-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathPerformance.py
315 lines (288 loc) · 13.4 KB
/
Performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# -*- coding: utf-8 -*-
__author__ = "无声"
from DreamMultiDevices.start import *
from DreamMultiDevices.core.MultiAdb import MultiAdb as Madb
import time
import threading
import multiprocessing
import traceback
from DreamMultiDevices.tools.Excel import *
from DreamMultiDevices.tools.Json import *
from DreamMultiDevices.tools.Screencap import *
from multiprocessing import Process,Value
import json
from collections import deque
'''
性能数据进程,首先根据storage_by_excel参数创建excel或json文件,再定期塞数据进去,最后统计各项的最大最小平均值。
'''
def enter_performance(madb,flag,start,storage_by_excel=True,adb_log=True):
print("设备{}进入enter_performance方法".format(madb.get_mdevice()))
wb=""
jsonfilepath=""
if adb_log:
logfile=madb.create_adb_log(time.localtime())
if storage_by_excel:
#创表
filepath, sheet, wb = create_log_excel(time.localtime(), madb.get_nickname())
#塞数据
collect_data(madb,flag,storage_by_excel,sheet=sheet)
#计算各平均值最大值最小值等并塞数据
avglist,maxlist,minlist=calculate(sheet)
record_to_excel(sheet,avglist,color=(230, 230 ,250))
record_to_excel(sheet,maxlist,color=(193, 255, 193))
record_to_excel(sheet,minlist,color=(240, 255 ,240))
wb.save()
else:
#创建json文件
jsonfilepath = create_log_json(time.localtime(),madb.get_nickname())
print("创建json文件成功:{}".format(jsonfilepath))
collect_data(madb,flag,storage_by_excel,jsonfilepath=jsonfilepath)
calculate_by_json(jsonfilepath)
nowtime = time.strftime("%H%M%S", start)
reportpath = os.path.join(os.getcwd(), "Report")
filename = reportpath + "\\" + madb.get_nickname() + "_" + str(nowtime) + ".html"
print("要操作的文件名为:", filename)
if storage_by_excel:
reportPlusPath = EditReport(filename,storage_by_excel,avglist, maxlist, minlist,wb=wb)
else:
reportPlusPath = EditReport(filename,storage_by_excel, jsonfilepath=jsonfilepath)
if adb_log:
f=open(logfile,"w")
f.close()
print("设备{}生成报告:{}完毕".format(madb.get_mdevice(), reportPlusPath))
#接受设备madb类对象、excel的sheet对象、共享内存flag、默认延时一小时
def collect_data(madb,flag,storage_by_excel,sheet="",jsonfilepath="",timeout=60):
starttime=time.time()
dequelist = deque([])
n=0
totalcpu,maxcpu=madb.get_totalcpu()
SurfaceViewFlag=madb.get_isSurfaceView()
try:
while True:
#当执行一小时或flag为1时,跳出。
# Performance.py可以单独执行,检查apk的性能,此时要把下面的flag.value注掉。因为这个是用于进程通信的,单独执行性能时没有必要。
n+=1
#为了确保截取统计数据不出错,至少打印3行
if (time.time() - starttime > timeout) or (flag.value==1 and n>3):
break
total=allocated= used=free=totalcpu= allocatedcpu=""
#开启n个线程,每个线程去调用Madb类里的方法,获取adb的性能数据
get_allocated_memory = MyThread(madb.get_allocated_memory,args=())
get_memory_info = MyThread(madb.get_memoryinfo,args=())
get_total_cpu = MyThread(madb.get_totalcpu,args=() )
get_allocated_cpu = MyThread(madb.get_allocated_cpu,args=() )
get_png=MyThread(GetScreen,args=(time.time(), madb.get_mdevice(), "performance"))
#为了避免重复场景不渲染导致的fps统计为0,fps取过去一秒内的最大值(约8次)。
Threadlist=[]
for i in range(8):
get_fps = MyThread(madb.get_fps, args=(SurfaceViewFlag,))
Threadlist.append(get_fps)
#批量执行
get_allocated_memory.start()
get_memory_info.start()
get_total_cpu.start()
get_allocated_cpu.start()
get_png.start()
for p in Threadlist:
p.start()
fpstmp = p.get_result()
if len(dequelist) < 9 :
dequelist.append(fpstmp)
else:
dequelist.popleft()
dequelist.append(fpstmp)
if "N/a" in dequelist:
fps="N/a"
else:
fps=max(dequelist)
#批量获得结果
allocated=get_allocated_memory.get_result()
total,free,used=get_memory_info.get_result()
totalcpu,unused_maxcpu=get_total_cpu.get_result()
allocatedcpu=get_allocated_cpu.get_result()
png=get_png.get_result()
#批量回收线程
get_allocated_memory.join()
get_memory_info.join()
get_total_cpu.join()
get_allocated_cpu.join()
get_png.join()
for p in Threadlist:
p.join()
#将性能数据填充到一个数组里,塞进excel
nowtime = time.localtime()
inputtime = str(time.strftime("%H:%M:%S", nowtime))
if storage_by_excel:
if allocatedcpu=="N/a":
list = ["'" + inputtime, total, "N/a", used, free,"'"+format(totalcpu / maxcpu, "0.2f") + "%","N/a", fps]
else:
list = ["'" + inputtime, total, allocated, used, free, "'"+format(totalcpu / maxcpu,"0.2f")+"%", "'"+format(float(allocatedcpu)/maxcpu,"0.2f")+"%", fps]
record_to_excel(sheet,list,png=png)
# 将性能数据填充到一个数组里,塞进json
else:
if fps=="N/a":
fps=0
if allocatedcpu == "N/a":
list = [inputtime, total, allocated, used, free, float(format(float(totalcpu)/maxcpu,".2f")),0, fps, png]
else:
list =[inputtime, total, allocated, used, free, float(format(float(totalcpu)/maxcpu,".2f")), float(format(float(allocatedcpu)/maxcpu,"0.2f")), fps,png]
record_to_json(jsonfilepath,list)
except Exception as e:
print(madb.get_mdevice()+ traceback.format_exc())
#线程类,用来获取线程函数的返回值
class MyThread(threading.Thread):
def __init__(self, func, args=()):
super(MyThread, self).__init__()
self.func = func
self.args = args
def run(self):
self.result = self.func(*self.args)
def get_result(self):
threading.Thread.join(self) # 等待线程执行完毕
try:
return self.result
except Exception as e:
print( traceback.format_exc())
return None
'''nowjsonfile
小T写的。编辑由BR生成的html文件,将功能与性能整合成一个html。
'''
def EditReport(origin_html_path,storage_by_excelavglist,avglist="",maxlist="",minlist="",wb="",jsonfilepath=""):
#取项目的绝对路径
rootPath = os.path.abspath(os.path.dirname(inspect.getfile(inspect.currentframe())) + os.path.sep + ".")
templatePath= os.path.join(rootPath, "template")
# 读取报告文件
f = open(origin_html_path, "r+", encoding="UTF-8")
fr = f.read()
f.close()
# 拼接CSS样式
fr_prev, fr_next = GetHtmlContent(fr, "</style>", True, 1)
css = open(templatePath+"\\app.css", "r+", encoding='UTF-8')
css_str = css.read()
css.close()
fr = fr_prev + "\n" + css_str + "\n" + fr_next
# 拼接头部按钮
fr_prev, fr_next = GetHtmlContent(fr, "<div", False,3 )
header = open(templatePath+"\\header.html", "r+", encoding='UTF-8')
header_str = header.read()
header.close()
fr = fr_prev + "\n" + header_str + "\n" + fr_next
# 添加功能测试标记
fr_prev, fr_next = GetHtmlContent(fr, "class=", False, 8)
fr = fr_prev + 'id="functionReport" ' + fr_next
# 拼接页面主体
fr_prev, fr_next = GetHtmlContent(fr, "<script", False, 1)
performance = open(templatePath+"\\performance.html", "r+", encoding='UTF-8')
performance_str = performance.read()
performance.close()
fr = fr_prev + "\n" + performance_str + "\n" + fr_next
# 拼接JS脚本
fr_prev, fr_next = GetHtmlContent(fr, "</body>", True, 1)
highchartspath=templatePath+"\\highcharts.js"
highcharts_str="<script src = "+highchartspath+" > </script >"
js = open(templatePath+"\\app.js", "r+", encoding='UTF-8')
js_str = js.read()
js.close()
fr = fr_prev + "\n" + highcharts_str+"\n"+js_str + "\n" + fr_next
Time_series=TotalMemory=AllocatedMemory=UsedMemory=FreeMemory=TotalCPU=AllocatedCPU=FPS=PNG=""
Max_AllocatedMemory=Min_AllocatedMemory=Avg_AllocatedMemory=Max_AllocatedCPU=Min_AllocatedCPU=Avg_AllocatedCPU=Max_FPS=Min_FPS=Avg_FPS=0
data_count=""
if storage_by_excelavglist:
# 嵌入性能测试结果到excel
sheet = wb.sheets("Sheet1")
Time_series=get_json(sheet,"Time")
TotalMemory=get_json(sheet,"TotalMemory(MB)")
AllocatedMemory=get_json(sheet,"AllocatedMemory(MB)")
UsedMemory=get_json(sheet,"UsedMemory(MB)")
FreeMemory=get_json(sheet,"FreeMemory(MB)")
TotalCPU=get_json(sheet,"TotalCPU")
AllocatedCPU=get_json(sheet,"AllocatedCPU")
FPS=get_json(sheet,"FPS")
FPSlist=json.loads(FPS)
FPSlist=FPSlist["FPS"]
PNG=get_json(sheet,"PNGAddress")
Max_AllocatedMemory=maxlist[2]
Min_AllocatedMemory=minlist[2]
Avg_AllocatedMemory=avglist[2]
Max_AllocatedCPU=maxlist[6]
Min_AllocatedCPU=minlist[6]
Avg_AllocatedCPU=avglist[6]
Max_FPS=maxlist[7]
Min_FPS=minlist[7]
Avg_FPS=avglist[7]
data_count = {"Max_AllocatedMemory": [Max_AllocatedMemory], "Min_AllocatedMemory": [Min_AllocatedMemory],
"Avg_AllocatedMemory": [Avg_AllocatedMemory], "Max_AllocatedCPU": [Max_AllocatedCPU],
"Min_AllocatedCPU": [Min_AllocatedCPU], "Avg_AllocatedCPU": [Avg_AllocatedCPU],
"Max_FPS": [Max_FPS],
"Min_FPS": [Min_FPS], "Avg_FPS": [Avg_FPS]}
data_count = "\n" + "var data_count=" + json.dumps(data_count)
# 嵌入性能测试结果到json
else:
jsonfilepath=(jsonfilepath)
jsondata = open(jsonfilepath, "r+", encoding='UTF-8')
jsondata = json.load(jsondata)
Time_series=json.dumps({"Time":jsondata["Time_series"]})
TotalMemory=json.dumps({"TotalMemory(MB)":jsondata["TotalMemory"]})
AllocatedMemory=json.dumps({"AllocatedMemory(MB)":jsondata["AllocatedMemory"]})
UsedMemory=json.dumps({"UsedMemory(MB)":jsondata["UsedMemory"]})
FreeMemory=json.dumps({"FreeMemory(MB)":jsondata["FreeMemory"]})
TotalCPU=json.dumps({"TotalCPU":jsondata["TotalCPU"]})
AllocatedCPU=json.dumps({"AllocatedCPU":jsondata["AllocatedCPU"]})
FPS=json.dumps({"FPS":jsondata["FPS"]})
PNG=json.dumps({"PNGAddress":jsondata["PNGAddress"]})
data_count=json.dumps(jsondata["data_count"])
data_count=data_count[1:-1]
data_count = "\n" + "var data_count=" + data_count
#data_series和data_count会被嵌入到html里,作为highcharts的数据源。
data_series = Time_series + "\n" + "var TotalMemory=" + TotalMemory + "\n" + "var AllocatedMemory=" + AllocatedMemory + "\n" + "var UsedMemory=" + UsedMemory + "\n" + "var FreeMemory=" \
+ FreeMemory + "\n" + "var TotalCPU=" + TotalCPU + "\n" + "var AllocatedCPU=" + AllocatedCPU + "\n" + "var FPS=" + FPS + "\n" + "var PNG=" + PNG + "\n"
fr_prev, fr_next = GetHtmlContent(fr, "// tag data", False, 1)
fr = fr_prev + data_series + "\n" + data_count + "\n" + fr_next
# 写入文件
newPath = origin_html_path.replace(".html", "_PLUS.html")
f = open( newPath, "w", encoding="UTF-8")
f.write(fr)
f.close()
return newPath
# 小T写的。获取需要插入性能图表的节点,reverse参数决定了从左数还是从右数,然后将html拆成2分,方便填标签。很有趣的思路。
def GetHtmlContent(content, tag, reverse=False, round_num=1):
fr_r_index = ""
if reverse:
fr_r_index = content.rfind(tag)
else:
fr_r_index = content.find(tag)
for i in range(1, round_num):
if reverse:
fr_r_index = content.rfind(tag, 0, fr_r_index)
else:
fr_r_index = content.find(tag, fr_r_index + 1)
fr_prev = content[0:fr_r_index]
fr_next = content[fr_r_index:len(content)]
return fr_prev, fr_next
#调试代码,单独执行的话,flag默认为1。
if __name__ == "__main__":
devicesList = Madb().getdevices()
print("最终的devicesList=",devicesList)
start=time.localtime()
'''
madb = Madb(devicesList[0])
flag = Value('i', 0)
enter_performance (madb, flag, start,)
'''
print("启动进程池")
flag = Value('i', 0)
Processlist=[]
for i in range(len(devicesList)):
madb = Madb(devicesList[i])
if madb.get_androidversion()<5:
print("设备{}的安卓版本低于5,不支持。".format(madb.get_mdevice()))
break
print("{}开始进行性能测试".format(madb.get_mdevice()))
# 根据设备列表去循环创建进程,对每个进程调用下面的enter_processing方法。
p = Process(target=enter_performance, args=(madb, flag, start,))
Processlist.append(p)
for p in Processlist:
p.start()
for p in Processlist:
p.join()
print("性能测试结束")