-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHomography.py
132 lines (110 loc) · 6.84 KB
/
Homography.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import cv2 as cv
import numpy as np # Mathematical array operations
import scipy.interpolate # to interpolate a matrix
import tkinter as tk
class Homography:
def __init__(self, pointsOfInput, srcImagePath, destImagePath) -> None:
self.pointsOfInput = pointsOfInput
self.pointsOfOutput = []
# Read source image.
srcImage = cv.imread(srcImagePath)
# Four corners of the book in source image
srcPoints = np.array(pointsOfInput, np.float32)
# Read destination image.
destImage = cv.imread(destImagePath)
# Four corners of the book in destination image.
print(f"Size of destination image (h and w): {destImage.shape}")
destPoint1 = [1, 1]; destPoint2 = [destImage.shape[1]-1, 1]; destPoint3 = [destImage.shape[1]-1, destImage.shape[0]-1];
destPoints = np.array(
[ destPoint1,
destPoint2,
destPoint3, # [1, 700/383]
self.find4thPointByIntersectionOfParallelLines(destPoint1, destPoint2, destPoint3)
], np.float32)
homographyMatrix, status = cv.findHomography(srcPoints, destPoints) # Homography matrix
final = self.sg_warpPerspective(srcImage, homographyMatrix, int(destImage.shape[1]), int(destImage.shape[0])) # width x height
# Display images
# cv.imshow("Destination Image", destImage)
self.showImagesTogether(srcImage, final)
cv.waitKey(0)
def showImagesTogether(self, srcImage, final):
# First, making images same height
if( final.shape[0] >= srcImage.shape[0] ): # If the height of the final image is greater than the height of the src image
srcImage = cv.copyMakeBorder(srcImage, 0, final.shape[0]-srcImage.shape[0], 0, 0, cv.BORDER_CONSTANT, value=[0, 0, 0])
else:
final = cv.copyMakeBorder(final, 0, srcImage.shape[0]-final.shape[0], 0, 0, cv.BORDER_CONSTANT, value=[0, 0, 0])
concatHorizontally = np.concatenate((srcImage, final), axis=1) # x axis
texts = np.zeros((45, concatHorizontally.shape[1],3), dtype ='uint8') # Making a blank image of same width as concatHorizontally
# 5. Write text on image
cv.putText(texts, 'Input Image', (25,25), cv.FONT_HERSHEY_TRIPLEX, 1.0, (140,40,120), 1)
cv.putText(texts, 'Output Model Field', (srcImage.shape[1] + 20 , 25), cv.FONT_HERSHEY_TRIPLEX, 1.0, (140,40,120), 1)
concatVertically = np.concatenate((concatHorizontally, texts), axis=0) # y axis
cv.imshow("Vertical Concatenation", concatVertically)
def find4thPointByIntersectionOfParallelLines(self, destPoint1, destPoint2, destPoint3):
# Finding the 4th point with projective intersection of the two parallel lines
'''
P1 P2
________
| |
| | 1) using P1 value from P1P2 line to get the first coordinate vector of the line
| | 2) using P3 value from P3P4 line to get the second coordinate vector of the line
| | P1 and P4 are in the lines that are parallel to each other
P4______P3 3) using the intersection of the two lines to get the 4th point [using determinant formula]
'''
# ax + by + c = 0
a1,b1,c1 = self.findLineEquationFromPoint('b',destPoint1) # Assume b is zero for point1
a2,b2,c2 = self.findLineEquationFromPoint('a',destPoint3) # Assume a is zero for point3
coefficientOfI, coefficientOfJ = self.calculateDeterminant(a1,b1,c1, a2,b2,c2)
return [coefficientOfI, coefficientOfJ]
def calculateDeterminant(self, a1,b1,c1, a2,b2,c2):
# | i j k |
# | a1 b1 c1 |
# | a2 b2 c2 |
coefficientOfI = b1*c2 - b2*c1 # x value
coefficientOfJ = a2*c1 - a1*c2 # y value
return coefficientOfI, coefficientOfJ
def findLineEquationFromPoint(self, pick0, point):
# ax + by + c = 0
if(pick0 == 'b'): # If a point of vertical line, assume b = 0
# ax = -c
# c = -ax
a = 1 # To find rate of a and c assume a = 1
b = 0
c = -1*a*point[0] # point[0] is x value
return a,b,c
elif(pick0 == 'a'):
# by = -c
# c = -by
b = 1
a = 0
c = -1*b*point[1] # point[1] is y value
return a,b,c
def interpolateTheImage(self, matrix):
image = np.zeros((matrix.shape[1], matrix.shape[0], matrix.shape[2]), dtype='uint8') # width, height and color channels
print("Interpolating")
for i in range(matrix.shape[0]): # for every row of height
# matrix[i] is a row of the matrix which is 2d.
y,x = np.where(matrix[i]!=0) # If matrix[i] is not zero, then get the index of non-zero values
if(len(y) == 0 or len(x) == 0):
image[:,i] = matrix[i]
# Passing because matrix[i] is full of zeros
continue
xVector = np.linspace(np.min(x), np.max(x), 3) # create evenly spaced sample number of dimension(3) times.
yVector = np.linspace(np.min(y), np.max(y), matrix.shape[1]) # Create evenly spaced sample 'width'(matrix.shape[1]) number of points
xCoordMatrix, yCoordMatrix = np.meshgrid(xVector, yVector) # Return coordinate matrices from coordinate vectors xx and yy
# print(xCoordMatrix , " is xcoordMatrix", "\n", yCoordMatrix, " is ycoordMatrix")
# print("i is ", i , " Mat: ", matrix[i][matrix[i]!=0])
matrix[i] = scipy.interpolate.griddata( (x,y), matrix[i][matrix[i]!=0], (xCoordMatrix, yCoordMatrix), method='nearest')
image[:,i] = matrix[i] # 2d matrix[i] is a row of the image matrix
return image
def sg_warpPerspective(self, srcImage, homographyMatrix, widthOfWindow, heightOfWindow):
matrix = np.zeros((widthOfWindow, heightOfWindow, srcImage.shape[2]))
for i in range(srcImage.shape[1]): # width
for j in range(srcImage.shape[0]): # height
coordinateVector = np.dot(homographyMatrix, [i,j,1])
iOfNewMatrix, jOfNewMatrix,_ = (coordinateVector / coordinateVector[2] + 0.4 ) # 0.4 is to make the image look more smooth
iOfNewMatrix, jOfNewMatrix = int(iOfNewMatrix), int(jOfNewMatrix) # Converting coordinate vector elements to integer because they will be used as indexes.
if iOfNewMatrix >= 0 and iOfNewMatrix < widthOfWindow: # If the index is in the range of the new matrix
if jOfNewMatrix >= 0 and jOfNewMatrix < heightOfWindow: # If the index is in the range of the new matrix
matrix[iOfNewMatrix, jOfNewMatrix] = srcImage[j,i]
return self.interpolateTheImage(matrix)