-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinfer.py
398 lines (365 loc) · 16.7 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import argparse
import random
import numpy as np
import torch
from sampling import autoregressive_generate, speculative_generate
from ngram_assisted import OneLevelNGramStorage, NGramStorage, ngram_assisted_speculative_generate
from utils.logits_processor import GreedyProcessor, MultinomialProcessor, TopKProcessor, NucleusProcessor, TopKNucleusProcessor
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
QuantoConfig,
)
import time
import os
from termcolor import colored
class InferenceCLI:
def __init__(self, device: str = "cuda"):
print(
colored("Speculative Decoding", "red"),
colored("CLI", on_color="on_red", color="white"),
"\n",
)
self.device = device
self.gamma = 4
self.gen_len = 35
self.debug = False
self.spec = True
self.dr = False
self.cache = False
self.target_gen = True
# Ngram Assisted Generation
self.ngram_gen = True
self.ngram = None
self.top_k_filler = 3
self.ngram_n = 3
self.reset_in_between = True
self.chat = True # If using a chat instructed model, set to True
self.processors = {
"greedy": {
"processor": GreedyProcessor,
"building_args": {"temperature": float},
},
"multinomial": {
"processor": MultinomialProcessor,
"building_args": {"temperature": float},
},
"topk": {
"processor": TopKProcessor,
"building_args": {"temperature": float, "top_k": int},
},
"nucleus": {
"processor": NucleusProcessor,
"building_args": {"temperature": float, "top_p": float},
},
"topknucleus": {
"processor": TopKNucleusProcessor,
"building_args": {"temperature": float, "top_k": int, "top_p": float},
},
}
self.selected_processor = {
"name": "greedy",
"processor": GreedyProcessor,
"args": {"temperature": 1.0},
}
self.processor = GreedyProcessor()
self._load_models()
self._run()
def _load_models(self):
# Target model
target_model = "meta-llama/Llama-3.2-3B-Instruct"
target_quantize = QuantoConfig(weights="int8") # QuantoConfig(weights="int8") None
# Drafter model
drafter_model = "meta-llama/Llama-3.2-1B-Instruct"
drafter_quantize = QuantoConfig(weights="int8") # QuantoConfig(weights="int8") None
print(colored("Target model:", on_color="on_yellow"), target_model)
print(colored("Drafter model:", on_color="on_yellow"), drafter_model)
print(colored("Loading models...", "light_grey"))
self.target = AutoModelForCausalLM.from_pretrained(
target_model,
quantization_config=target_quantize,
device_map=self.device,
trust_remote_code=True,
)
self.target.eval()
tokenizer_name = target_model
if tokenizer_name != target_model:
print(colored("Warning: Tokenizer is different from target model. Use with caution.", "red"))
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, trust_remote_code=True)
self.drafter = AutoModelForCausalLM.from_pretrained(
drafter_model,
quantization_config=drafter_quantize,
device_map=self.device,
trust_remote_code=True,
)
self.drafter.eval()
self.ngram = NGramStorage(n=3, vocab_size=self.target.config.vocab_size)
self.end_tokens = [self.tokenizer.eos_token_id, self.tokenizer.convert_tokens_to_ids("<|eot_id|>")] # "<|eot_id|>" is the end of turn token for Llama model.
def _perform_command(self, command: str):
args = command.split(" ")
if args[0] == "/quit":
print(colored("Goodbye!", on_color="on_red"))
exit(0)
if args[0] == "/debug":
self.debug = not self.debug
print(colored(f"Debug mode: {self.debug}", on_color="on_blue"))
return
if args[0] == "/speculative":
self.spec = not self.spec
print(colored(f"Speculative Decoding generation: {self.spec}", on_color="on_blue"))
return
if args[0] == "/drafter":
self.dr = not self.dr
print(colored(f"Drafter generation: {self.dr}", on_color="on_blue"))
return
if args[0] == "/cache":
self.cache = not self.cache
print(colored(f"Cache: {self.cache}", on_color="on_blue"))
if self.cache:
print(colored("Warning, cache feature is very unstable accross different models. It might generate errors or just perturb the generation. Use with caution.", "red"))
return
if args[0] == "/target":
self.target_gen = not self.target_gen
print(colored(f"Target generation: {self.target_gen}", on_color="on_blue"))
return
if args[0] == "/chat":
self.chat = not self.chat
print(colored(f"Chat mode: {self.chat}", on_color="on_blue"))
return
if args[0] == "/length":
if len(args) < 2:
print(colored("Usage: /length <value>", "red"))
return
self.gen_len = int(args[1])
print(colored(f"Generation length: {int(args[1])}", on_color="on_blue"))
return
if args[0] == "/gamma":
if len(args) < 2:
print(colored("Usage: /gamma <value>", "red"))
return
self.gamma = int(args[1])
print(colored(f"Gamma: {int(args[1])}", on_color="on_blue"))
return
if args[0] == "/clear":
os.system("cls" if os.name == "nt" else "clear")
return
if args[0] == "/processor":
# /processor <processor_name> <args0> <args1> ...
if len(args) < 2:
print(colored("Usage: /processor <processor_name> <args0> <args1> ...", "red"))
return
processor_name = args[1]
if processor_name not in self.processors:
print(colored("Invalid processor name", "red"))
print(colored("Available processors:", "red"))
for processor in self.processors.keys():
print(colored(f"\t{processor}", "red"))
return
processor = self.processors[processor_name]
print(colored(f"Selected processor: {processor_name}", "blue"))
building_args = processor["building_args"]
args = args[2:]
processor_args = {}
for arg_name, arg_type in building_args.items():
if len(args) == 0:
print(colored(f"Missing argument {arg_name}", "red"))
return
try:
processor_args[arg_name] = arg_type(args[0])
print(colored(f"\t{arg_name}: {arg_type(args[0])}", "blue"))
except ValueError:
print(colored(f"Invalid argument {arg_name} of type {arg_type}", "red"))
return
args = args[1:]
self.selected_processor = {
"name": processor_name,
"processor": processor["processor"],
"args": processor_args,
}
self.processor = processor["processor"](**processor_args)
return
# Ngram Assisted Generation
if args[0] == "/ngram":
self.ngram_gen = not self.ngram_gen
print(colored(f"Ngram assisted generation: {self.ngram_gen}", on_color="on_blue"))
return
if args[0] == "/top_k_filler":
if len(args) < 2:
print(colored("Usage: /top_k_filler <value>", "red"))
return
self.top_k_filler = int(args[1])
print(colored(f"Top k filler: {int(args[1])}", on_color="on_blue"))
return
if args[0] == "/set_ngramstorage":
if len(args) < 3:
print(colored("Usage: /set_ngramstorage <basic/onelevel> <n>", "red"))
return
if args[1] == "onelevel":
ntype = OneLevelNGramStorage
elif args[1] == "basic":
ntype = NGramStorage
else:
print(colored("Invalid ngram type", "red"))
return
self.ngram = ntype(n=int(args[2]), vocab_size=self.target.config.vocab_size)
self.ngram_n = int(args[2])
print(colored(f"Ngram type: {args[1]}", "blue"))
print(colored(f"Ngram n: {int(args[2])}", "blue"))
return
if args[0] == "/reset_in_between":
self.reset_in_between = not self.reset_in_between
print(colored(f"Reset ngram in between each generation: {self.reset_in_between}", on_color="on_blue"))
return
print(colored("Unknown command", "red"))
self._help()
def _help(self):
print(colored("Commands:", on_color="on_blue"))
print("/quit: quit the program")
print("/debug: toggle speculative debug mode")
print(colored(f"\t{self.debug}", "green" if self.debug else "red"))
print("/clear: clear the screen")
print("/speculative: toggle speculative decoding")
print(colored(f"\t{self.spec}", "green" if self.spec else "red"))
print("/target: toggle target generation")
print(colored(f"\t{self.target_gen}", "green" if self.target_gen else "red"))
print("/drafter: toggle drafter generation")
print(colored(f"\t{self.dr}", "green" if self.dr else "red"))
print("/cache: toggle cache")
print(colored(f"\t{self.cache}", "green" if self.cache else "red"))
print("/chat: toggle chat mode")
print(colored(f"\t{self.chat}", "green" if self.chat else "red"))
print("/length <value>: set generation length")
print(colored(f"\t{self.gen_len}", "blue"))
print("/gamma <value>: set gamma")
print(colored(f"\t{self.gamma}", "blue"))
print("/processor <processor_name> [args0] [args1] ...: set processor")
print(colored(f"\t{self.selected_processor['name']}", "blue"))
for arg_name, arg_value in self.selected_processor["args"].items():
print(colored(f"\t\t{arg_name}: {arg_value}", "blue"))
# Ngram Assisted Generation
print("/ngram: toggle ngram assisted generation")
print(colored(f"\t{self.ngram_gen}", "green" if self.ngram_gen else "red"))
print("/top_k_filler <value>: set top k filler for ngram update")
print(colored(f"\t{self.top_k_filler}", "blue"))
print("/set_ngramstorage <basic/onelevel> <n>: set ngramstorage drafter")
print(colored(f"\t{self.ngram.__class__.__name__} {self.ngram_n}", "blue"))
print("/reset_in_between: toggle reset ngram in between each generation")
print(colored(f"\t{self.reset_in_between}", "green" if self.reset_in_between else "red"))
def _infer(self, prefix: str):
if self.chat:
prefix = self.tokenizer.apply_chat_template([{"role": "user", "content": prefix}], add_generation_prompt=True, tokenize=False)
tokenized = self.tokenizer(prefix, return_tensors="pt").input_ids[0].tolist()
if self.reset_in_between:
self.ngram.reset()
spec_throughput = 0.0
base_throughput = 0.0
drafter_throughput = 0.0
if self.spec:
self._set_seed(42)
spec_start_time = time.time()
output_ids, accept_rate = speculative_generate(
tokenized,
self.drafter,
self.target,
tokenizer=self.tokenizer,
logits_processor=self.processor,
gamma=self.gamma,
max_gen_len=self.gen_len,
eos_tokens_id=self.end_tokens,
debug=self.debug,
use_cache=self.cache,
)
spec_end_time = time.time()
spec_output = self.tokenizer.decode(output_ids, skip_special_tokens=True)
print(colored("========== Speculative ==========", "green"))
print(colored("Out:", "green"), spec_output)
print(colored(f"Acceptance rate: {accept_rate:.3f}", "green"))
spec_throughput = len(spec_output) / (spec_end_time - spec_start_time)
print(colored(f"Throughput: {spec_throughput:.1f} tokens/s", "green"))
print(colored("========== Speculative ==========", "green"))
if self.ngram_gen:
self._set_seed(42)
ngram_start_time = time.time()
output_ids, accept_rate = ngram_assisted_speculative_generate(
tokenized,
self.ngram,
self.target,
tokenizer=self.tokenizer,
gamma=self.gamma,
filler_top_k=self.top_k_filler,
logits_processor=self.processor,
max_gen_len=self.gen_len,
eos_tokens_id=self.end_tokens,
debug=self.debug,
use_cache=self.cache,
first_target=True,
stop_if_unknown=True,
)
ngram_end_time = time.time()
ngram_output = self.tokenizer.decode(output_ids, skip_special_tokens=True)
print(colored("========== Ngram Assisted ==========", "yellow"))
print(colored("Out:", "yellow"), ngram_output)
print(colored(f"Acceptance rate: {accept_rate:.3f}", "yellow"))
ngram_throughput = len(ngram_output) / (ngram_end_time - ngram_start_time)
print(colored(f"Throughput: {ngram_throughput:.1f} tokens/s", "yellow"))
print(colored("========== Ngram Assisted ==========", "yellow"))
if self.spec and ngram_throughput > 0.0:
print(colored(f"Throughput increase: {((spec_throughput / ngram_throughput)) * 100:.1f}%", "magenta"))
if self.target_gen:
self._set_seed(42)
start_time = time.time()
output_ids = autoregressive_generate(
tokenized,
self.target,
use_cache=self.cache,
max_gen_len=self.gen_len,
eos_tokens_id=self.end_tokens,
logits_processor=self.processor,
debug=self.debug,
)
end_time = time.time()
output = self.tokenizer.decode(output_ids, skip_special_tokens=True)
print(colored("=========== Target AR ===========", "blue"))
print(colored("Out:", "blue"), output)
base_throughput = len(output) / (end_time - start_time)
print(colored(f"Throughput: {base_throughput:.1f} tokens/s", "blue"))
print(colored("=========== Target AR ===========", "blue"))
if self.spec and base_throughput > 0.0:
print(colored(f"Throughput increase: {((spec_throughput / base_throughput)) * 100:.1f}%", "magenta"))
if self.dr:
self._set_seed(42)
output_ids = autoregressive_generate(
tokenized,
self.drafter,
use_cache=self.cache,
max_gen_len=self.gen_len,
eos_tokens_id=self.end_tokens,
logits_processor=self.processor,
debug=self.debug,
)
output = self.tokenizer.decode(output_ids, skip_special_tokens=True)
print(colored("========== Drafter AR ==========", "cyan"))
drafter_throughput = len(output) / (end_time - start_time)
print(colored("Out:", "cyan"), output)
print(colored(f"Throughput: {drafter_throughput:.1f} tokens/s", "cyan"))
print(colored("========== Drafter AR ==========", "cyan"))
def _run(self):
while True:
command = input("> ").replace('\\n', '\n').replace('\\t', '\t')
if command.startswith("/"):
self._perform_command(command)
continue
self._infer(command)
def _set_seed(self, seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Speculative Decoding CLI")
parser.add_argument("--device", type=str, default="cuda", help="Device to use for inference")
args = parser.parse_args()
InferenceCLI(device=args.device)