-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path__init__.py
1198 lines (990 loc) · 41.4 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Operators for integrating with segments.ai
"""
import enum
from collections import namedtuple
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
from urllib.parse import urljoin, urlparse
import fiftyone as fo
import fiftyone.operators as foo
import fiftyone.operators.types as types
import numpy as np
import requests
import segments
import segments.typing
from pyquaternion import Quaternion
from scipy.spatial.transform import Rotation
from segments import SegmentsClient, SegmentsDataset
SEGMENTS_FRONTEND_URL = "https://app.segments.ai"
SEGMENTS_METADATA_KEY = "segments_metadata"
class TargetSelection(enum.Enum):
DATASET = "full_dataset"
SELECTED = "selected"
CURRENT_VIEW = "current_view"
class SegmentsDatasetType(enum.Enum):
SEGMENTATION_BITMAP = "segmentation-bitmap"
SEGMENTATION_BITMAP_HIGHRES = "segmentation-bitmap-highres"
BBOXES = "bboxes"
VECTOR = "vector"
KEYPOINTS = "keypoints"
# Disabling sequences for now, how would that interface work?
# IMAGE_SEGMENTATION_SEQUENCE = "image-segmentation-sequence"
# IMAGE_VECTOR_SEQUENCE = "image-vector-sequence"
POINTCLOUD_CUBOID = "pointcloud-cuboid"
POINTCLOUD_SEGMENTATION = "pointcloud-segmentation"
POINTCLOUD_VECTOR = "pointcloud-vector"
# POINTCLOUD_CUBOID_SEQUENCE = "pointcloud-cuboid-sequence"
# POINTCLOUD_SEGMENTATION_SEQUENCE = "pointcloud-segmentation-sequence"
# POINTCLOUD_VECTOR_SEQUENCE = "pointcloud-vector-sequence"
MULTISENSOR_SEQUENCE = "multisensor-sequence"
SINGLE_IMAGE_TASKS = {
SegmentsDatasetType.SEGMENTATION_BITMAP,
SegmentsDatasetType.SEGMENTATION_BITMAP_HIGHRES,
SegmentsDatasetType.BBOXES,
SegmentsDatasetType.VECTOR,
SegmentsDatasetType.KEYPOINTS,
}
SINGLE_POINTCLOUD_TASKS = {
SegmentsDatasetType.POINTCLOUD_CUBOID,
SegmentsDatasetType.POINTCLOUD_SEGMENTATION,
SegmentsDatasetType.POINTCLOUD_VECTOR,
}
IMAGE_TASKS_SEGMENTS = {
segments.typing.TaskType.SEGMENTATION_BITMAP,
segments.typing.TaskType.SEGMENTATION_BITMAP_HIGHRES,
segments.typing.TaskType.IMAGE_SEGMENTATION_SEQUENCE,
segments.typing.TaskType.BBOXES,
segments.typing.TaskType.VECTOR,
segments.typing.TaskType.IMAGE_VECTOR_SEQUENCE,
segments.typing.TaskType.KEYPOINTS,
}
POINTCLOUD_TASKS_SEGMENTS = {
segments.typing.TaskType.POINTCLOUD_CUBOID,
segments.typing.TaskType.POINTCLOUD_SEGMENTATION,
segments.typing.TaskType.POINTCLOUD_VECTOR,
}
class DatasetUploadTarget(enum.Enum):
NEW = "New"
APPEND = "Append"
class RequestAnnotations(foo.Operator):
"""This operator uploads samples from fiftyone to Segments.ai. It can setup a new Segments dataset or append data to an existing dataset."""
@property
def config(self):
return foo.OperatorConfig(
name="request_annotations",
label="Request Segments.ai annotations",
light_icon="/assets/Black icon.svg",
dark_icon="/assets/White icon.svg",
dynamic=True,
)
@staticmethod
def target_data_selector(ctx, inputs):
has_selected = bool(ctx.selected)
has_view = ctx.view != ctx.dataset.view()
default_choice = "full_dataset"
target_choices = types.RadioGroup(orientation="horizontal")
target_choices.add_choice(
TargetSelection.DATASET.value,
label="Entire dataset",
description="Upload the entire dataset",
)
if has_view:
target_choices.add_choice(
TargetSelection.CURRENT_VIEW.value,
label="Current view",
description="Upload only the current view",
)
default_choice = TargetSelection.CURRENT_VIEW.value
if has_selected:
target_choices.add_choice(
TargetSelection.SELECTED.value,
label="Selected samples",
description="Upload only the selected samples.",
)
default_choice = TargetSelection.SELECTED.value
inputs.enum(
"target",
target_choices.values(),
required=True,
label="Target",
view=target_choices,
default=default_choice,
)
@staticmethod
def dataset_type_selector(ctx, inputs, media_type: str):
if media_type == "image":
labelmap = {
SegmentsDatasetType.SEGMENTATION_BITMAP: "Segmentation bitmap",
SegmentsDatasetType.SEGMENTATION_BITMAP_HIGHRES: "Segmentation bitmap highres",
SegmentsDatasetType.BBOXES: "Bounding boxes",
SegmentsDatasetType.VECTOR: "Vector",
SegmentsDatasetType.KEYPOINTS: "Keypoints",
}
default_selection = SegmentsDatasetType.SEGMENTATION_BITMAP.value
elif media_type == "point-cloud":
labelmap = {
SegmentsDatasetType.POINTCLOUD_CUBOID: "Pointcloud cuboid",
SegmentsDatasetType.POINTCLOUD_VECTOR: "Pointcloud vector",
SegmentsDatasetType.POINTCLOUD_SEGMENTATION: "Pointcloud segmentation",
}
default_selection = SegmentsDatasetType.POINTCLOUD_CUBOID.value
elif media_type == "group":
labelmap = {
SegmentsDatasetType.MULTISENSOR_SEQUENCE: "Multisensor sequence"
}
default_selection = SegmentsDatasetType.MULTISENSOR_SEQUENCE.value
else:
raise ValueError(f"Not implemented for media type: {media_type}")
data_choices = types.Dropdown()
for datatype in labelmap.keys():
data_choices.add_choice(datatype.value, label=labelmap[datatype])
inputs.enum(
"dataset_type",
data_choices.values(),
label="Dataset type",
default=default_selection,
view=data_choices,
)
def execute(self, ctx):
data_upload_target = DatasetUploadTarget(ctx.params["dataset_choice"])
dataset_view = self.target_dataset_view(ctx)
client = get_client(ctx)
if data_upload_target == DatasetUploadTarget.NEW:
task_type = ctx.params["dataset_type"]
attributes = {"format_version": "0.1", "categories": []}
for idx, cls in enumerate(ctx.params["classes"]):
attributes["categories"].append({"id": idx + 1, "name": cls})
dataset = client.add_dataset(
ctx.params["dataset_name"],
description="Created by the segments fiftyone plugin.",
metadata={"created_by": "fiftyone_plugin"},
task_type=task_type,
task_attributes=attributes,
)
elif data_upload_target == DatasetUploadTarget.APPEND:
dataset_name, _ = _fetch_selected_dataset_name(ctx)
dataset = client.get_dataset(dataset_name)
task_type = SegmentsDatasetType(dataset.task_type)
upload_dataset(client, dataset_view, dataset.full_name, task_type, ctx)
url = urljoin(SEGMENTS_FRONTEND_URL, dataset.full_name)
return {"segments_dataset": dataset.full_name, "url": url}
def target_dataset_view(self, ctx):
target = TargetSelection(ctx.params["target"])
if target == TargetSelection.DATASET:
return ctx.dataset
elif target == TargetSelection.SELECTED:
return ctx.view.select(ctx.selected)
elif target == TargetSelection.CURRENT_VIEW:
return ctx.view
else:
raise ValueError(f"Could not get target for {target=}")
def resolve_input(self, ctx):
inputs = types.Object()
dataset_name, dataset_type = _fetch_selected_dataset_name(ctx)
self.target_data_selector(ctx, inputs)
default_dataset_choice = DatasetUploadTarget.NEW.value
seg_dataset_choices = types.RadioGroup(orientation="horizontal")
if dataset_name is not None:
seg_dataset_choices.add_choice(
DatasetUploadTarget.APPEND.value,
label=DatasetUploadTarget.APPEND.value,
description="Append samples to segments.ai dataset.",
)
default_dataset_choice = DatasetUploadTarget.APPEND.value
seg_dataset_choices.add_choice(
DatasetUploadTarget.NEW.value,
label=DatasetUploadTarget.NEW.value,
description="Create a new segments.ai dataset from these samples",
)
inputs.enum(
"dataset_choice",
seg_dataset_choices.values(),
view=seg_dataset_choices,
label="New or existing dataset?",
default=default_dataset_choice,
)
if ctx.params.get("dataset_choice", "") == DatasetUploadTarget.NEW.value:
selected_type = ctx.params.get("dataset_type", "")
if selected_type == SegmentsDatasetType.MULTISENSOR_SEQUENCE.value:
invalid_dset_warning = types.Error(
label=f"Creating a new {selected_type} dataset from the plugin is not yet supported",
invalid=True,
)
inputs.view("invalid_dset_warning", invalid_dset_warning, invalid=True)
else:
inputs.str("dataset_name", label="Dataset Name")
self.dataset_type_selector(ctx, inputs, ctx.dataset.media_type)
inputs.list(
"classes",
types.String(),
label="Classes",
description="The annotation labels",
)
dataset_type = ctx.params.get("dataset_type", "")
else:
dset = types.Notice(
label=f"Appending data to segments.ai dataset: {dataset_name}"
)
inputs.view("dataset_name", dset)
if dataset_type == SegmentsDatasetType.MULTISENSOR_SEQUENCE.value:
inputs.bool(
"add_image_sensors",
label="Add cameras as seperate sensors",
description="This will add cameras as annotation tasks in the multisensor interface",
views=types.CheckboxView(),
)
if ctx.params.get("target", "") == TargetSelection.DATASET.value:
error_target = types.Error(
label=f"Can't upload the full dataset to segments for dataset type {dataset_type}. Please create a view using the dynamic grouping feature."
)
inputs.view("warning_no_full_dataset", error_target, invalid=True)
else:
if ctx.params.get("target", ""):
dataset_view = self.target_dataset_view(ctx)
try:
next(dataset_view.iter_dynamic_groups())
except ValueError:
error_no_dynamic = types.Error(
label="No dynamic groups found. Please use the dynamic grouping feature to create sequences."
)
inputs.view(
"warning_no_full_dataset", error_no_dynamic, invalid=True
)
return types.Property(inputs)
def resolve_output(self, ctx):
outputs = types.Object()
view = types.View(label="New dataset created")
outputs.str("url", label="Dataset URL", view=types.MarkdownView())
return types.Property(outputs, view=view)
class FetchAnnotations(foo.Operator):
"""Fetches annotations from a Segments.ai release and attaches them to the fiftyone samples."""
@property
def config(self):
return foo.OperatorConfig(
name="fetch_annotations",
light_icon="/assets/Black icon.svg",
dark_icon="/assets/White icon.svg",
label="Fetch Segments.ai annotations",
dynamic=True,
)
def resolve_input(self, ctx):
inputs = types.Object()
dataset_name, _ = _fetch_selected_dataset_name(ctx)
if dataset_name is None:
return _no_dset_selected_warning(inputs)
dset = types.Notice(
label=f"Fetching annotations from segments.ai dataset: {dataset_name}"
)
inputs.view("dataset_name", dset)
client = get_client(ctx)
releases = client.get_releases(dataset_name)
choices_releases = types.Choices()
for release in releases:
choices_releases.add_choice(release.name, label=release.name)
inputs.enum(
"release",
choices_releases.values(),
view=choices_releases,
label="Release",
required=True,
)
return types.Property(inputs)
def execute(self, ctx):
run_result = ctx.dataset.load_run_results(SEGMENTS_METADATA_KEY, cache=False)
dataset_name = run_result.dataset_full_name
client = get_client(ctx)
dataset_sdk = client.get_dataset(dataset_name)
uuid_sample_map = create_uuid_sample_map(ctx.dataset, client, dataset_sdk)
release = client.get_release(dataset_sdk.full_name, ctx.params["release"])
dataset_type = SegmentsDatasetType(dataset_sdk.task_type)
# Pointcloud-vector and multisensor are incompatible with SegmentsDataset, handle them seperately
if dataset_type in (
SegmentsDatasetType.POINTCLOUD_VECTOR,
SegmentsDatasetType.MULTISENSOR_SEQUENCE,
):
response = requests.get(release.attributes.url)
response.raise_for_status()
releasefile = response.json()
if dataset_type == SegmentsDatasetType.POINTCLOUD_VECTOR:
insert_cuboid_labels(releasefile, ctx.dataset, uuid_sample_map)
elif dataset_type == SegmentsDatasetType.MULTISENSOR_SEQUENCE:
insert_multisensor_labels(releasefile, ctx.dataset, uuid_sample_map)
else:
raise ValueError(f"Unexpected datset_type: {dataset_type}")
else:
dataloader = SegmentsDataset(release, preload=False, load_images=False)
if dataset_type in (
SegmentsDatasetType.SEGMENTATION_BITMAP,
SegmentsDatasetType.SEGMENTATION_BITMAP_HIGHRES,
):
insert_segmentation_labels(dataloader, ctx.dataset, uuid_sample_map)
elif dataset_type in (
SegmentsDatasetType.BBOXES,
SegmentsDatasetType.KEYPOINTS,
SegmentsDatasetType.VECTOR,
):
insert_vector_labels(dataloader, ctx.dataset, uuid_sample_map)
elif dataset_type == SegmentsDatasetType.POINTCLOUD_CUBOID:
insert_cuboid_labels(dataloader, ctx.dataset, uuid_sample_map)
elif dataset_type == SegmentsDatasetType.POINTCLOUD_SEGMENTATION:
raise ValueError(
"Importing pointcloud segmentation projects not yet supported"
)
else:
raise ValueError(
f"Dataset type '{dataset_type.value}' not yet supported"
)
ctx.ops.reload_dataset()
def resolve_output(self, ctx):
outputs = types.Object()
view = types.View(label="Succesfully pulled annotations")
return types.Property(outputs, view=view)
class AddIssue(foo.Operator):
"""Adds an issue to a Segments.ai sample from within fiftyone."""
@property
def config(self):
return foo.OperatorConfig(
name="add_issue",
light_icon="/assets/Black icon.svg",
dark_icon="/assets/White icon.svg",
label="Add issue to Segments.ai sample",
dynamic=False,
)
def resolve_input(self, ctx):
inputs = types.Object()
if not bool(ctx.selected) or len(ctx.selected) > 1:
warning = types.Warning(label="Please select 1 sample")
prop = inputs.view("warning", warning)
prop.invalid = True
return types.Property(
inputs, view=types.View(label="Add issue to segments.ai")
)
dataset_full_name, _ = _fetch_selected_dataset_name(ctx)
if dataset_full_name is None:
return _no_dset_selected_warning(inputs)
dset = types.Notice(
label=f"Making issue in segments.ai dataset: {dataset_full_name}"
)
inputs.view("dataset_name", dset)
inputs.str(
"description",
allow_empty=False,
view=types.TextFieldView(label="Issue description"),
)
return types.Property(inputs)
def execute(self, ctx):
s_id = ctx.selected[0]
selected_sample = ctx.dataset[s_id]
client = get_client(ctx)
client.add_issue(selected_sample["segments_uuid"], ctx.params["description"])
def resolve_output(self, ctx):
pass
class SelectDataset(foo.Operator):
"""Select the corresponding Segments.ai dataset for this fiftyone dataset. This is required for other operators that interact with Segments.ai."""
@property
def config(self):
return foo.OperatorConfig(
name="select_segments_dataset",
light_icon="/assets/Black icon.svg",
dark_icon="/assets/White icon.svg",
label="Select corresponding Segments.ai dataset",
dynamic=False,
)
def resolve_input(self, ctx):
inputs = types.Object()
client = get_client(ctx)
datasets = client.get_datasets()
filtered_dataset = []
for dataset in datasets:
if task_type_matches(ctx.dataset.media_type, dataset.task_type):
filtered_dataset.append(
{"full_name": dataset.full_name, "name": dataset.name}
)
choices_dataset = types.Choices()
for dataset in filtered_dataset:
choices_dataset.add_choice(dataset["full_name"], label=dataset["full_name"])
inputs.enum(
"dataset",
choices_dataset.values(),
view=choices_dataset,
label="Dataset",
required=True,
)
return types.Property(inputs)
def execute(self, ctx):
try:
config = fo.RunConfig()
ctx.dataset.register_run(SEGMENTS_METADATA_KEY, config)
except ValueError:
# Run config already exists, no operation necessary
pass
client = get_client(ctx)
results = ctx.dataset.init_run_results(SEGMENTS_METADATA_KEY)
results.dataset_full_name = ctx.params["dataset"]
results.dataset_type = str(client.get_dataset(ctx.params["dataset"]).task_type)
ctx.dataset.save_run_results(SEGMENTS_METADATA_KEY, results, overwrite=True)
## Helper functions
AssetInfo = namedtuple("AssetInfo", "url filename")
SequenceMapKey = namedtuple("SequenceMapKey", "uuid frame_idx sensor_name")
@dataclass
class Point3D:
x: float
y: float
z: float
def array(self):
return np.array((self.x, self.y, self.z))
def transform(self, tmat: np.ndarray):
t_self = self.array()
t_homog = np.concatenate((t_self, [1]))
transformed = tmat @ t_homog
return Point3D(*transformed[:3])
def pcd_filename_map(dataset: fo.Dataset) -> dict[str, fo.Sample]:
if dataset.media_type != "3d":
return {Path(s.filepath).name: s for s in dataset}
else:
try:
return {s["segments_pc_filename"]: s for s in dataset}
except KeyError:
raise KeyError(
"Expected to find 'source_pcd_filename' attribute in sample. This is required to match segments.ai annotations with fiftyone samples."
)
def create_uuid_sample_map(
dataset: fo.Dataset,
client: segments.SegmentsClient,
segments_dataset: segments.typing.Dataset,
) -> dict[str, fo.Sample]:
"""Creates a dictionary mapping a Segments uuid string to a fiftyone sample."""
if dataset.media_type == "group":
map_ = create_uuid_sample_map_grouped(dataset)
else:
map_ = create_uuid_sample_map_local(dataset)
reversed_maps = {value.id: key for (key, value) in map_.items()}
segments_samples = None
# Extend map by matching filenames
for sample in dataset:
if sample.id in reversed_maps:
# Already matched
continue
if segments_samples is None:
# Lazily fetch the samples
segments_samples = client.get_samples(segments_dataset.full_name)
sample_name_to_id = {s.name: s.uuid for s in segments_samples}
fo_name = Path(sample.filepath).name
if fo_name in sample_name_to_id:
map_[sample_name_to_id[fo_name]] = sample
return map_
def create_uuid_sample_map_local(dataset: fo.Dataset) -> dict[str, fo.Sample]:
"""Creates a dictionary mapping a Segments uuid string to a fiftyone sample."""
map_ = {}
for sample in dataset:
uuid = sample["segments_uuid"]
if uuid is not None:
map_[uuid] = sample
return map_
def create_uuid_sample_map_grouped(
dataset: fo.Dataset,
) -> dict[SequenceMapKey, fo.Sample]:
sample_mapping = {}
# Iterate over all groups in the dataset
for group in dataset.iter_groups():
# Iterate over all slices in the group
for sample in group.values():
if "segments_uuid" not in sample:
continue
# Extract the necessary fields
sensor_name = sample.segments_sensor_name
uuid = sample.segments_uuid
frame_idx = sample.segments_frame_idx
# Create a unique key for the dictionary
key = SequenceMapKey(
sensor_name=sensor_name, uuid=uuid, frame_idx=frame_idx
)
# Map the key to the sample
sample_mapping[key] = sample
return sample_mapping
def is_cloud_storage(path) -> bool:
parse_result = urlparse(path)
if parse_result.scheme == "":
# no parsed scheme, assume local file
return False
else:
# If scheme provided, assume cloud storage
# TODO: Check for supported schemes
return True
def insert_segmentation_labels(
dataloader: SegmentsDataset, dataset: fo.Dataset, sample_map: dict[str, fo.Sample]
):
catmap = {x.id: x.name for x in dataloader.categories}
dataset.mask_targets["ground_truth_segmentation"] = catmap
dataset.save()
annotation_count = 0
for annotation in dataloader:
if annotation["segmentation_bitmap"] is None:
# No segmentation annotation, skip
continue
sample = sample_map[annotation["uuid"]]
segmap_instance = np.asarray(annotation["segmentation_bitmap"])
id_id_map = {x["id"]: x["category_id"] for x in annotation["annotations"]}
if 0 not in id_id_map:
id_id_map[0] = 0
id_id_func = np.vectorize(lambda x: id_id_map[x])
segmap = id_id_func(segmap_instance)
label = fo.Segmentation(mask=segmap)
sample.add_labels(label, label_field="ground_truth_segmentation")
sample.save()
annotation_count += 1
def insert_vector_labels(
dataloader: SegmentsDataset, dataset: fo.Dataset, sample_map: dict[str, fo.Sample]
):
id_cat_map = {x.id: x.name for x in dataloader.categories}
for annotation in dataloader:
if annotation["annotations"] is None:
continue
sample = sample_map[annotation["uuid"]]
if sample.metadata is None:
sample.compute_metadata()
image_width = sample.metadata.width
image_height = sample.metadata.height
image_size = np.array((image_width, image_height))
detections = []
polygons = []
polylines = []
keypoints = []
for instance in annotation["annotations"]:
category_name = id_cat_map[instance["category_id"]]
if instance["type"] == "bbox":
detection = create_51_bbox(instance, image_size, category_name)
detections.append(detection)
elif instance["type"] == "polygon":
polygon = create_51_polyline(
instance, image_size, category_name, is_polygon=True
)
polygons.append(polygon)
elif instance["type"] == "polyline":
polyline = create_51_polyline(
instance, image_size, category_name, is_polygon=False
)
polylines.append(polyline)
elif instance["type"] == "point":
keypoint = create_51_keypoint(instance, image_size, category_name)
keypoints.append(keypoint)
else:
raise ValueError(f"Could not parse annotation type: {instance['type']}")
if detections:
det_sample = fo.Detections(detections=detections)
sample["ground_truth_bboxes"] = det_sample
if polygons:
pol_sample = fo.Polylines(polylines=polygons)
sample["ground_truth_polygons"] = pol_sample
if polylines:
pol_sample = fo.Polylines(polylines=polylines)
sample["ground_truth_polylines"] = pol_sample
if keypoints:
kp_sample = fo.Keypoints(keypoints=keypoints)
sample["ground_truth_points"] = kp_sample
sample.save()
def insert_cuboid_labels(
dataloader: Union[SegmentsDataset, dict],
dataset: fo.Dataset,
sample_map: dict[str, fo.Sample],
):
if isinstance(dataloader, SegmentsDataset):
id_cat_map = {x.id: x.name for x in dataloader.categories}
iterable = dataloader
else:
categories = dataloader["dataset"]["task_attributes"]["categories"]
id_cat_map = {x["id"]: x["name"] for x in categories}
iterable = dataloader["dataset"]["samples"]
for annotation in iterable:
if annotation["labels"]["ground-truth"] is None:
continue
sample = sample_map[annotation["uuid"]]
_insert_sample_annotations_cuboid(
sample,
annotation["labels"]["ground-truth"]["attributes"]["annotations"],
id_cat_map,
)
def _insert_sample_annotations_cuboid(
sample: fo.Sample,
annotation: dict,
id_cat_map: Dict[int, str],
egomotion: Optional[np.ndarray] = None,
):
cuboids = []
polygons = []
polylines = []
keypoints = []
for instance in annotation:
category_name = id_cat_map[instance["category_id"]]
type_ = instance["type"]
if type_ == "cuboid":
cuboid = create_51_cuboid(instance, category_name, egomotion)
cuboids.append(cuboid)
elif type_ == "polygon":
polygon = create_51_3dpolygon(instance, category_name, is_polygon=True)
polygons.append(polygon)
elif type_ == "polyline":
polyline = create_51_3dpolygon(instance, category_name, is_polygon=False)
polylines.append(polyline)
elif type_ == "point":
pass # Not supported by fiftyone, somehow warn the user?
else:
raise ValueError(f"Not implemented for annoation type: {type_}")
if cuboids:
det_sample = fo.Detections(detections=cuboids)
sample["ground_truth_cuboids"] = det_sample
if polygons:
pol_sample = fo.Polylines(polylines=polygons)
sample["ground_truth_polygons"] = pol_sample
if polylines:
pol_sample = fo.Polylines(polylines=polylines)
sample["ground_truth_polylines"] = pol_sample
if keypoints:
pol_sample = fo.Polylines(polylines=keypoints)
sample["ground_truth_points"] = pol_sample
sample.save()
def insert_multisensor_labels(
dataloader: dict,
dataset: fo.Dataset,
sample_map: dict[SequenceMapKey, fo.Sample],
):
def ego_to_transmat(ego: dict):
rot = Quaternion(
x=ego["heading"]["qx"],
y=ego["heading"]["qy"],
z=ego["heading"]["qz"],
w=ego["heading"]["qw"],
)
pos = np.array(
[
ego["position"]["x"],
ego["position"]["y"],
ego["position"]["z"],
]
)
tmat = np.eye(4)
tmat[:3, :3] = rot.rotation_matrix
tmat[:3, 3] = pos
return tmat
def get_egomotion(sample: dict):
sensors = sample["attributes"]["sensors"]
for s_idx, sensor in enumerate(sensors):
if "ego_pose" in sensor["attributes"]["frames"][0]:
sensor_w_ego = sensor
break
else:
return None
ego_poses = [x["ego_pose"] for x in sensor_w_ego["attributes"]["frames"]]
ego_poses = [ego_to_transmat(x) for x in ego_poses]
return ego_poses
categories = dataloader["dataset"]["task_attributes"]["categories"]
id_cat_map = {x["id"]: x["name"] for x in categories}
segments_samples = dataloader["dataset"]["samples"]
for annotation in segments_samples:
if (label_dict := annotation["labels"]["ground-truth"]) is None:
continue
uuid = annotation["uuid"]
sensors = label_dict["attributes"]["sensors"]
egomotion = get_egomotion(annotation)
for sensor in sensors:
sensor_name = sensor["name"]
for f_idx, frame in enumerate(sensor["attributes"]["frames"]):
ann = frame["annotations"]
key = SequenceMapKey(uuid, f_idx, sensor_name)
if key not in sample_map:
continue
sample = sample_map[key]
egomotion_this_frame = None if egomotion is None else egomotion[f_idx]
_insert_sample_annotations_cuboid(
sample, ann, id_cat_map, egomotion_this_frame
)
# Caching the client object, as constructing it is relatively expensive
_CLIENT: Optional[SegmentsClient] = None
def get_client(ctx) -> SegmentsClient:
global _CLIENT
if _CLIENT is not None:
return _CLIENT
api_key = ctx.secrets.get("SEGMENTS_API_KEY")
# Sometimes a missing secret is `None`, sometimes it's an empty string.
segments_url = ctx.secrets.get("SEGMENTS_URL", None)
if segments_url:
client = SegmentsClient(api_key, api_url=segments_url)
else:
client = SegmentsClient(api_key)
_CLIENT = client
return client
def upload_dataset(
client: SegmentsClient,
dataset: fo.Dataset,
dataset_id: str,
task_type: SegmentsDatasetType,
ctx,
):
if dataset.media_type == "group":
dataset_iterator = dataset.iter_dynamic_groups()
else:
dataset_iterator = dataset
def needs_bucket_upload(sample):
no_alternate_filepath = "segments_filepath" not in sample
not_cloud_storage = not is_cloud_storage(sample.filepath)
return no_alternate_filepath and not_cloud_storage
sample = next(iter(dataset))
upload_limit = 100
if len(dataset) > upload_limit and needs_bucket_upload(sample):
raise ValueError(
f"The dataset is too large to upload using this plugin (larger than {upload_limit}). Please upload the samples to a cloud bucket and provide the URLs in the 'segments_filepath' field."
)
for idx, s in enumerate(dataset_iterator):
ctx.set_progress(
(idx + 1) / len(dataset), label=f"Uploading {idx+1}/(len(dataset))"
)
# If the sample is stored in a cloud bucket, don't upload it to segments.ai. Instead, use the URL directly.
asset_info = upload_sample(client, s)
sample_attrib, sample_name = generate_sample_attribs(
s, asset_info, task_type, ctx.params.get("add_image_sensors", False)
)
segments_sample = client.add_sample(
dataset_id, sample_name, attributes=sample_attrib
)
if task_type == SegmentsDatasetType.MULTISENSOR_SEQUENCE:
# For each of the samples, record uuid, frame index and sensor name
for groupname in s.group_slices:
s.group_slice = groupname
s.set_values("segments_uuid", [segments_sample.uuid] * len(s))
s.set_values("segments_frame_idx", range(len(s)))
s.set_values("segments_sensor_name", [groupname] * len(s))
else:
s["segments_uuid"] = segments_sample.uuid
s.save()
def upload_sample(
client: segments.SegmentsClient, s: Union[fo.Sample, fo.DatasetView]
) -> List[Dict[str, AssetInfo]]:
def upload_media_sample(sample):
if "segments_filepath" in sample:
url = sample["segments_filepath"]
filename = url.rsplit("/", 1)[-1]
elif is_cloud_storage(sample.filepath):
url = sample.filepath
filename = url.rsplit("/", 1)[-1]
else:
with open(sample.filepath, "rb") as f:
asset = client.upload_asset(f, Path(sample.filepath).name)
url = asset.url
filename = asset.filename
return AssetInfo(url, filename)
if isinstance(s, fo.DatasetView):
asset_infos = []
for sensors in s.iter_groups():
asset_info = {}
for key, sample in sensors.items():
asset_info[key] = upload_media_sample(sample)
asset_infos.append(asset_info)
else:
info = upload_media_sample(s)
asset_info = {"sample": info}
asset_infos = [asset_info]
return asset_infos
def generate_sample_attribs(
sample_info: Union[fo.DatasetView, fo.Sample],
asset_infos: List[Dict[str, AssetInfo]],
task_type: SegmentsDatasetType,
include_image_sensors: bool = False,
):
if task_type in SINGLE_IMAGE_TASKS:
asset_info = asset_infos[0]["sample"]
sample_attrib = {"image": {"url": asset_info.url}}
sample_name = asset_info.filename
elif task_type in SINGLE_POINTCLOUD_TASKS:
asset_info = asset_infos[0]["sample"]
sample_attrib = {"pcd": {"url": asset_info.url, "type": "pcd"}}
sample_name = asset_info.filename
elif task_type == SegmentsDatasetType.MULTISENSOR_SEQUENCE:
sensors = []
sensors.append(_generate_attrib_frames_lidar(sample_info, asset_infos))
if include_image_sensors:
sensors.extend(_generate_attrib_frames_image(sample_info, asset_infos))
sample_attrib = {"sensors": sensors}
# TODO: Provide a way to customize the sample names
sample_name = sample_info.first().id
else:
# TODO: add support for media type '3d'
raise ValueError(f"Dataset upload not implemented for media type: {task_type}")
return sample_attrib, sample_name
def _generate_attrib_frames_image(
sample_info: fo.DatasetView, asset_infos: List[Dict[str, AssetInfo]]
):
image_sensors = []
sensors = next(sample_info.iter_groups())
for sensor_name, sensor_sample in sensors.items():
if sensor_sample.media_type != "image":
continue
# image_sensors[sensor_name] = sensor_sample
sensor_attribs = {"name": sensor_name, "task_type": "image-vector-sequence"}
frames = []
for asset_info in asset_infos:
frame = {}
frame["name"] = Path(asset_info[sensor_name].filename).name
frame["image"] = {"url": asset_info[sensor_name].url}
frames.append(frame)
sensor_attribs["attributes"] = {"frames": frames}
image_sensors.append(sensor_attribs)
return image_sensors