forked from team-ocean/veros
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcuda_ext.py
124 lines (96 loc) · 3.99 KB
/
cuda_ext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from setuptools.command.build_ext import build_ext
from distutils.unixccompiler import UnixCCompiler
# This is based on
# https://github.com/rmcgibbo/npcuda-example/blob/dd2768d8ccb5688c0f08678dd8f1ad5afe3e4332/cython/setup.py
# published under BSD 2-Clause "Simplified" License
def find_in_path(name, path):
"""Find a file in a search path"""
# Adapted fom http://code.activestate.com/recipes/52224
for dir in path.split(os.pathsep):
binpath = os.path.join(dir, name)
if os.path.exists(binpath):
return os.path.abspath(binpath)
return None
def locate_cuda():
"""Locate the CUDA environment on the system
Returns a dict with keys 'cuda_root', 'nvcc', 'include', and 'lib64'
and values giving the absolute path to each directory.
Starts by looking for the CUDAHOME and CUDA_ROOT env variables.
If not found, everything is based on finding 'nvcc' in the PATH.
"""
# First check if any common env variable is in use
if "CUDAHOME" in os.environ:
cuda_root = os.environ["CUDAHOME"]
nvcc = os.path.join(cuda_root, "bin", "nvcc")
elif "CUDA_ROOT" in os.environ:
cuda_root = os.environ["CUDA_ROOT"]
nvcc = os.path.join(cuda_root, "bin", "nvcc")
else:
# Otherwise, search the PATH for NVCC
nvcc = find_in_path("nvcc", os.environ["PATH"])
if nvcc is not None:
cuda_root = os.path.dirname(os.path.dirname(nvcc))
else:
cuda_root = None
if cuda_root is None:
return {
"cuda_root": "",
"nvcc": "nvcc",
"include": [],
"lib64": [],
"cflags": [],
}
cflags = ["-c", "--compiler-options", "'-fPIC'", "-std=c++11"]
cm = os.environ.get("CUDA_COMPUTE_CAPABILITY")
if cm is not None:
cflags.append("-gencode=arch=compute_{cm},code=compute_{cm}".format(cm=cm))
else:
print(
"Warning: Consider settings the CUDA_COMPUTE_CAPABILITY environment "
"variable to your GPU's compute capability."
)
return {
"cuda_root": cuda_root,
"nvcc": nvcc,
"include": [os.path.join(cuda_root, "include")],
"lib64": [os.path.join(cuda_root, "lib64")],
"cflags": cflags,
}
def customize_compiler_for_nvcc(self):
if not isinstance(self, UnixCCompiler):
# Just give up
default_compile = self._compile
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
postargs = extra_postargs["gcc"]
return default_compile(obj, src, ext, cc_args, postargs, pp_opts)
self._compile = _compile
return
# Tell the compiler it can process .cu
self.src_extensions.append(".cu")
# Save references to the default compiler_so and _compile methods
default_compiler_so = self.compiler_so
default_compile = self._compile
# Now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
if os.path.splitext(src)[1] == ".cu":
# use the cuda for .cu files
self.set_executable("compiler_so", cuda_info["nvcc"])
# use only a subset of the extra_postargs, which are 1-1
# translated from the extra_compile_args in the Extension class
postargs = extra_postargs["nvcc"]
else:
postargs = extra_postargs["gcc"]
default_compile(obj, src, ext, cc_args, postargs, pp_opts)
# Reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
# Inject our redefined _compile method into the class
self._compile = _compile
# Run the customize_compiler
class custom_build_ext(build_ext):
def build_extensions(self):
customize_compiler_for_nvcc(self.compiler)
super().build_extensions()
cuda_info = locate_cuda()