-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetector.py
94 lines (76 loc) · 3.19 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import streamlit as st
import cv2
import numpy as np
import matplotlib.pyplot as plt
def detect_objects(input_image):
col1, col2 = st.columns(2)
col1.subheader("Sample Image")
st.text("")
plt.figure(figsize = (15,15))
plt.imshow(input_image)
col1.pyplot(use_column_width=True)
# Read weights and config
net = cv2.dnn.readNetFromDarknet("./model/yolov3.cfg", "./model/yolov3.weights")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
# Load classes into different colors
classes = []
with open("./model/coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0]-1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0,255,(len(classes), 3))
new_img = np.array(input_image.convert('RGB'))
img = cv2.cvtColor(new_img,1)
height,weight,ch = img.shape
# detect image from cv2 blob
blob = cv2.dnn.blobFromImage(img, 1./255, (320,320), [0, 0, 0], 1, crop = False)
net.setInput(blob)
outs = net.forward(output_layers)
class_ids = []
confidences = []
bboxes =[]
# SHOWING INFORMATION CONTAINED IN 'outs' VARIABLE ON THE SCREEN
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.3:
# OBJECT DETECTED
#Get the coordinates of object: center,width,height
center_x = int(detection[0] * weight)
center_y = int(detection[1] * height)
w = int(detection[2] * weight) #width is the original width of image
h = int(detection[3] * height) #height is the original height of the image
# RECTANGLE COORDINATES
x = int(center_x - w /2) #Top-Left x
y = int(center_y - h/2) #Top-left y
#To organize the objects in array so that we can extract them later
bboxes.append([x,y,w,h])
confidences.append(float(confidence))
class_ids.append(class_id)
score_threshold = st.sidebar.slider("Confidence Threshold", 0.00,1.00,0.5,0.01)
nms_threshold = st.sidebar.slider("NMS Threshold", 0.00, 1.00, 0.5, 0.01)
indexes = cv2.dnn.NMSBoxes(bboxes, confidences, score_threshold,nms_threshold)
print(bboxes, confidences)
font = cv2.FONT_HERSHEY_SIMPLEX
items = []
for i in range(len(bboxes)):
if i in indexes:
x,y,w,h = bboxes[i]
#To get the name of object
label = str.upper((classes[class_ids[i]]))
color = colors[i]
if i >= 80:
color = colors[1]
cv2.rectangle(img,(x,y),(x+w,y+h),color,3)
cv2.putText(img, label, (x-5,y-5), font,
1, color, 1, cv2.LINE_AA)
items.append(label)
st.text("")
col2.subheader("Object-Detected Image")
st.text("")
plt.figure(figsize = (15,15))
plt.imshow(img)
col2.pyplot(use_column_width=True)
st.success("Found {} Object(s) - {}".format(len(indexes),",".join(items)))