Skip to content

Latest commit

 

History

History
88 lines (74 loc) · 3.18 KB

README.md

File metadata and controls

88 lines (74 loc) · 3.18 KB

ResNet and VGG implementation for CIFAR10 in Pytorch

The purpose of this repo is to provide a valid pytorch implementation of ResNet-s and VGG-s for CIFAR10 and do comparative analysis.

The experiment results for the provided models can be found here: ResNet20, ResNet32, ResNet44, ResNet56, ResNet110, ResNet120, VGG11, VGG11_bn, VGG13, VGG13_bn, VGG16, VGG16_bn, VGG19, VGG19_bn

Prerequisites

  • Python3.5+
  • CUDA 10.1

Installation

Python setuptools and python package manager (pip) install packages into system directory by default. The training code tested only via virtual environment.

In order to use virtual environment you should install it first:

python3 -m pip install virtualenv
python3 -m virtualenv -p `which python3` <env_dir>

Before starting to work inside virtual environment, it should be activated:

source <env_dir>/bin/activate

Install dependencies using:

pip install -r requirements.txt

How to run?

See the usage of runner:

python main.py -h
usage: main.py [-h] [--arch ARCH] [-j N] [--epochs N] [--start-epoch N] [-b N]
               [--lr LR] [--momentum M] [--weight-decay W] [--print-freq N]
               [--resume PATH] [-e] [--pretrained] [--half] [--cpu]
               [--save-dir SAVE_DIR] [--save-every SAVE_EVERY] [-l]
               [--logs-dir LOGS_DIR]

PyTorch ImageNet Training

optional arguments:
  -h, --help            show this help message and exit
  --arch ARCH, -a ARCH  model architecture: resnet110 | resnet1202 | resnet20
                        | resnet32 | resnet44 | resnet56 | vgg11 | vgg11_bn |
                        vgg13 | vgg13_bn | vgg16 | vgg16_bn | vgg19 | vgg19_bn
                        (default: vgg19)
  -j N, --workers N     number of data loading workers (default: 4)
  --epochs N            number of total epochs to run
  --start-epoch N       manual epoch number (useful on restarts)
  -b N, --batch-size N  mini-batch size (default: 128)
  --lr LR, --learning-rate LR
                        initial learning rate
  --momentum M          momentum
  --weight-decay W, --wd W
                        weight decay (default: 5e-4)
  --print-freq N, -p N  print frequency (default: 20)
  --resume PATH         path to latest checkpoint (default: none)
  -e, --evaluate        evaluate model on validation set
  --pretrained          use pre-trained model
  --half                use half-precision(16-bit)
  --cpu                 use cpu
  --save-dir SAVE_DIR   The directory used to save the trained models
  --save-every SAVE_EVERY
                        Saves checkpoints at every specified number of epochs
  -l, --logs            Save logs
  --logs-dir LOGS_DIR   The directory used to save the logs

Example of running:

python main.py  --arch=resnet20 --epochs=100  --save-dir=save_resnet20

For evaluation:

python main.py --evaluate --arch=resnet20  --save-dir=save_resnet20

Example for running with saving logs and vizualization on TensorBoard:

python main.py  --arch=resnet20 --epochs=100  --save-dir=save_resnet20 -l --logs-dir=<your_logs_dir>
tensorboard --logdir=<your_logs_dir>