-
Notifications
You must be signed in to change notification settings - Fork 141
/
Copy pathtrain_img2d.py
253 lines (197 loc) · 9.56 KB
/
train_img2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import argparse
import os
import time
import torch
import torch.optim as optim
import lib.utils as utils
from lib.visualize_flow import visualize_transform
import lib.layers.odefunc as odefunc
from train_misc import standard_normal_logprob
from train_misc import set_cnf_options, count_nfe, count_parameters, count_total_time
from train_misc import add_spectral_norm, spectral_norm_power_iteration
from train_misc import create_regularization_fns, get_regularization, append_regularization_to_log
from train_misc import build_model_tabular
from diagnostics.viz_toy import save_trajectory, trajectory_to_video
SOLVERS = ["dopri5", "bdf", "rk4", "midpoint", 'adams', 'explicit_adams', 'fixed_adams']
parser = argparse.ArgumentParser('Continuous Normalizing Flow')
parser.add_argument('--img', type=str, required=True)
parser.add_argument('--data', type=str, default='dummy')
parser.add_argument(
"--layer_type", type=str, default="concatsquash",
choices=["ignore", "concat", "concat_v2", "squash", "concatsquash", "concatcoord", "hyper", "blend"]
)
parser.add_argument('--dims', type=str, default='64-64-64')
parser.add_argument("--num_blocks", type=int, default=1, help='Number of stacked CNFs.')
parser.add_argument('--time_length', type=float, default=0.5)
parser.add_argument('--train_T', type=eval, default=True)
parser.add_argument("--divergence_fn", type=str, default="brute_force", choices=["brute_force", "approximate"])
parser.add_argument("--nonlinearity", type=str, default="tanh", choices=odefunc.NONLINEARITIES)
parser.add_argument('--solver', type=str, default='dopri5', choices=SOLVERS)
parser.add_argument('--atol', type=float, default=1e-5)
parser.add_argument('--rtol', type=float, default=1e-5)
parser.add_argument("--step_size", type=float, default=None, help="Optional fixed step size.")
parser.add_argument('--test_solver', type=str, default=None, choices=SOLVERS + [None])
parser.add_argument('--test_atol', type=float, default=None)
parser.add_argument('--test_rtol', type=float, default=None)
parser.add_argument('--residual', type=eval, default=False, choices=[True, False])
parser.add_argument('--rademacher', type=eval, default=False, choices=[True, False])
parser.add_argument('--spectral_norm', type=eval, default=False, choices=[True, False])
parser.add_argument('--batch_norm', type=eval, default=False, choices=[True, False])
parser.add_argument('--bn_lag', type=float, default=0)
parser.add_argument('--niters', type=int, default=10000)
parser.add_argument('--batch_size', type=int, default=1000)
parser.add_argument('--test_batch_size', type=int, default=1000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--weight_decay', type=float, default=1e-5)
# Track quantities
parser.add_argument('--l1int', type=float, default=None, help="int_t ||f||_1")
parser.add_argument('--l2int', type=float, default=None, help="int_t ||f||_2")
parser.add_argument('--dl2int', type=float, default=None, help="int_t ||f^T df/dt||_2")
parser.add_argument('--JFrobint', type=float, default=None, help="int_t ||df/dx||_F")
parser.add_argument('--JdiagFrobint', type=float, default=None, help="int_t ||df_i/dx_i||_F")
parser.add_argument('--JoffdiagFrobint', type=float, default=None, help="int_t ||df/dx - df_i/dx_i||_F")
parser.add_argument('--save', type=str, default='experiments/cnf')
parser.add_argument('--viz_freq', type=int, default=100)
parser.add_argument('--val_freq', type=int, default=100)
parser.add_argument('--log_freq', type=int, default=10)
parser.add_argument('--gpu', type=int, default=0)
args = parser.parse_args()
# logger
utils.makedirs(args.save)
logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__))
if args.layer_type == "blend":
logger.info("!! Setting time_length from None to 1.0 due to use of Blend layers.")
args.time_length = 1.0
logger.info(args)
device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu')
from PIL import Image
import numpy as np
img = np.array(Image.open(args.img).convert('L'))
h, w = img.shape
xx = np.linspace(-4, 4, w)
yy = np.linspace(-4, 4, h)
xx, yy = np.meshgrid(xx, yy)
xx = xx.reshape(-1, 1)
yy = yy.reshape(-1, 1)
means = np.concatenate([xx, yy], 1)
img = img.max() - img
probs = img.reshape(-1) / img.sum()
std = np.array([8 / w / 2, 8 / h / 2])
def sample_data(data=None, rng=None, batch_size=200):
"""data and rng are ignored."""
inds = np.random.choice(int(probs.shape[0]), int(batch_size), p=probs)
m = means[inds]
samples = np.random.randn(*m.shape) * std + m
return samples
def get_transforms(model):
def sample_fn(z, logpz=None):
if logpz is not None:
return model(z, logpz, reverse=True)
else:
return model(z, reverse=True)
def density_fn(x, logpx=None):
if logpx is not None:
return model(x, logpx, reverse=False)
else:
return model(x, reverse=False)
return sample_fn, density_fn
def compute_loss(args, model, batch_size=None):
if batch_size is None: batch_size = args.batch_size
# load data
x = sample_data(args.data, batch_size=batch_size)
x = torch.from_numpy(x).type(torch.float32).to(device)
zero = torch.zeros(x.shape[0], 1).to(x)
# transform to z
z, delta_logp = model(x, zero)
# compute log q(z)
logpz = standard_normal_logprob(z).sum(1, keepdim=True)
logpx = logpz - delta_logp
loss = -torch.mean(logpx)
return loss
if __name__ == '__main__':
regularization_fns, regularization_coeffs = create_regularization_fns(args)
model = build_model_tabular(args, 2, regularization_fns).to(device)
if args.spectral_norm: add_spectral_norm(model)
set_cnf_options(args, model)
logger.info(model)
logger.info("Number of trainable parameters: {}".format(count_parameters(model)))
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
time_meter = utils.RunningAverageMeter(0.93)
loss_meter = utils.RunningAverageMeter(0.93)
nfef_meter = utils.RunningAverageMeter(0.93)
nfeb_meter = utils.RunningAverageMeter(0.93)
tt_meter = utils.RunningAverageMeter(0.93)
end = time.time()
best_loss = float('inf')
model.train()
for itr in range(1, args.niters + 1):
optimizer.zero_grad()
if args.spectral_norm: spectral_norm_power_iteration(model, 1)
loss = compute_loss(args, model)
loss_meter.update(loss.item())
if len(regularization_coeffs) > 0:
reg_states = get_regularization(model, regularization_coeffs)
reg_loss = sum(
reg_state * coeff for reg_state, coeff in zip(reg_states, regularization_coeffs) if coeff != 0
)
loss = loss + reg_loss
total_time = count_total_time(model)
nfe_forward = count_nfe(model)
loss.backward()
optimizer.step()
nfe_total = count_nfe(model)
nfe_backward = nfe_total - nfe_forward
nfef_meter.update(nfe_forward)
nfeb_meter.update(nfe_backward)
time_meter.update(time.time() - end)
tt_meter.update(total_time)
log_message = (
'Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.6f}({:.6f}) | NFE Forward {:.0f}({:.1f})'
' | NFE Backward {:.0f}({:.1f}) | CNF Time {:.4f}({:.4f})'.format(
itr, time_meter.val, time_meter.avg, loss_meter.val, loss_meter.avg, nfef_meter.val, nfef_meter.avg,
nfeb_meter.val, nfeb_meter.avg, tt_meter.val, tt_meter.avg
)
)
if len(regularization_coeffs) > 0:
log_message = append_regularization_to_log(log_message, regularization_fns, reg_states)
logger.info(log_message)
if itr % args.val_freq == 0 or itr == args.niters:
with torch.no_grad():
model.eval()
test_loss = compute_loss(args, model, batch_size=args.test_batch_size)
test_nfe = count_nfe(model)
log_message = '[TEST] Iter {:04d} | Test Loss {:.6f} | NFE {:.0f}'.format(itr, test_loss, test_nfe)
logger.info(log_message)
if test_loss.item() < best_loss:
best_loss = test_loss.item()
utils.makedirs(args.save)
torch.save({
'args': args,
'state_dict': model.state_dict(),
}, os.path.join(args.save, 'checkpt.pth'))
model.train()
if itr % args.viz_freq == 0:
with torch.no_grad():
model.eval()
p_samples = sample_data(args.data, batch_size=2000)
sample_fn, density_fn = get_transforms(model)
plt.figure(figsize=(9, 3))
visualize_transform(
p_samples, torch.randn, standard_normal_logprob, transform=sample_fn, inverse_transform=density_fn,
samples=True, npts=800, device=device
)
fig_filename = os.path.join(args.save, 'figs', '{:04d}.jpg'.format(itr))
utils.makedirs(os.path.dirname(fig_filename))
plt.savefig(fig_filename)
plt.close()
model.train()
end = time.time()
logger.info('Training has finished.')
save_traj_dir = os.path.join(args.save, 'trajectory')
logger.info('Plotting trajectory to {}'.format(save_traj_dir))
data_samples = sample_data(args.data, batch_size=2000)
save_trajectory(model, data_samples, save_traj_dir, device=device)
trajectory_to_video(save_traj_dir)