-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
340 lines (265 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import transformers
from transformers import AdamW, get_linear_schedule_with_warmup
import os
import torch
import yaml
import shutil
import itertools
import numpy as np
import pandas as pd
from tqdm import tqdm
from pylab import rcParams
import matplotlib.pyplot as plt
from matplotlib import rc
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from collections import defaultdict
from textwrap import wrap
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
from nlpdatasets import GPReviewDataset
from transformers import BertModel, BertTokenizer
from transformers import AutoTokenizer, AutoModel
from transformers import RobertaTokenizer, RobertaModel
from transformers import XLNetTokenizer, XLNetModel
from transformers import AutoTokenizer, YosoModel
# from draw_picture import draw_history
from total_model import give_parameter, bert_base, ernie_base, roberta_base, xlnet_base, bert_large, ernie_large, roberta_large, xlnet_large, YOSO
with open('parameters.yaml', 'r') as f:
paramenter = yaml.full_load(f)
give_parameter(paramenter)
RANDOM_SEED = 42
EPOCHS = paramenter["EPOCHS"]
BATCH_SIZE = paramenter["BATCH_SIZE"]
MAX_LEN = paramenter["MAX_LEN"]
LR = float(paramenter["LR"])
y_pred_All_val_batch = []
y_true_All_val_batch = []
model_name = ["bert-base", "ernie-base", "roberta-base", "xlnet-base",
"bert-large", "ernie-large", "roberta-large", "xlnet-large", "YOSO"]
used_model = [bert_base, ernie_base, roberta_base, xlnet_base,
bert_large, ernie_large, roberta_large, xlnet_large, YOSO]
used_token = [BertTokenizer, AutoTokenizer, RobertaTokenizer, XLNetTokenizer,
BertTokenizer, AutoTokenizer, RobertaTokenizer, XLNetTokenizer, AutoTokenizer]
used_model_pretrained_name = ["bert-base-cased",
"nghuyong/ernie-2.0-en", "roberta-base", 'xlnet-base-cased', "bert-large-cased", "nghuyong/ernie-2.0-large-en", 'roberta-large', 'xlnet-large-cased', "uw-madison/yoso-4096"]
SentimentClassifier = dict(zip(model_name, used_model))
USING_TOKEN = dict(zip(model_name, used_token))
USING_PRETRAINED = dict(zip(model_name, used_model_pretrained_name))
def create_directory(dirname):
if os.path.exists(dirname):
shutil.rmtree(dirname)
os.mkdir(dirname)
def draw_history(dirname):
df = pd.DataFrame(pd.read_csv(dirname + "/record.csv"))
train_loss = list(df["train_loss"])
validation_loss = list(df["validation_loss"])
training_accuracy = list(df["training_accuracy"])
validation_accuracy = list(df["validation_accuracy"])
plt.plot(list(range(1, len(training_accuracy)+1)),
training_accuracy, label='train accuracy')
plt.plot(list(range(1, len(validation_accuracy)+1)),
validation_accuracy, label='validation accuracy')
plt.title('Training history')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend()
plt.ylim([0, 1])
plt.savefig(dirname + "/figure/accuracy.png")
plt.close()
plt.plot(list(range(1, len(train_loss)+1)),
train_loss, label='train loss')
plt.plot(list(range(1, len(validation_loss)+1)),
validation_loss, label='validation loss')
plt.title('Training history')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend()
plt.ylim([0, 5])
plt.savefig(dirname + "/figure/loss.png")
plt.close()
def train_epoch(model, data_loader, loss_fn, optimizer, device, scheduler, n_examples):
model = model.train()
losses = []
correct_predictions = 0
loop = tqdm(enumerate(data_loader), total=len(data_loader))
for index, d in loop:
input_ids = d["input_ids"].to(device)
attention_mask = d["attention_mask"].to(device)
targets = d["targets"].to(device)
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask
)
_, preds = torch.max(outputs, dim=1)
loss = loss_fn(outputs, targets)
correct_predictions += torch.sum(preds == targets)
losses.append(loss.item())
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
loop.set_postfix(loss=loss.item(), accuracy=(torch.sum(
preds == targets)/len(preds)).item())
return correct_predictions.double() / n_examples, np.mean(losses)
def eval_model(model, data_loader, loss_fn, device, n_examples):
model = model.eval()
losses = []
correct_predictions = 0
global y_pred_All_val_batch
global y_true_All_val_batch
with torch.no_grad():
loop = tqdm(enumerate(data_loader), total=len(data_loader))
for index, d in loop:
input_ids = d["input_ids"].to(device)
attention_mask = d["attention_mask"].to(device)
targets = d["targets"].to(device)
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask
)
_, preds = torch.max(outputs, dim=1)
y_pred_All_val_batch += (preds.cpu().numpy().tolist())
y_true_All_val_batch += (targets.cpu().numpy().tolist())
loss = loss_fn(outputs, targets)
correct_predictions += torch.sum(preds == targets)
losses.append(loss.item())
loop.set_postfix(loss=loss.item(), accuracy=(torch.sum(
preds == targets)/len(preds)).item())
return correct_predictions.double() / n_examples, np.mean(losses)
def create_data_loader(df, tokenizer, max_len, batch_size):
ds = GPReviewDataset(
reviews=df.data.to_numpy(),
targets=df.label.to_numpy(),
tokenizer=tokenizer,
max_len=max_len,
)
return DataLoader(ds, batch_size=batch_size, num_workers=4)
def plot_confusion_matrix_figure(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
else:
print('Confusion matrix, without normalization')
plt.imshow(cm, interpolation='nearest', cmap='Blues')
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(round(cm[i, j], 1), fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
def plot_confusion_matrix(y_pred, y_true, class_num):
target_names = list(range(class_num))
plt.figure()
figure = plt.gcf() # get current figure
figure.set_size_inches(8, 6)
cnf_matrix = confusion_matrix(y_true, y_pred)
plot_confusion_matrix_figure(
cnf_matrix, classes=target_names, normalize=True, title='confusion matrix')
plt.savefig("experiment/exp"+str(experiment) +
"/figure/confusion_matrix.jpg", dpi=100)
# plt.show()
plt.close()
def csv_confusion_matrix(y_pred, y_true, class_num):
cnf_matrix = confusion_matrix(y_true, y_pred)
df_matrix = pd.DataFrame(columns=list(range(class_num)), data=cnf_matrix)
df_matrix.to_csv("experiment/exp"+str(experiment) +
"/confusion_matrix.csv", index=True)
if os.path.exists("experiment") == False:
os.mkdir("experiment")
if len(os.listdir("experiment")) > 0:
find_exp = False
for file in os.listdir("experiment"):
if "exp" in file:
find_exp = True
if find_exp:
experiment = (sorted([int(x.replace("exp", ""))
for x in os.listdir("experiment") if "exp" in x])[-1])+1
else:
experiment = 1
else:
experiment = 1
create_directory("experiment/exp"+str(experiment))
create_directory("experiment/exp"+str(experiment)+"/figure")
shutil.copy("parameters.yaml", "experiment/exp" +
str(experiment)+"/parameters.yaml")
np.random.seed(RANDOM_SEED)
torch.manual_seed(RANDOM_SEED)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
df_train = pd.DataFrame(pd.read_csv(
"data/"+paramenter["USING_DATA"]+"/fixed_group_train.csv"))
df_val = pd.DataFrame(pd.read_csv(
"data/"+paramenter["USING_DATA"]+"/fixed_group_valid.csv"))
class_names = np.unique(np.array(df_train.label))
tokenizer = USING_TOKEN[paramenter["model"]].from_pretrained(
USING_PRETRAINED[paramenter["model"]])
train_data_loader = create_data_loader(
df_train, tokenizer, MAX_LEN, BATCH_SIZE)
val_data_loader = create_data_loader(df_val, tokenizer, MAX_LEN, BATCH_SIZE)
data = next(iter(train_data_loader))
print(data.keys())
print(data['input_ids'].shape)
print(data['attention_mask'].shape)
print(data['targets'].shape)
model = SentimentClassifier[paramenter["model"]](len(class_names))
model = model.to(device)
input_ids = data['input_ids'].to(device)
attention_mask = data['attention_mask'].to(device)
print(input_ids.shape) # batch size x seq length
print(attention_mask.shape)
optimizer = AdamW(model.parameters(), lr=LR, correct_bias=False)
total_steps = len(train_data_loader) * EPOCHS
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=0,
num_training_steps=total_steps
)
loss_fn = nn.CrossEntropyLoss().to(device)
history = defaultdict(list)
best_accuracy = 0
df_record = pd.DataFrame(columns=["train_loss",
"validation_loss", "training_accuracy", "validation_accuracy"])
df_record.to_csv("experiment/exp"+str(experiment)+"/record.csv", index=False)
for epoch in range(EPOCHS):
df_record = pd.read_csv("experiment/exp"+str(experiment)+"/record.csv")
new_record_data = list(df_record.values)
print(f'Epoch {epoch + 1}/{EPOCHS}')
print('-' * 10)
train_acc, train_loss = train_epoch(
model,
train_data_loader,
loss_fn,
optimizer,
device,
scheduler,
len(df_train)
)
print(f'Train loss {train_loss} accuracy {train_acc}')
val_acc, val_loss = eval_model(
model,
val_data_loader,
loss_fn,
device,
len(df_val)
)
print(f'Val loss {val_loss} accuracy {val_acc}')
if val_acc > best_accuracy:
torch.save(model.state_dict(), "experiment/exp" +
str(experiment)+"/best_model_state.bin")
csv_confusion_matrix(y_pred_All_val_batch,
y_true_All_val_batch, len(class_names))
best_accuracy = val_acc
new_record_data.append(
[train_loss, val_loss, train_acc.item(), val_acc.item()])
df_record = pd.DataFrame(columns=df_record.columns, data=new_record_data)
df_record.to_csv("experiment/exp"+str(experiment) +
"/record.csv", index=False)
draw_history("experiment/exp"+str(experiment))