-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathResNet18_nonpretrained_model.py
274 lines (211 loc) · 10.1 KB
/
ResNet18_nonpretrained_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from torchvision.transforms.transforms import RandomCrop
from dataloader import RetinopathyLoader
from torchvision import models
import torch.nn as nn
import torch
import os
import pkbar
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torchsummary import summary
from torch.utils.data import DataLoader
from torch.utils.data import TensorDataset
from torchvision import transforms
import torch.optim as optim
import pandas as pd
from tqdm import tqdm
import itertools
import numpy as np
import argparse
def testing(y_pred_All_test_batch,y_true_All_test_batch,test_loader,model,device):
# model.load_state_dict(torch.load(filepath))
test_accuracy = []
model.eval()
with torch.no_grad():
model.cuda(0)
for x_test,y_test in tqdm(test_loader):
n = len(x_test)
y_true_All_test_batch+= (y_test.numpy().tolist())
# y_true_All_test_batch+=y_test
x_test,y_test = x_test.to(device),y_test.to(device)
y_pred_test = model(x_test)
correct_test = (torch.max(y_pred_test,1)[1]==y_test).sum().item()
y_pred_All_test_batch += (torch.max(y_pred_test,1)[1].cpu().numpy().tolist())
# y_pred_All_test_batch += torch.max(y_pred_test,1)[1]
test_accuracy.append(correct_test/n)
# print("testing accuracy:",correct/n)
test_accuracy = sum(test_accuracy)/len(test_accuracy)
return y_pred_All_test_batch,y_true_All_test_batch,test_accuracy
class ResNet(nn.Module):
def __init__(self, pretrained=True):
super(ResNet, self).__init__()
self.classify = nn.Linear(512, 5)
pretrained_model = models.__dict__['resnet{}'.format(18)](pretrained=False)
self.conv1 = pretrained_model._modules['conv1']
self.bn1 = pretrained_model._modules['bn1']
self.relu = pretrained_model._modules['relu']
self.maxpool = pretrained_model._modules['maxpool']
self.layer1 = pretrained_model._modules['layer1']
self.layer2 = pretrained_model._modules['layer2']
self.layer3 = pretrained_model._modules['layer3']
self.layer4 = pretrained_model._modules['layer4']
self.avgpool = nn.AdaptiveAvgPool2d(1)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
# x = nn.Dropout(0.35)(x)
x = self.layer1(x)
x = self.layer2(x)
# x = nn.Dropout(0.35)(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
# print(x.shape)
x = x.view(x.size(0), -1)
x = self.classify(x)
return x
def plot_confusion_matrix_figure(cm, classes,normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
# print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
plt.imshow(cm, interpolation='nearest', cmap='Blues')
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
def plot_confusion_matrix(y_pred,y_true):
# y_pred = [0,2,0,4,3,1,1,1,1,1]
# y_true = [0,1,2,3,4,1,0,1,1,1]
target_names = list(range(5))
plt.figure()
cnf_matrix = confusion_matrix(y_true, y_pred)
# print(cnf_matrix)
plot_confusion_matrix_figure(cnf_matrix, classes=target_names,normalize=True,title='confusion matrix')
# plt.savefig('confusion_matrix.jpg',dpi=300)
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default='10', help='training epochs')
parser.add_argument('--image_size', type=int, default='224', help='model input image size')
parser.add_argument('--n_channels', type=int, default='3', help='model input image channels')
parser.add_argument('--train_batch_size', type=int, default='256', help='batch size to training')
parser.add_argument('--test_batch_size', type=int, default='281', help='batch size to testing')
parser.add_argument('--number_worker', type=int, default='4', help='number worker')
parser.add_argument('--learning_rate', type=float, default='5e-3', help='learning rate')
parser.add_argument('--save_model', action='store_true', help='check if you want to save the model.')
parser.add_argument('--save_csv', action='store_true', help='check if you want to save the training history.')
opt = parser.parse_args()
device = torch.device("cuda:0")
path = os.path.dirname(os.path.abspath(__file__))+"/data/"
epochs = opt.epochs
lr = opt.learning_rate
min_loss = 1
max_accuracy = 0
max_test_accuracy = 0
filepath = os.path.abspath(os.path.dirname(__file__))+"\model_weight\ResNet18_nonpretrained.rar"
filepath_csv = os.path.abspath(os.path.dirname(__file__))+"\history_csv\ResNet18_nonpretrained.csv"
train_transform = transforms.Compose([
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
# transforms.RandomCrop(224),
transforms.Resize((opt.image_size,opt.image_size)),
# transforms.RandomVerticalFlip(),
# transforms.RandomHorizontalFlip(),
# transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1)
# transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
])
test_transform = transforms.Compose([
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Resize((opt.image_size,opt.image_size))
# transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
])
train_dataset = RetinopathyLoader(path,"train",transform=train_transform)
test_dataset = RetinopathyLoader(path,"test",transform=test_transform)
train_loader = DataLoader(train_dataset,batch_size=opt.train_batch_size,num_workers=opt.number_worker)
test_loader = DataLoader(test_dataset,batch_size=opt.test_batch_size,num_workers=opt.number_worker)
#1405
#7025
model = ResNet()
# for name,child in model.named_children():
# if name in ['layer4','fc']:
# #print(name + 'is unfrozen')
# for param in child.parameters():
# param.requires_grad = True
# else:
# #print(name + 'is frozen')
# for param in child.parameters():
# param.requires_grad = False
model_layer = [model.layer1,model.layer2,model.layer3,model.layer4]
for layer in model_layer:
for number in range(len(layer)):
layer[number].relu = nn.LeakyReLU(negative_slope=0.01,inplace=True)
model.relu = nn.LeakyReLU(negative_slope=0.01,inplace=True)
print(model)
# model.to(device)
model.cuda(0)
summary(model.cuda(),(opt.n_channels,opt.image_size,opt.image_size))
optimizer = optim.Adam(model.parameters(),lr = lr)
# optimizer = optim.RMSprop(model.parameters(),lr = lr, momentum = 0.9)
criterion = nn.CrossEntropyLoss()
loss_batch = []
accuracy_batch = []
loss_history = []
train_accuracy_history = []
test_accuracy_history = []
y_pred_All_test_batch = []
y_true_All_test_batch = []
for epoch in range(epochs):
kbar = pkbar.Kbar(target=len(train_loader)-1, epoch=epoch, num_epochs=epochs, width=12, always_stateful=False)
for i,(data, target) in enumerate(train_loader):
model.train()
data,target = data.to(device),target.to(device)
# print("data.shape:",data.shape,"target.shape:",target.shape,"\n")
y_pred = model(data)
loss = criterion(y_pred, target)
loss_batch.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print(loss.item())
n = target.shape[0]
correct = (torch.max(y_pred,1)[1]==target).sum().item()
train_accuracy = correct / n
accuracy_batch.append(train_accuracy)
kbar.update(i, values=[("loss", loss.item()), ("train accuracy", train_accuracy)])
# print("\n epochs:",epoch,"loss:",sum(loss_batch)/len(loss_batch),"Training Accuracy:",sum(accuracy_batch)/len(accuracy_batch))
y_pred_All_test_batch,y_true_All_test_batch,test_accuracy = testing(y_pred_All_test_batch,y_true_All_test_batch,test_loader,model,device)
# kbar.add(1, values=[("testing accuracy",test_accuracy)])
train_accuracy = sum(accuracy_batch)/len(accuracy_batch)
train_loss = sum(loss_batch)/len(loss_batch)
print("\n epochs:",epoch,"loss:",train_loss,"Training Accuracy:",train_accuracy,"Testing Accuracy:",test_accuracy)
loss_history.append(train_loss)
train_accuracy_history.append(train_accuracy)
test_accuracy_history.append(test_accuracy)
loss_batch = []
accuracy_batch = []
# if train_loss<min_loss:
# min_loss = train_loss
# torch.save(model.state_dict(), filepath)
if train_accuracy>max_accuracy:
max_accuracy = train_accuracy
if opt.save_model:
torch.save(model.state_dict(), filepath)
df = pd.DataFrame({"loss":loss_history,"train_accuracy_history":train_accuracy_history,"test_accuracy_history":test_accuracy_history})
# print(df)
if opt.save_csv:
df.to_csv(filepath_csv,encoding="utf-8-sig")
plot_confusion_matrix(y_pred_All_test_batch,y_true_All_test_batch)