-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKnowledgeGraph.py
209 lines (196 loc) · 9.09 KB
/
KnowledgeGraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import hnswlib
import spacy
import networkx as nx
import matplotlib.pyplot as plt
import tensorflow_hub as hub
import utils
import base64
class KnowledgeGraph:
def __init__(self, name):
self.phrase_corpus = []
self.graph = nx.MultiDiGraph()
self.phrase_corpus_length = 1
self.node_index = None
self.distance_threshold = 0.5
self.name=str(base64.urlsafe_b64encode(name.encode("utf-8")))[:15]
def lemmatize(self, phrase):
return " ".join([word.lemma_ for word in utils.sp(phrase)])
def add_node(self, phrase):
self.phrase_corpus_length += 1
self.phrase_corpus.append(phrase)
if self.phrase_corpus_length > 2:
self.node_index = None
self.node_index = hnswlib.Index('cosine', 512)
self.node_index.init_index(self.phrase_corpus_length, ef_construction=200, M=48, random_seed=36)
if self.phrase_corpus_length > 2:
self.node_index.load_index(self.name, max_elements=self.phrase_corpus_length)
self.node_index.add_items(utils.model([phrase]))
self.node_index.save_index(self.name)
def return_node(self, phrase):
non_stop_phrase = ' '.join([token.text for token in utils.sp(phrase)])
if len(non_stop_phrase) > 1:
phrase = non_stop_phrase
if self.node_index is None:
self.add_node(phrase)
nearest_neighbor = self.node_index.knn_query(utils.model([phrase]))
if nearest_neighbor != []:
closest_neighbor, closest_distance = nearest_neighbor
if closest_neighbor[0] == []:
self.add_node(phrase)
return phrase
if closest_distance[0][0] > self.distance_threshold:
self.add_node(phrase)
return phrase
return self.phrase_corpus[closest_neighbor[0][0]]
def other(self, partisanship):
if partisanship == 'R':
return 'D'
if partisanship == 'D':
return 'R'
print(partisanship)
return None
def add_edges(self, preprocess_output):
sentences = preprocess_output[:-1]
partisanship = preprocess_output[-1]
for sentence in sentences:
for phrase in sentence:
subject = self.return_node(phrase[0])
objekt = self.return_node(phrase[2])
predicate = self.lemmatize(phrase[1])
attributes = self.graph.get_edge_data(subject, objekt, predicate)
if attributes:
self.graph.remove_edge(subject, objekt, predicate)
weight = attributes['weight'] + 1
if partisanship in ('D', 'R'):
attributes[partisanship] = attributes[partisanship] + 1
dem = attributes['D']
rep = attributes['R']
else:
weight = 1
dem = 0
rep = 0
if partisanship == 'D':
dem = 1
elif partisanship == 'R':
rep = 1
self.graph.add_edge(subject, objekt, key=predicate, weight=weight, D=dem, R=rep)
def draw(self, name):
options = {
'node_color': 'green',
'node_size': 200,
'width': 1
}
pos=nx.shell_layout(self.graph)
edge_labels=dict([((start,finish,), predicate+', '+str(weights['weight'])+', '+str(weights['R'])+', '+str(weights['D'])) for start,finish,predicate,weights in self.graph.edges(data=True,keys=True)])
nx.draw(self.graph, pos, with_labels=True, font_weight='bold', **options)
nx.draw_networkx_edge_labels(self.graph, pos,edge_labels=edge_labels)
plt.savefig(name+'.png')
plt.show()
if __name__ == "__main__":
G = KnowledgeGraph()
# sample = [[[], [('I', 'like', 'apples')], [('I', 'introducing', 'the College Opportunity Tax Credit Act of 2009')],
# [('This legislation', 'creates',
# 'a new tax credit that will put the cost of higher education in reach for American families'),
# ('a new tax credit', 'put', 'the cost of higher education')]], 'D']
sample = [[('I', 'join', 'with the senior Senator from Arizona')],
[],
[],
[],
[],
[],
[('I', 'work', 'in fighting earmark reform over the last two decades')],
[],
[],
[],
[('Congress', 'enacted', 'the most significant earmark reform'),
('by Members', 'growing', 'recognition'),
('earmarks', 'avoid', 'the scrutiny of the authorizing process')],
[],
[],
[('I', 'commend', 'our Majority Leader')],
[],
[('Presidentelect Obama',
'ensuring',
'the passage of the Lobbying and Ethics Reform measure')],
[],
[],
[('Earmark Reform , and Accountability Act of 2009',
'will',
'build on the significant achievement'),
('Earmark Reform , and Accountability Act of 2009',
'build',
'on the significant achievement of the 110th Congress'),
('one', 'makes', 'it much more difficult to enact earmarks')],
[],
[('To overcome a point of order',
'need',
'to obtain a supermajority of the Senate'),
('supporters of the unauthorized earmark',
'obtain',
'a supermajority of the Senate')],
[('the Lobbying and Ethics Reform measure',
'provides',
'that any earmarked funding which is successfully stricken from the appropriations bill will be unavailable for other spending in the appropriations bill'),
('from the appropriations bill', 'stricken', 'any earmarked funding')],
[('the Lobbying and Ethics Reform measure', 'closes', 'a loophole'),
('all',
'authorizing',
'conference reports to be electronically searchable 48 hours before the Senate considers the conference report'),
('the Senate', 'considers', 'the conference report')],
[('the Lobbying and Ethics Reform measure',
'requires',
'federal funds to disclose any money spent on registered lobbyists'),
('all recipients', 'disclose', 'any money spent on registered lobbyists'),
('Presidentelect Obama',
'announced',
'that the expected economic recovery package which may be proposed in the next few days should be kept free of earmarks , I could nt agree more'),
('I', 'agree', 'more'),
('I',
'expect',
'to join with Senators Mr. McCAIN , the junior Senator from Missouri'),
('I',
'join',
'with Senators Mr. McCAIN , the junior Senator from Missouri')],
[],
[('Mr. COBURN',
'see',
'that the expected economic recovery package which may be proposed in the next few days is free of unauthorized earmarks')],
[('just', 'attracted', 'unauthorized earmarks')],
[('We',
'keeping',
'the expected economic recovery package which may be proposed in the next few days and other appropriations bills free of'),
('We',
'use',
'the tools proposed in the Lobbying and Ethics Reform measure')],
[('I',
'ask',
'unanimous consent that the text of the Lobbying and Ethics Reform measure be printed In the RECORD')],
'D']
G.add_edges(sample)
options = {
'node_color': 'green',
'node_size': 200,
'width': 1
}
pos=nx.circular_layout(G.graph)
edge_labels=dict([((start,finish,), predicate+', '+str(weights['weight'])+', '+str(weights['R'])+', '+str(weights['D'])) for start,finish,predicate,weights in G.graph.edges(data=True,keys=True)])
nx.draw(G.graph, pos, with_labels=True, font_weight='bold', **options)
nx.draw_networkx_edge_labels(G.graph, pos,edge_labels=edge_labels)
# plt.savefig("first_graph.png")
plt.show()
# print("Output for an edge that exists: e.g. ('I','ice cream','like')")
# print(G.graph.get_edge_data('I', 'ice cream', 'like'))
# print("Output for an edge that does not exist: e.g. ('I','ice')")
# print(G.graph.get_edge_data('I', 'ice'))
# print('All edges')
# print(G.graph.edges)
#
# G.add_edges([[[('you', 'ate', 'a lot of oranges and pizza')]], 'R'])
#
# pos=nx.circular_layout(G.graph)
# edge_labels=dict([((start,finish,), predicate+', '+str(weights['weight'])+', '+str(weights['R'])+', '+str(weights['D'])) for start,finish,predicate,weights in G.graph.edges(data=True,keys=True)])
#
# nx.draw(G.graph, pos, with_labels=True, font_weight='bold', **options)
# nx.draw_networkx_edge_labels(G.graph, pos,edge_labels=edge_labels)
#
# plt.savefig("updated_graph.png")