-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrefinementExample.tex
174 lines (162 loc) · 5.27 KB
/
refinementExample.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
\begin{figure}
\begin{small}
\begin{verbatim}
var Mem[int]:bool; // true: free, false: taken
procedure Test({:cnst "tid"} tid:int)
{
call addr1 := Alloc();
yield;
call addr2 := Alloc();
assert addr1 != addr2 && !Mem[addr1] && !Mem[addr2];
}
\end{verbatim}
\end{small}
\caption{Client of \exC{Alloc} and \exC{Free}.}
\label{fig:refTop}
\end{figure}
\begin{figure}
\begin{small}
\begin{verbatim}
var freeSpace:int;
var AtOrAfter[int][int]:bool;
const tid_max:int, lo:int, hi:int;
axiom lo <= hi;
procedure Alloc({:cnst "tid"} tid:int) returns addr:int
refines {:atomic} [assume Mem[addr];
Mem[addr] := false;]
{
Reserve(tid);
yield AllocInv(tid, addr, freeSpace, AtOrAfter);
ptr := lo;
while (ptr < hi && !found)
invariant AllocInv(tid, addr, freeSpace, AtOrAfter);
{
call found, addr := AllocAddrIfFree(tid, addr);
if (found) {
yield AllocInv(tid, addr, freeSpace, AtOrAfter);
return;
}
yield AllocInv(tid, addr, freeSpace, AtOrAfter);
}
assert false;
}
\end{verbatim}
\begin{verbatim}
procedure Free({:cnst "tid"} tid:int, addr:int)
refines {:atomic} [Mem[addr] := true;]
{
FreeAddr(tid, addr);
IncFreeSpace();
}
\end{verbatim}
\begin{verbatim}
AllocInv(tid, addr, freeSpace, AtOrAfter) =
0 <= freeSpace && lo <= addr <= hi &&
#(AtOrAfter[lo],0,tid_max) + freeSpace == #(Mem,lo,hi) &&
(forall u,v :: lo <= u <= v <= hi ==>
Subset(AtOrAfter[v], AtOrAfter[u])) &&
(forall u ::
#(AtOrAfter[u],0,tid_max) <= #(Mem,u,hi) &&
AtOrAfter[u][tid] <==> lo <= u && u <= addr)
\end{verbatim}
\end{small}
\caption{An example of multiple phases of refinement}
\label{fig:refTop}
\end{figure}
\begin{figure}
\begin{small}
\begin{verbatim}
procedure Reserve({:cnst "tid"} tid:int)
refines {:atomic} [assume freeSpace >= 1;
freeSpace := freeSpace - 1;
AtOrAfter[tid][lo] := true;]
{
while (true) {
call tmp := ReadFreeSpace();
if (tmp > 0) {
call success := CAS_freeSpace(tmp,tmp-1);
if (success)
return;
yield;
}
}
}
\end{verbatim}
\begin{verbatim}
procedure IncFreeSpace()
refines {:left} [freeSpace := freeSpace + 1;]
{
while (true) {
call tmp := ReadFreeSpace();
success := CAS_freeSpace(tmp, tmp+1)
if (success)
return;
yield;
}
}
\end{verbatim}
\begin{verbatim}
procedure AllocAddrIfFree({:cnst "tid"} tid:int, addr:int)
returns res:bool
refines {:atomic} [ res := false;
if (Mem[addr]) {
Mem[addr] := false;
res := true;
} ]
\end{verbatim}
\begin{verbatim}
procedure FreeAddr({:cnst "tid"} tid:int, addr:int)
refines {:atomic} [Mem[addr] := true;]
\end{verbatim}
\end{small}
\caption{An example of multiple phases of refinement}
\label{fig:refinementBot}
\end{figure}
The \exC{Alloc} procedure is possibly blocking and returns when it
finds an address \exC{addr} such that \exC{Mem[addr]} is
\exC{free}. \exC{Free(addr)} simply frees the address
\exC{addr}.
Before \exC{Alloc} scans the range of addresses
\exC{[lo,hi]}, it calls \exC{Reserve}, which continuously checks if
\exC{freeSpace > 0} and tries to atomically decrement \exC{freeSpace}
and reserves a \exC{free} address for later allocation by
\exC{Alloc}'s \exC{while} loop. It is non-trivial to verify that this
obviously-terminating \exC{while} loop succeeds in finding a
\exC{free} address. The variable \exC{freeSpace} keeps track of the
number of \exC{free} addresses that have not been reserved in this
manner.
In this example, three descriptions of the program at different levels
of abstraction and atomicity are related by refinement.
The bottom-level description consists of the entire program with all
variables present and no simplification due to abstract atomic
procedures.
To obtain the middle-level description from the bottom-level
one, we hide \exC{allocLock}. We verify that
the calls to \exC{AllocAddrIfFree}, \exC{FreeAddr},
\exC{Reserve}, and
\exC{IncrementFreeSpace} can be replaced by their atomic action
specifications.
The top-level representation only
consists of \exC{Alloc} and \exC{Free}'s atomic action
specifications. To verify \exC{Free}, we verify that \exC{IncrementFreeSpace}'s atomic
action specification is a left mover, we are able to show that \exC{Free} is
atomic and satisfies its atomic action specification at the next level.
Verifying refinement and atomicity for \exC{Alloc} makes use
of the fact that \exC{Reserve} is atomic. To prove that \exC{Alloc}
satisfies its atomic action specification, we make use of an auxiliary
variable \exC{AtOrAfter}. \exC{AtOrAfter[u][tid] == true} iff thread
\exC{tid} has successfully completed executing \exC{Reserve} but has
not returned, and its local variable \exC{addr >= u}. We also make use
of the function \exC{\#Free} where \exC{\#Free[u,v]} returns the number
of addresses \exC{addr} in the interval \exC{[u,v]} such that
\exC{Mem[addr] == free}.
\exC{Reserve}
establishes the following important facts when \exC{Alloc}'s
\exC{while} loop is about to be entered: \exC{AtOrAfter[lo][tid]} and
\begin{verbatim}
Size(AtOrAfter[lo]) + freeSpace == #Free[lo,hi]
\end{verbatim}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "paper"
%%% End: