forked from busesese/DSSM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_train.py
73 lines (68 loc) · 2.83 KB
/
model_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
def train_model(model, train_loader, val_loader, epoch, loss_function, optimizer, path, early_stop):
"""
pytorch 模型训练通用代码
:param model: pytorch 模型
:param train_loader: dataloader, 训练数据
:param val_loader: dataloader, 验证数据
:param epoch: int, 训练迭代次数
:param loss_function: 优化损失函数
:param optimizer: pytorch优化器
:param path: save path
:param early_stop: int, 提前停止步数
:return: None
"""
# 是否使用GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu")
model = model.to(device)
# 多少步内验证集的loss没有变小就提前停止
patience, eval_loss = 0, 0
# 训练
for i in range(epoch):
total_loss, count = 0, 0
y_pred = list()
y_true = list()
for idx, (x, y) in tqdm(enumerate(train_loader), total=len(train_loader)):
x, y = x.to(device), y.to(device)
u, m = model(x)
predict = torch.sigmoid(torch.sum(u*m, 1))
y_pred.extend(predict.cpu().detach().numpy())
y_true.extend(y.cpu().detach().numpy())
loss = loss_function(predict, y.float())
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += float(loss)
count += 1
train_auc = roc_auc_score(np.array(y_true), np.array(y_pred))
torch.save(model, path.format(i+1))
print("Epoch %d train loss is %.3f and train auc is %.3f" % (i+1, total_loss / count, train_auc))
# 验证
total_eval_loss = 0
model.eval()
count_eval = 0
val_y_pred = list()
val_true = list()
for idx, (x, y) in tqdm(enumerate(val_loader), total=len(val_loader)):
x, y = x.to(device), y.to(device)
u, m = model(x)
predict = torch.sigmoid(torch.sum(u*m, 1))
val_y_pred.extend(predict.cpu().detach().numpy())
val_true.extend(y.cpu().detach().numpy())
loss = loss_function(predict, y.float())
total_eval_loss += float(loss)
count_eval += 1
val_auc = roc_auc_score(np.array(y_true), np.array(y_pred))
print("Epoch %d val loss is %.3fand train auc is %.3f" % (i+1, total_eval_loss / count_eval, val_auc))
# 提前停止策略
if i == 0:
eval_loss = total_eval_loss / count_eval
else:
if total_eval_loss / count_eval < eval_loss:
eval_loss = total_eval_loss / count_eval
else:
if patience < early_stop:
patience += 1
else:
print("val loss is not decrease in %d epoch and break training" % patience)
break