPOPLOTCC
% Copyright (C) 2011-2017, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance varargin
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamed', {'zparam', 'parameter'});
cfg = ft_checkconfig(cfg, 'renamed', {'color', 'graphcolor'}); % to make it consistent with ft_singleplotER
% set the defaults
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.parameter = ft_getopt(cfg, 'parameter', 'cohspctrm');
cfg.zlim = ft_getopt(cfg, 'zlim', 'maxmin');
cfg.ylim = ft_getopt(cfg, 'ylim', 'maxmin');
cfg.xlim = ft_getopt(cfg, 'xlim', 'maxmin');
cfg.graphcolor = ft_getopt(cfg, 'graphcolor', 'brgkywrgbkywrgbkywrgbkyw');
% check if the input data is valid for this function
% ensure that the input is correct
Ndata = numel(varargin);
dtype = cell(Ndata, 1);
iname = cell(Ndata+1, 1);
for k = 1:Ndata
if ischar(cfg.parameter)
cfg.parameter = repmat({cfg.parameter}, [1 Ndata]);
end
% check whether all requested parameters are the same. If not, rename
% this, because otherwise a call to ft_selectdata (below) won't work
if ~all(strcmp(cfg.parameter,cfg.parameter{1}))
fprintf('different types of connectivity are to be displayed in the same figure\n');
varargin{k}.connectivity = varargin{k}.(cfg.parameter{k});
varargin{k} = rmfield(varargin{k}, cfg.parameter{k});
if isfield(varargin{k}, [cfg.parameter{k} 'dimord'])
varargin{k}.connectivitydimord = varargin{k}.([cfg.parameter{k} 'dimord']);
varargin{k} = rmfield(varargin{k}, [cfg.parameter{k} 'dimord']);
end
cfg.parameter{k} = 'connectivity';
else
% don't worry
end
% check if the input data is valid for this function
varargin{k} = ft_checkdata(varargin{k}, 'datatype', {'timelock', 'freq'});
dtype{k} = ft_datatype(varargin{k});
% convert into the the supported dimord
switch varargin{k}.dimord
case {'chan_chan_freq' 'chan_chan_freq_time'}
% that's ok
case {'chancmb_freq' 'chancmb_freq_time'}
% convert into 'chan_chan_freq'
varargin{k} = ft_checkdata(varargin{k}, 'cmbrepresentation', 'full');
otherwise
ft_error('the data should have a dimord of %s or %s', 'chan_chan_freq', 'chancmb_freq');
end
% this is needed for correct treatment of graphcolor later on
if nargin>1
if ~isempty(inputname(k+1))
iname{k+1} = inputname(k+1);
else
iname{k+1} = ['input',num2str(k,'%02d')];
end
else
% not yet supported
iname{k+1} = cfg.inputfile{k};
end
end
if Ndata >1
if ~all(strcmp(dtype{1}, dtype))
ft_error('input data are of different type; this is not supported');
end
end
% ensure that the data in all inputs has the same channels, time-axis, etc.
tmpcfg = keepfields(cfg, {'channel', 'showcallinfo'});
[varargin{:}] = ft_selectdata(tmpcfg, varargin{:});
% restore the provenance information
[cfg, varargin{:}] = rollback_provenance(cfg, varargin{:});
% check presence of time / freq axes
hasfreq = isfield(varargin{1}, 'freq');
hastime = isfield(varargin{1}, 'time');
if hasfreq && hastime
if Ndata>1
ft_error('when the input data contains time-frequency representations, only a single data argument is allowed');
end
xparam = 'time';
yparam = 'freq';
elseif hasfreq
xparam = 'freq';
yparam = '';
elseif hastime
xparam = 'time';
yparam = '';
end
% Get physical min/max range of x:
if ischar(cfg.xlim) && strcmp(cfg.xlim,'maxmin')
xmin = inf;
xmax = -inf;
for k = 1:Ndata
xmin = min(xmin,varargin{k}.(xparam)(1));
xmax = max(xmax,varargin{k}.(xparam)(end));
end
else
xmin = cfg.xlim(1);
xmax = cfg.xlim(2);
end
cfg.xlim = [xmin xmax];
% Get physical min/max range of y:
if ischar(cfg.ylim) && strcmp(cfg.ylim, 'maxmin') && ~isempty(yparam)
ymin = inf;
ymax = -inf;
for k = 1:Ndata
ymin = min(ymin,varargin{k}.(yparam)(1));
ymax = max(ymax,varargin{k}.(yparam)(end));
end
elseif ~isempty(yparam)
ymin = cfg.ylim(1);
ymax = cfg.ylim(2);
elseif isempty(yparam)
ymin = [];
ymax = [];
end
cfg.ylim = [ymin ymax];
% Get physical min/max range of z, which is the functional data:
if ischar(cfg.zlim) && strcmp(cfg.zlim,'maxmin')
zmin = inf;
zmax = -inf;
for k = 1:Ndata
zmin = min(zmin,min(varargin{k}.(cfg.parameter{k})(:)));
zmax = max(zmax,max(varargin{k}.(cfg.parameter{k})(:)));
end
elseif ischar(cfg.zlim) && strcmp(cfg.zlim,'maxabs')
zmax = -inf;
for k = 1:Ndata
zmax = max(zmax,max(abs(varargin{k}.(cfg.parameter{k})(:))));
end
zmin = -zmax;
else
zmin = cfg.zlim(1);
zmax = cfg.zlim(2);
end
cfg.zlim = [zmin zmax];
% make the function recursive if Ndata>1
if Ndata>1
data = varargin{1};
tmpcfg = cfg;
if ischar(cfg.parameter)
% do nothing
elseif iscell(cfg.parameter)
tmpcfg.parameter = cfg.parameter{1};
end
ft_connectivityplot(tmpcfg, data);
tmpcfg = cfg;
if ischar(cfg.graphcolor), colorLabels = [iname{2} '=' tmpcfg.graphcolor(1) '\n'];
elseif isnumeric(cfg.graphcolor), colorLabels = [iname{2} '=' num2str(tmpcfg.graphcolor(1, :)) '\n'];
end
for k = 2:Ndata
if ischar(cfg.graphcolor), tmpcfg.graphcolor = tmpcfg.graphcolor(2:end);
else isnumeric(cfg.graphcolor),tmpcfg.graphcolor = tmpcfg.graphcolor(2:end,:);
end
tmpcfg.holdfig = 1;
if ischar(cfg.parameter)
% do nothing
elseif iscell(cfg.parameter)
tmpcfg.parameter = cfg.parameter{k};
end
ft_connectivityplot(tmpcfg, varargin{k});
if ischar(cfg.graphcolor); colorLabels = [colorLabels iname{k+1} '=' tmpcfg.graphcolor(1) '\n'];
elseif isnumeric(cfg.graphcolor); colorLabels = [colorLabels iname{k+1} '=' num2str(tmpcfg.graphcolor(1, :)) '\n'];
end
end
ft_plot_text(0.5, (numel(varargin{k}.label)+1).*1.2-0.5, sprintf(colorLabels), 'horizontalalignment', 'right');
return;
else
data = varargin{1};
end
if ~isfield(data, cfg.parameter{1})
ft_error('the data does not contain the requested parameter %s', cfg.parameter{1});
end
% get the selection of the data
tmpcfg = [];
if hasfreq && hastime
tmpcfg.latency = cfg.xlim;
tmpcfg.frequency = cfg.ylim;
elseif hasfreq
tmpcfg.frequency = cfg.xlim;
elseif hastime
tmpcfg.latency = cfg.xlim;
end
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
dat = data.(cfg.parameter{k});
nchan = numel(data.label);
if hasfreq, nfreq = numel(data.freq); end
if hastime, ntime = numel(data.time); end
if (isfield(cfg, 'holdfig') && cfg.holdfig==0) || ~isfield(cfg, 'holdfig')
cla;
hold on;
end
for k = 1:nchan
for m = 1:nchan
if k~=m
ix = k;
iy = nchan - m + 1;
% use the convention of the row-channel causing the column-channel
if hastime && hasfreq
tmp = reshape(dat(m,k,:,:), [nfreq ntime]);
ft_plot_matrix(tmp, 'width', 1, 'height', 1, 'hpos', ix.*1.2, 'vpos', iy.*1.2, 'clim', cfg.zlim, 'box', 'yes');
elseif hasfreq
tmp = reshape(dat(m,k,:), [nfreq 1]);
ft_plot_vector(tmp, 'width', 1, 'height', 1, 'hpos', ix.*1.2, 'vpos', iy.*1.2, 'vlim', cfg.zlim, 'box', 'yes', 'color', cfg.graphcolor(1));
elseif hastime
ft_error('plotting data with only a time axis is not supported yet');
end
if k==1
% first column, plot scale on y axis
if hastime && hasfreq
val1 = cfg.ylim(1);
val2 = cfg.ylim(2);
elseif hasfreq
val1 = cfg.zlim(1);
val2 = cfg.zlim(2);
elseif hastime
end
fontsize = 10;
ft_plot_text(ix.*1.2-0.5, iy.*1.2-0.5, num2str(val1,3), 'HorizontalAlignment', 'Right', 'VerticalAlignment', 'Middle', 'FontSize', fontsize);
ft_plot_text(ix.*1.2-0.5, iy.*1.2+0.5, num2str(val2,3), 'HorizontalAlignment', 'Right', 'VerticalAlignment', 'Middle', 'FontSize', fontsize);
end
if m==nchan
% bottom row, plot scale on x axis
fontsize = 10;
ft_plot_text(ix.*1.2-0.5, iy.*1.2-0.5, num2str(cfg.xlim(1),3), 'HorizontalAlignment', 'Center', 'VerticalAlignment', 'top', 'FontSize', fontsize);
ft_plot_text(ix.*1.2+0.5, iy.*1.2-0.5, num2str(cfg.xlim(2),3), 'HorizontalAlignment', 'Center', 'VerticalAlignment', 'top', 'FontSize', fontsize);
end
end
end
end
% add channel labels on grand X and Y axes
for k = 1:nchan
ft_plot_text(0.5, (nchan + 1 - k).*1.2, data.label{k}, 'horizontalalignment', 'right');
ft_plot_text(k.*1.2, (nchan + 1) .*1.2-0.5, data.label{k}, 'horizontalalignment', 'left', 'rotation', 90);
end
% add 'from' and 'to' labels
ft_plot_text(-0.5, (nchan + 1)/1.7, '\it{from}', 'interpreter', 'tex', 'rotation', 90);
ft_plot_text((nchan + 1)/1.7, (nchan + 1)*1.2+0.4, '\it{to}', 'interpreter', 'tex');
axis([-0.2 (nchan+1).*1.2+0.2 0 (nchan+1).*1.2+0.2]);
axis off;
set(gcf, 'color', [1 1 1]);
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous varargin
ft_postamble provenance