-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
149 lines (116 loc) · 4.76 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import pandas as pd
from skimage import io
import os
from torch.utils import data
from torch.utils.data import DataLoader
from torchvision import transforms
import numpy as np
def process_data_number(img,label):
img_0,img_1,img_2,img_3,img_4 = [],[],[],[],[]
label_0,label_1,label_2,label_3,label_4 = [],[],[],[],[]
print("before:",img.shape,label.shape)
for i in range(5):
for j in np.argwhere(label==i):
if i == 0:
img_0.append(img[j[0]])
label_0.append(label[j[0]])
elif i == 1:
img_1.append(img[j[0]])
label_1.append(label[j[0]])
elif i == 2:
img_2.append(img[j[0]])
label_2.append(label[j[0]])
elif i == 3:
img_3.append(img[j[0]])
label_3.append(label[j[0]])
else:
img_4.append(img[j[0]])
label_4.append(label[j[0]])
print(np.array(img_0).shape)
print(np.array(label_0).shape)
print(np.array(img_1).shape)
print(np.array(label_1).shape)
print(np.array(img_2).shape)
print(np.array(label_2).shape)
print(np.array(img_3).shape)
print(np.array(label_3).shape)
print(np.array(img_4).shape)
print(np.array(label_4).shape)
img_0 = img_0[:len(img_0)//5]
label_0 = label_0[:len(label_0)//5]
# img_1 = img_1[:len(img_4)]
# label_1 = label_1[:len(label_4)]
# img_2 = img_2[:len(img_4)]
# label_2 = label_2[:len(label_4)]
# img_3 = img_3[:len(img_4)]
# label_3 = label_3[:len(label_4)]
# print(np.array(img_0).shape)
# print(np.array(label_0).shape)
# print(np.array(img_1).shape)
# print(np.array(label_1).shape)
# print(np.array(img_2).shape)
# print(np.array(label_2).shape)
# print(np.array(img_3).shape)
# print(np.array(label_3).shape)
# print(np.array(img_4).shape)
# print(np.array(label_4).shape)
img,label=[],[]
img = (img_0+img_1+img_2+img_3+img_4)
label = (label_0+label_1+label_2+label_3+label_4)
np.random.seed(0)
np.random.shuffle(img)
np.random.seed(0)
np.random.shuffle(label)
# print(np.array(img).shape)
# print(np.array(label).shape)
return np.array(img),np.array(label)
def getData(mode):
if mode == 'train':
img = pd.read_csv('train_img.csv',header=None)
label = pd.read_csv('train_label.csv',header=None)
img,label = np.squeeze(img.values), np.squeeze(label.values)
# img,label = process_data_number(img,label)
return img,label
else:
img = pd.read_csv('test_img.csv',header=None)
label = pd.read_csv('test_label.csv',header=None)
return np.squeeze(img.values), np.squeeze(label.values)
class RetinopathyLoader(data.Dataset):
def __init__(self, root, mode, transform=None):
"""
Args:
root (string): Root path of the dataset.
mode : Indicate procedure status(training or testing)
self.img_name (string list): String list that store all image names.
self.label (int or float list): Numerical list that store all ground truth label values.
"""
self.root = root
self.img_name, self.labels = getData(mode)
self.transform = transform
self.mode = mode
print("> Found %d %s images..." % (len(self.img_name),self.mode))
def __len__(self):
"""'return the size of dataset"""
return len(self.img_name)
def __getitem__(self, index):
"""something you should implement here"""
image_path = self.root + self.img_name[index]+ '.jpeg'
self.img = io.imread(image_path)
self.label = self.labels[index]
if self.transform:
self.img = self.transform(self.img)
"""
step1. Get the image path from 'self.img_name' and load it.
hint : path = root + self.img_name[index] + '.jpeg'
step2. Get the ground truth label from self.label
step3. Transform the .jpeg rgb images during the training phase, such as resizing, random flipping,
rotation, cropping, normalization etc. But at the beginning, I suggest you follow the hints.
In the testing phase, if you have a normalization process during the training phase, you only need
to normalize the data.
hints : Convert the pixel value to [0, 1]
Transpose the image shape from [H, W, C] to [C, H, W]
step4. Return processed image and label
"""
return self.img,self.label
# if __name__ == "__main__":
# img,label = getData("train")