forked from ThiagoCF05/NeuralREG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention.py
699 lines (550 loc) · 29.2 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
__author__ = 'thiagocastroferreira'
import utils
"""
Author: Thiago Castro Ferreira
Date: 25/11/2017
Description:
NeuralREG+CAtt model concatenating the attention contexts from pre- and pos-contexts
Based on https://github.com/clab/dynet/blob/master/examples/sequence-to-sequence/attention.py
Attention()
:param config
LSTM_NUM_OF_LAYERS: number of LSTM layers
EMBEDDINGS_SIZE: embedding dimensions
STATE_SIZE: dimension of decoding output
ATTENTION_SIZE: dimension of attention representations
DROPOUT: dropout probabilities on the encoder and decoder LSTMs
CHARACTER: character- (True) or word-based decoder
GENERATION: max output limit
BEAM_SIZE: beam search size
train()
:param path
Directory to save best results and model
PYTHON VERSION: 3
DEPENDENCIES:
Dynet: https://github.com/clab/dynet
NumPy: http://www.numpy.org/
UPDATE CONSTANTS:
PATH: directory to save results and trained models
"""
import dynet as dy
import json
import load_data
import numpy as np
import os
class Config:
def __init__(self, config):
self.lstm_depth = config['LSTM_NUM_OF_LAYERS']
self.embedding_dim = config['EMBEDDINGS_SIZE']
self.state_dim = config['STATE_SIZE']
self.attention_dim = config['ATTENTION_SIZE']
self.dropout = config['DROPOUT']
self.max_len = config['GENERATION']
self.beam = config['BEAM_SIZE']
self.batch = config['BATCH_SIZE']
self.early_stop = config['EARLY_STOP']
self.epochs = config['EPOCHS']
class Logger:
def __init__(self, path, result_path, model_path):
if not os.path.exists(path):
os.mkdir(path)
if not os.path.exists(result_path):
os.mkdir(result_path)
self.path = path
self.result_path = result_path
self.model_path = model_path
def save_result(self, fname, results, beam):
for i in range(beam):
f = open(os.path.join(self.result_path, fname + '_' + str(i+1)), 'w')
for output in results:
if i < len(output):
f.write(output[i])
f.write('\n')
f.close()
class Attention:
def __init__(self, config, path, logger, lowercase=False):
self.path = path
self.lowercase = lowercase
self.write_path = utils.get_log_path(path, 'att') # Directory to save results and trained models
self.logger = logger
self.config = Config(config=config)
self.character = False
self.EOS = "eos"
self.vocab, self.entity_types, self.entity_gender, self.trainset, self.devset, self.testset = load_data.run_json(self.path)
self.build_vocab()
self.init()
def build_vocab(self):
vocab_path = os.path.join(self.logger.path, 'new_vocab.json')
if not os.path.exists(vocab_path):
self.vocab = []
for i, row in enumerate(self.trainset):
pre_context = [self.EOS] + row['pre_context']
pos_context = row['pos_context'] + [self.EOS]
refex = [w.lower() for w in row['refex']] if self.lowercase else row['refex']
refex = [self.EOS] + refex + [self.EOS]
entity = row['entity']
entity_tokens = entity.replace('\"', '').replace('\'', '').replace(',', '').split('_')
self.vocab.extend(pre_context)
self.vocab.extend(pos_context)
self.vocab.extend(refex)
self.vocab.append(entity)
self.vocab.extend(entity_tokens)
for i, row in enumerate(self.devset):
pre_context = [self.EOS] + row['pre_context']
pos_context = row['pos_context'] + [self.EOS]
refex = [w.lower() for w in row['refex']] if self.lowercase else row['refex']
refex = [self.EOS] + refex + [self.EOS]
entity = row['entity']
entity_tokens = entity.replace('\"', '').replace('\'', '').replace(',', '').split('_')
self.vocab.extend(pre_context)
self.vocab.extend(pos_context)
self.vocab.extend(refex)
self.vocab.append(entity)
self.vocab.extend(entity_tokens)
_types = self.entity_types.values()
self.vocab.extend(_types)
gender = self.entity_gender.values()
self.vocab.extend(gender)
self.vocab = list(set(self.vocab))
self.int2token = list(self.vocab)
self.token2int = {c: i for i, c in enumerate(self.vocab)}
general_vocab = {
'vocab': self.vocab,
'int2token': self.int2token,
'token2int': self.token2int
}
json.dump(general_vocab, open(vocab_path, 'w'))
else:
general_vocab = json.load(open(vocab_path))
self.vocab = general_vocab['vocab']
self.int2token = general_vocab['int2token']
self.token2int = general_vocab['token2int']
def init(self):
dy.renew_cg()
self.VOCAB_SIZE = len(self.vocab)
self.model = dy.Model()
# ENCODERS
self.encpre_fwd_lstm = dy.LSTMBuilder(self.config.lstm_depth, self.config.embedding_dim, self.config.state_dim, self.model)
self.encpre_bwd_lstm = dy.LSTMBuilder(self.config.lstm_depth, self.config.embedding_dim, self.config.state_dim, self.model)
self.encpre_fwd_lstm.set_dropout(self.config.dropout)
self.encpre_bwd_lstm.set_dropout(self.config.dropout)
self.encpos_fwd_lstm = dy.LSTMBuilder(self.config.lstm_depth, self.config.embedding_dim, self.config.state_dim, self.model)
self.encpos_bwd_lstm = dy.LSTMBuilder(self.config.lstm_depth, self.config.embedding_dim, self.config.state_dim, self.model)
self.encpos_fwd_lstm.set_dropout(self.config.dropout)
self.encpos_bwd_lstm.set_dropout(self.config.dropout)
self.encentity_fwd_lstm = dy.LSTMBuilder(self.config.lstm_depth, self.config.embedding_dim, self.config.state_dim, self.model)
self.encentity_bwd_lstm = dy.LSTMBuilder(self.config.lstm_depth, self.config.embedding_dim, self.config.state_dim, self.model)
self.encentity_fwd_lstm.set_dropout(self.config.dropout)
self.encentity_bwd_lstm.set_dropout(self.config.dropout)
# DECODER
self.dec_lstm = dy.LSTMBuilder(self.config.lstm_depth, (self.config.state_dim * 6) + (self.config.embedding_dim * 3), self.config.state_dim, self.model)
self.dec_lstm.set_dropout(self.config.dropout)
# EMBEDDINGS
self.lookup = self.model.add_lookup_parameters((self.VOCAB_SIZE, self.config.embedding_dim))
# ATTENTION
self.attention_w1_pre = self.model.add_parameters((self.config.attention_dim, self.config.state_dim * 2))
self.attention_w2_pre = self.model.add_parameters((self.config.attention_dim, self.config.state_dim * self.config.lstm_depth * 2))
self.attention_v_pre = self.model.add_parameters((1, self.config.attention_dim))
self.attention_w1_pos = self.model.add_parameters((self.config.attention_dim, self.config.state_dim * 2))
self.attention_w2_pos = self.model.add_parameters((self.config.attention_dim, self.config.state_dim * self.config.lstm_depth * 2))
self.attention_v_pos = self.model.add_parameters((1, self.config.attention_dim))
self.attention_w1_entity = self.model.add_parameters((self.config.attention_dim, self.config.state_dim * 2))
self.attention_w2_entity = self.model.add_parameters((self.config.attention_dim, self.config.state_dim * self.config.lstm_depth * 2))
self.attention_v_entity = self.model.add_parameters((1, self.config.attention_dim))
# COPY
self.copy_x = self.model.add_parameters((1, self.config.embedding_dim))
self.copy_decoder = self.model.add_parameters((1, self.config.state_dim * self.config.lstm_depth * 2))
self.copy_context = self.model.add_parameters((1, self.config.state_dim * 4))
self.copy_b = self.model.add_parameters((1))
# self.copy_entity = entity embedding or -- second thoughts: entity separated from the context?
self.copy_entity = self.model.add_parameters((1, self.config.state_dim * 2))
# SOFTMAX
self.decoder_w = self.model.add_parameters((self.VOCAB_SIZE, self.config.state_dim))
self.decoder_b = self.model.add_parameters((self.VOCAB_SIZE))
def embed_sentence(self, sentence):
_sentence = list(sentence)
sentence = []
for w in _sentence:
try:
sentence.append(self.token2int[w])
except:
sentence.append(self.token2int[self.EOS])
return [self.lookup[char] for char in sentence]
def run_lstm(self, init_state, input_vecs):
s = init_state
out_vectors = []
for vector in input_vecs:
s = s.add_input(vector)
out_vector = s.output()
out_vectors.append(out_vector)
return out_vectors
def encode_sentence(self, enc_fwd_lstm, enc_bwd_lstm, sentence):
sentence_rev = list(reversed(sentence))
fwd_vectors = self.run_lstm(enc_fwd_lstm.initial_state(), sentence)
if enc_bwd_lstm:
bwd_vectors = self.run_lstm(enc_bwd_lstm.initial_state(), sentence_rev)
bwd_vectors = list(reversed(bwd_vectors))
vectors = [dy.concatenate(list(p)) for p in zip(fwd_vectors, bwd_vectors)]
return vectors
return fwd_vectors
def attend(self, h, state, w1dt, attention_w2, attention_v):
# input_mat: (encoder_state x seqlen) => input vecs concatenated as cols
# w1dt: (attdim x seqlen)
# w2dt: (attdim x attdim)
w2dt = attention_w2 * dy.concatenate(list(state.s()))
# att_weights: (seqlen,) row vector
unnormalized = dy.transpose(attention_v * dy.tanh(dy.colwise_add(w1dt, w2dt)))
att_weights = dy.softmax(unnormalized)
# context: (encoder_state)
context = h * att_weights
return context, att_weights
def copy(self, x, decoder_state, entity):
state = dy.concatenate(list(decoder_state.s()))
return dy.logistic((self.copy_entity * entity) + (self.copy_decoder * state) + (self.copy_x * x) + self.copy_b)[
0]
def copy_with_context(self, x, decoder_state, context, entity):
state = dy.concatenate(list(decoder_state.s()))
return dy.logistic((self.copy_context * context) + (self.copy_entity * entity) + (self.copy_decoder * state) + (
self.copy_x * x) + self.copy_b)[0]
def decode(self, pre_encoded, pos_encoded, entity_encoded, refex, entity, entity_tokens):
refex = list(refex)
refex = [self.token2int[c] for c in refex]
h_pre = dy.concatenate_cols(pre_encoded)
w1dt_pre = None
h_pos = dy.concatenate_cols(pos_encoded)
w1dt_pos = None
h_entity = dy.concatenate_cols(entity_encoded)
w1dt_entity = None
last_output_embeddings = self.lookup[self.token2int[self.EOS]]
try:
entity_type = self.token2int[self.entity_types[entity]]
entity_type_embedding = self.lookup[entity_type]
except:
entity_type = self.token2int['other']
entity_type_embedding = self.lookup[entity_type]
try:
entity_gender = self.token2int[self.entity_gender[entity]]
entity_gender_embedding = self.lookup[entity_gender]
except:
entity_gender = self.token2int['neutral']
entity_gender_embedding = self.lookup[entity_gender]
s = self.dec_lstm.initial_state().add_input(dy.concatenate([dy.vecInput(self.config.state_dim * 6), last_output_embeddings, entity_type_embedding, entity_gender_embedding]))
loss = []
for word in refex:
# w1dt can be computed and cached once for the entire decoding phase
w1dt_pre = w1dt_pre or self.attention_w1_pre * h_pre
w1dt_pos = w1dt_pos or self.attention_w1_pos * h_pos
w1dt_entity = w1dt_entity or self.attention_w1_entity * h_entity
attention_pre, _ = self.attend(h_pre, s, w1dt_pre, self.attention_w2_pre, self.attention_v_pre)
attention_pos, _ = self.attend(h_pos, s, w1dt_pos, self.attention_w2_pos, self.attention_v_pos)
attention_entity, att_weights = self.attend(h_entity, s, w1dt_entity, self.attention_w2_entity, self.attention_v_entity)
p_gen = self.copy(last_output_embeddings, s, attention_entity)
entity_prob = dy.scalarInput(0)
lookup_word = self.int2token[word]
if lookup_word in entity_tokens:
idx = entity_tokens.index(lookup_word)
entity_prob = dy.pick(att_weights, idx)
vector = dy.concatenate([attention_pre, attention_pos, attention_entity, last_output_embeddings, entity_type_embedding, entity_gender_embedding])
s = s.add_input(vector)
out_vector = self.decoder_w * s.output() + self.decoder_b
probs = dy.softmax(out_vector)
context_prob = dy.pick(probs, word)
last_output_embeddings = self.lookup[word]
prob = dy.cmult(p_gen, context_prob) + dy.cmult(1 - p_gen, entity_prob)
loss.append(-dy.log(prob))
loss = dy.esum(loss)
return loss
def generate(self, pre_context, pos_context, entity, entity_tokens):
embedded = self.embed_sentence(pre_context)
pre_encoded = self.encode_sentence(self.encpre_fwd_lstm, self.encpre_bwd_lstm, embedded)
embedded = self.embed_sentence(pos_context)
pos_encoded = self.encode_sentence(self.encpos_fwd_lstm, self.encpos_bwd_lstm, embedded)
embedded = self.embed_sentence(entity_tokens)
entity_encoded = self.encode_sentence(self.encentity_fwd_lstm, self.encentity_bwd_lstm, embedded)
h_pre = dy.concatenate_cols(pre_encoded)
w1dt_pre = None
h_pos = dy.concatenate_cols(pos_encoded)
w1dt_pos = None
h_entity = dy.concatenate_cols(entity_encoded)
w1dt_entity = None
last_output_embeddings = self.lookup[self.token2int[self.EOS]]
try:
entity_type = self.token2int[self.entity_types[entity]]
entity_type_embedding = self.lookup[entity_type]
except:
entity_type = self.token2int['other']
entity_type_embedding = self.lookup[entity_type]
try:
entity_gender = self.token2int[self.entity_gender[entity]]
entity_gender_embedding = self.lookup[entity_gender]
except:
entity_gender = self.token2int['neutral']
entity_gender_embedding = self.lookup[entity_gender]
s = self.dec_lstm.initial_state().add_input(dy.concatenate([dy.vecInput(self.config.state_dim * 6), last_output_embeddings, entity_type_embedding, entity_gender_embedding]))
out = []
count_EOS = 0
for i in range(self.config.max_len):
if count_EOS == 2: break
# w1dt can be computed and cached once for the entire decoding phase
w1dt_pre = w1dt_pre or self.attention_w1_pre * h_pre
w1dt_pos = w1dt_pos or self.attention_w1_pos * h_pos
w1dt_entity = w1dt_entity or self.attention_w1_entity * h_entity
attention_pre, _ = self.attend(h_pre, s, w1dt_pre, self.attention_w2_pre,
self.attention_v_pre)
attention_pos, _ = self.attend(h_pos, s, w1dt_pos, self.attention_w2_pos, self.attention_v_pos)
attention_entity, att_weights = self.attend(h_entity, s, w1dt_entity, self.attention_w2_entity, self.attention_v_entity)
p_gen = self.copy(last_output_embeddings, s, attention_entity)
input_probs = dy.cmult(att_weights, 1 - p_gen).vec_value()
input_prob_max = max(input_probs)
input_next_word = input_probs.index(input_prob_max)
vector = dy.concatenate([attention_pre, attention_pos, attention_entity, last_output_embeddings, entity_type_embedding, entity_gender_embedding])
s = s.add_input(vector)
out_vector = self.decoder_w * s.output() + self.decoder_b
probs = dy.cmult(dy.softmax(out_vector), p_gen).vec_value()
for i, token in enumerate(entity_tokens):
if token in self.vocab:
probs[self.token2int[token]] += input_probs[i]
vocab_prob_max = max(probs)
vocab_next_word = probs.index(vocab_prob_max)
# If probability of input greater than the vocabulary
if input_prob_max > vocab_prob_max:
word = entity_tokens[input_next_word]
try:
last_output_embeddings = self.lookup[self.token2int[word]]
except:
last_output_embeddings = self.lookup[self.token2int[self.EOS]]
else:
last_output_embeddings = self.lookup[vocab_next_word]
word = self.int2token[vocab_next_word]
if word == self.EOS:
count_EOS += 1
continue
out.append(word)
return out
def beam_search(self, pre_context, pos_context, entity, entity_tokens):
embedded = self.embed_sentence(pre_context)
pre_encoded = self.encode_sentence(self.encpre_fwd_lstm, self.encpre_bwd_lstm, embedded)
embedded = self.embed_sentence(pos_context)
pos_encoded = self.encode_sentence(self.encpos_fwd_lstm, self.encpos_bwd_lstm, embedded)
embedded = self.embed_sentence(entity_tokens)
entity_encoded = self.encode_sentence(self.encentity_fwd_lstm, self.encentity_bwd_lstm, embedded)
h_pre = dy.concatenate_cols(pre_encoded)
w1dt_pre = None
h_pos = dy.concatenate_cols(pos_encoded)
w1dt_pos = None
h_entity = dy.concatenate_cols(entity_encoded)
w1dt_entity = None
last_output_embeddings = self.lookup[self.token2int[self.EOS]]
try:
entity_type = self.token2int[self.entity_types[entity]]
entity_type_embedding = self.lookup[entity_type]
except:
entity_type = self.token2int['other']
entity_type_embedding = self.lookup[entity_type]
try:
entity_gender = self.token2int[self.entity_gender[entity]]
entity_gender_embedding = self.lookup[entity_gender]
except:
entity_gender = self.token2int['neutral']
entity_gender_embedding = self.lookup[entity_gender]
s = self.dec_lstm.initial_state().add_input(dy.concatenate([dy.vecInput(self.config.state_dim * 6), last_output_embeddings, entity_type_embedding, entity_gender_embedding]))
candidates = [{'sentence': [self.EOS], 'prob': 0.0, 'count_EOS': 0, 's': s}]
outputs = []
i = 0
alpha = 0.6
while i < self.config.max_len and len(outputs) < self.config.beam:
new_candidates = []
for candidate in candidates:
if candidate['count_EOS'] == 2:
outputs.append(candidate)
if len(outputs) == self.config.beam:
break
else:
# w1dt can be computed and cached once for the entire decoding phase
w1dt_pre = w1dt_pre or self.attention_w1_pre * h_pre
w1dt_pos = w1dt_pos or self.attention_w1_pos * h_pos
w1dt_entity = w1dt_entity or self.attention_w1_entity * h_entity
attention_pre, _ = self.attend(h_pre, candidate['s'], w1dt_pre, self.attention_w2_pre, self.attention_v_pre)
attention_pos, _ = self.attend(h_pos, candidate['s'], w1dt_pos, self.attention_w2_pos, self.attention_v_pos)
attention_entity, att_weights = self.attend(h_entity, candidate['s'], w1dt_entity, self.attention_w2_entity, self.attention_v_entity)
try:
last_output_embeddings = self.lookup[self.token2int[candidate['sentence'][-1]]]
except:
last_output_embeddings = self.lookup[self.token2int[self.EOS]]
p_gen = self.copy(last_output_embeddings, s, attention_entity)
# INPUT WORDS
input_probs = dy.cmult(att_weights, 1 - p_gen).vec_value()
input_next_words = [{'prob': e, 'word': entity_tokens[input_probs.index(e)]}
for e in sorted(input_probs, reverse=True)]
# VOCABULARY WORDS
vector = dy.concatenate([attention_pre, attention_pos, attention_entity, last_output_embeddings, entity_type_embedding, entity_gender_embedding])
s = candidate['s'].add_input(vector)
out_vector = self.decoder_w * s.output() + self.decoder_b
probs = dy.cmult(dy.softmax(out_vector), p_gen).vec_value()
for i, token in enumerate(entity_tokens):
if token in self.vocab:
probs[self.token2int[token]] += input_probs[i]
vocab_next_words = [{'prob': e, 'word': self.int2token[probs.index(e)]}
for e in sorted(probs, reverse=True)]
next_words = [sorted(input_next_words + vocab_next_words, key=lambda x: x['prob'], reverse=True)[self.config.beam]]
for next_word in next_words:
word = next_word['word']
new_candidate = {
'sentence': candidate['sentence'] + [word],
'prob': candidate['prob'] + np.log(next_word['prob']),
'count_EOS': candidate['count_EOS'],
's': s
}
# length normalization
length = len(new_candidate['sentence'])
lp_y = ((5.0 + length) ** alpha) / ((5.0 + 1.0) ** alpha)
new_candidate['prob'] = new_candidate['prob'] / lp_y
if word == self.EOS:
new_candidate['count_EOS'] += 1
new_candidates.append(new_candidate)
candidates = sorted(new_candidates, key=lambda x: x['prob'], reverse=True)[:self.config.beam]
i += 1
if len(outputs) == 0:
outputs = candidates
# Length Normalization
alpha = 0.6
for output in outputs:
length = len(output['sentence'])
lp_y = ((5.0 + length) ** alpha) / ((5.0 + 1.0) ** alpha)
output['prob'] = output['prob'] / lp_y
outputs = sorted(outputs, key=lambda x: x['prob'], reverse=True)
return list(map(lambda x: x['sentence'], outputs))
def get_loss(self, pre_context, pos_context, refex, entity, entity_tokens):
embedded = self.embed_sentence(pre_context)
pre_encoded = self.encode_sentence(self.encpre_fwd_lstm, self.encpre_bwd_lstm, embedded)
embedded = self.embed_sentence(pos_context)
pos_encoded = self.encode_sentence(self.encpos_fwd_lstm, self.encpos_bwd_lstm, embedded)
embedded = self.embed_sentence(entity_tokens)
entity_encoded = self.encode_sentence(self.encentity_fwd_lstm, self.encentity_bwd_lstm, embedded)
return self.decode(pre_encoded, pos_encoded, entity_encoded, refex, entity, entity_tokens)
def validate(self):
results = []
num, dem = 0.0, 0.0
for i, devinst in enumerate(self.devset):
pre_context = [self.EOS] + devinst['pre_context']
pos_context = devinst['pos_context'] + [self.EOS]
entity = devinst['entity']
entity_tokens = entity.replace('\"', '').replace('\'', '').replace(',', '').split('_')
if self.config.beam == 1:
outputs = [self.generate(pre_context, pos_context, entity, entity_tokens)]
else:
outputs = self.beam_search(pre_context, pos_context, entity, entity_tokens)
delimiter = ' '
if self.character:
delimiter = ''
for j, output in enumerate(outputs):
outputs[j] = delimiter.join(output).replace(self.EOS, '').strip()
refex = delimiter.join(devinst['refex']).replace(self.EOS, '').strip()
best_candidate = outputs[0]
if refex.lower().strip() == best_candidate.lower().strip():
num += 1
dem += 1
if i < 20:
print("Refex: ", refex, "\t Output: ", best_candidate)
print(10 * '-')
results.append(outputs)
if i % self.config.batch == 0:
dy.renew_cg()
return results, num, dem
def test(self):
results = []
dy.renew_cg()
for i, testinst in enumerate(self.testset):
pre_context = [self.EOS] + testinst['pre_context']
pos_context = testinst['pos_context'] + [self.EOS]
# refex = [self.EOS] + testinst['refex'] + [self.EOS]
entity = testinst['entity']
entity_tokens = entity.replace('\"', '').replace('\'', '').replace(',', '').split('_')
if self.config.beam == 1:
outputs = [self.generate(pre_context, pos_context, entity, entity_tokens)]
else:
outputs = self.beam_search(pre_context, pos_context, entity, entity_tokens)
delimiter = ' '
if self.character:
delimiter = ''
for j, output in enumerate(outputs):
outputs[j] = delimiter.join(output).replace(self.EOS, '').strip()
dy.renew_cg()
results.append(outputs)
print("Progress: {0}, {1}".format(round(i / len(self.testset), 2), i), end='\r')
self.logger.save_result(fname='test', results=results, beam=self.config.beam)
def train(self):
trainer = dy.AdadeltaTrainer(self.model)
best_acc, repeat = 0.0, 0
for epoch in range(self.config.epochs):
dy.renew_cg()
losses = []
closs = 0.0
for i, traininst in enumerate(self.trainset):
pre_context = [self.EOS] + traininst['pre_context']
pos_context = traininst['pos_context'] + [self.EOS]
refex = [w.lower() for w in traininst['refex']] if self.lowercase else traininst['refex']
refex = [self.EOS] + refex + [self.EOS]
entity = traininst['entity']
entity_tokens = entity.replace('\"', '').replace('\'', '').replace(',', '').split('_')
loss = self.get_loss(pre_context, pos_context, refex, entity, entity_tokens)
losses.append(loss)
if len(losses) == self.config.batch:
loss = dy.esum(losses)
closs += loss.value()
loss.backward()
trainer.update()
dy.renew_cg()
print("Epoch: {0} \t Loss: {1} \t Progress: {2}".
format(epoch, round(closs / self.config.batch, 2), round(i / len(self.trainset), 2)), end=' \r')
losses = []
closs = 0.0
outputs, num, dem = self.validate()
acc = round(float(num) / dem, 2)
print("Dev acc: {0} \t Best acc: {1}".format(str(num / dem), best_acc))
# Saving the model with best accuracy
if best_acc == 0.0 or acc > best_acc:
best_acc = acc
self.logger.save_result(fname='dev_best', results=outputs, beam=self.config.beam)
self.model.save(self.logger.model_path)
repeat = 0
else:
repeat += 1
# In case the accuracy does not increase in 20 epochs, break the process
if repeat == self.config.early_stop:
break
if __name__ == '__main__':
config = {
'LSTM_NUM_OF_LAYERS': 1,
'EMBEDDINGS_SIZE': 128,
'STATE_SIZE': 256,
'ATTENTION_SIZE': 256,
'DROPOUT': 0.2,
'GENERATION': 30,
'BEAM_SIZE': 1,
'BATCH_SIZE': 80,
'EPOCHS': 60,
'EARLY_STOP': 10
}
beta_path = 'beta'
if not os.path.exists(beta_path):
os.mkdir(beta_path)
##### VERSION 1.0 #####
path = os.path.join(beta_path, 'attention_v1.0/')
logger = Logger(path=path, model_path=os.path.join(path, 'best.dy'), result_path=os.path.join(path, 'results/'))
PATH = 'data/v1.0/'
h = Attention(config=config, path=PATH, logger=logger, lowercase=True)
h.train()
# config['BEAM_SIZE'] = 4
h = Attention(config=config, path=PATH, logger=logger, lowercase=True)
h.model.populate(logger.model_path)
h.test()
##### VERSION 1.5 #####
path = os.path.join(beta_path, 'attention/')
logger = Logger(path=path, model_path=os.path.join(path, 'best.dy'), result_path=os.path.join(path, 'results/'))
PATH = 'data/v1.5/'
h = Attention(config=config, path=PATH, logger=logger)
h.train()
# config['BEAM_SIZE'] = 4
h = Attention(config=config, path=PATH, logger=logger)
h.model.populate(logger.model_path)
h.test()