-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.f90
executable file
·183 lines (145 loc) · 4.59 KB
/
main.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
! ********************************************
! main.f90 - control program flow
! ********************************************
! Solving the
!
! Convection Diffusion Problem
!
! with the Finite Element Method
! ********************************************
! Changelog:
!
! 2012.02.06: Start basic outline
!
! 1. Gather System Discretization Data
! 2. Create Assembly Matrix
! 3. Create Force Vector
! 4. Solve
!
! ********************************************
! Problem statement:
! ********************************************
!
! a*grad(v) + grad( \nu ( grad(v)) = s
!
! ********************************************
program main
use global
use printer
implicit none
! VARIABLES
! counters
integer :: i, j, k
integer :: e, n
real*8 :: x
real*8 :: sum
! Assemblymatrix, forcevector:
real,dimension(:,:),pointer :: A
real,dimension(:),pointer :: b
real,dimension(:,:),pointer :: C_e, K_e
real,dimension(:),pointer :: f_e
! basic ingredients
type(mesh) :: mesh1D
type(fluid) :: fluid1D
! play
fluid1D%a = 1.0
fluid1D%nu = 0.01
! prepare assembly matrix and force vector
allocate( A(numberOfNodes, numberOfNodes) )
allocate( b(numberOfNodes) )
allocate( C_e(2,2) )
allocate( K_e(2,2) )
allocate( f_e(2) )
! reserve space for matrices - 1D
allocate( mesh1D%boundaryFlag(numberOfNodes) )
allocate( mesh1D%nodePositions(numberOfNodes) )
allocate( mesh1D%elementConnectivity(numberOfElements, &
numberOfNodesPerElement) )
! Initialize for security
A(:,:) = 0.0
b(:) = 0.0
! fill matrices - 1D: points on a line
do i=1,numberOfNodes
mesh1D%nodePositions(i) = i * elementLength
end do
print *, "Position of nodes:"
call p(mesh1D%nodePositions, "v")
! fill matrices - 1D: connectivity:
do i=1,numberOfElements
mesh1D%elementConnectivity(i,1) = i
mesh1D%elementConnectivity(i,2) = i+1
end do
print *, "Mesh-Element-Connectivity:"
call p(mesh1D%elementConnectivity, "v")
! Create element matrices: (by row)
C_e(1,1:2) = (/ -1, 1 /)
C_e(2,1:2) = (/ -1, 1 /)
C_e = (fluid1D%a / 2.0) * C_e
K_e(1,1:2) = (/ 1, -1 /)
K_e(2,1:2) = (/ -1, 1 /)
K_e = (fluid1D%nu / elementLength ) * K_e
f_e = (/ 1, 1 /)
f_e = elementLength/2 * f_e
! Check for sanity
print *, "Convection Matrix:"
call p(C_e, "v")
print *, "Diffusion Matrix:"
call p(K_e, "v")
print *, "Force Vector:"
call p(f_e, "v")
! inlet and outlet - mark nodes
mesh1D%boundaryFlag(:) = 0.0
mesh1D%boundaryFlag(1) = 1.0
mesh1D%boundaryFlag(numberOfNodes)=1.0
! Assemble A and b
do i=1,numberOfElements
e = mesh1D%elementConnectivity(i,1)
A(e:e+2,e:e+2) = A(e:e+2,e:e+2) + C_e + K_e
b(e:e+2) = b(e:e+2) + f_e
end do
! Fill marked boundaries
do i = 1,numberOfNodes
if (mesh1D%boundaryFlag(i) .eq. 1.0) then
! Apply to Matrix/EQS
A(i,:) = 0.0 ! I-matrix @ relating row
A(i,i) = 1.0
b(i) = 0.0 ! Dirichlet boundaries (here == 0)
end if
end do
call p(A, "v")
call p(b, "v")
! Solve equation system via gauss elemination:
! Number of equations = number of nodes:
n = numberOfNodes
! Upper triangular matrix:
do k = 1,n-1
if (abs(A(k,k)) .gt. 1.E-6) then
do i=k+1,n ! move through column
x = A(i,k)/A(k,k)
do j = k+1,n
A(i,j) = A(i,j) - A(k,j)*x ! multiply row
end do
b(i) = b(i) - b(k)*x
end do
else
print *, "Can't solve EQS because of ", k
stop
end if
end do
! Back substitution:
do i = n,1,-1
sum = b(i)
if(i .lt. n) then
do j=i+1,n
sum = sum - A(i,j)*b(j)
end do
end if
b(i) = sum/A(i,i)
end do
print *, "==== Solution: ===="
call p(b, "v")
deallocate(A,b)
deallocate(mesh1D%elementConnectivity, mesh1D%nodePositions, &
mesh1D%boundaryFlag)
deallocate(C_e, K_e, f_e)
end program main