-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathmain_cmd.py
164 lines (127 loc) · 5.52 KB
/
main_cmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import warnings
import re
from model.model import TnpModel
from model.utils import *
from model.Tracking.hypo_formatter import formatFile
from model.Tracking.import_data import import_data, merge_n_split
VERBOSE = True
# default values for running the trackNPred, you can also specify it in cmd parser
# the dataset you want to run
# DSET_IDS = [12]
# dataset dirs
DATA_DIR = 'resources/data/TRAF'
PRED_DATA_DIR = 'model/Prediction/data/TRAF'
# enable/disable each part
DETECTION = False
TRACKING = False
FORMATTING = False
TRAIN = True
EVAL = True
# training option
FRAMES = 'frames'
DETALGO = 'YOLO'
DETCONF = 0.5
NMS = 0.4
PREDALGO = 'Traphic'
# PREDALGO = 'Social Conv'
PRETRAINEPOCHS= 6
TRAINEPOCHS= 10
BATCH_SIZE = 128
DROPOUT = 0.5
OPTIM= 'Adam'
LEARNING_RATE= 0.001
CUDA= True
MANEUVERS = False
MODELLOC= "model/Prediction/trained_models"
PRETRAIN_LOSS = 'MSE'
TRAIN_LOSS = 'NLL'
# do not change this unless you want to run other dataset other than TRAF
DATA_FOLDER = 'TRAF{}'
VIDEO = 'TRAF{}.mp4'
HOMO = 'TRAF{}_H.txt'
PRED_FILE = '{}.npy'
SGAN_FILE = "{}.txt"
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="TrackNPred command line control")
parser.add_argument('--list', '-l', help='DATASet', action='append')
parser.add_argument('--dir', help="location of the dataset for tracking", default=DATA_DIR)
parser.add_argument('--predir', help="location of the dataset for trajectory prediction, result of tracking", default=PRED_DATA_DIR)
parser.add_argument('--detection', '-d', help='enable detection step', default=DETECTION, type=bool)
parser.add_argument('--tracking', '-track', help='enable tracking step', default=TRACKING, type=bool)
parser.add_argument('--formatting', '-f', help='enable formatting step', default=FORMATTING, type=bool)
parser.add_argument('--train', '-t', help='enable train step', default=TRAIN, type=bool)
parser.add_argument('--eval', help='enable evaluation step', default=EVAL, type=bool)
parser.add_argument('--frames', help="location of the frames of the data in each dataset folder", default=FRAMES)
parser.add_argument('--detalgo', help="detection method", default=DETALGO)
parser.add_argument('--conf', help='confidence in tracking', default=DETCONF)
parser.add_argument('--nms', help='nms in tracking',default=NMS)
parser.add_argument('--predalgo', help='prediction algorithm', default=PREDALGO)
parser.add_argument('--pretrainEpochs', help='number of epochs for pretraining', default=PRETRAINEPOCHS)
parser.add_argument('--trainEpochs', '-e', help='number of epochs for training', default=TRAINEPOCHS)
parser.add_argument('--batch_size', '-b', help='bastch size', default=BATCH_SIZE)
parser.add_argument('--dropout', help='dropout probability', default=DROPOUT)
parser.add_argument('--optim', help='optimiser', default=OPTIM)
parser.add_argument('--lr', help='learning rate', default=LEARNING_RATE)
parser.add_argument('--cuda', '-g', help='GPU option', default=CUDA, type=bool)
parser.add_argument('--maneuvers', help='maneuvers option', default=MANEUVERS, type=bool)
parser.add_argument('--modelLoc', help='trained prediction store/load location', default=MODELLOC)
parser.add_argument('--pretrain_loss', help='pretrain loss algorithm', default=PRETRAIN_LOSS)
parser.add_argument('--train_loss', help='train loss algorithm', default=TRAIN_LOSS)
args = parser.parse_args()
model = TnpModel()
file_names = []
print(args.dir)
if args.list:
lst = args.list
else:
lst = [d for d in os.listdir(args.dir)]
for name in lst:
i = re.search(r'\d+', name).group()
folder = os.path.join(args.dir, DATA_FOLDER.format(i))
video = VIDEO.format(i)
det = 'det.txt'
if args.detection:
sayVerbose(VERBOSE, "begin detection for {}...".format(folder))
model.YOLO_detect(folder, video, args.frames, det, "detectedFrames", args.conf, args.nms, args.cuda)
sayVerbose(VERBOSE, "finished detection for {}...".format(folder))
if args.tracking:
sayVerbose(VERBOSE, "begin tracking for {}...".format(folder))
model.tracking(args.dir, DATA_FOLDER.format(i), False)
sayVerbose(VERBOSE, "finished tracking for {}...".format(folder))
hypo = os.path.join(folder, 'hypotheses.txt')
formatted_hypo = os.path.join(folder, 'formatted_hypo.txt')
homo = os.path.join(folder, HOMO.format(i))
pred_file = os.path.join(folder, PRED_FILE.format(name))
sgan_file = os.path.join(folder, SGAN_FILE.format(name))
file_names.append(pred_file)
if args.tracking:
sayVerbose(VERBOSE, "Formatting {} for prediction...".format(folder))
formatFile(hypo, i, formatted_hypo)
import_data(formatted_hypo, homo, pred_file, sgan_file)
sayVerbose(VERBOSE, "Done formatting for {}... ".format(folder))
pred_data = args.predir + "/{}"
merge_n_split(file_names, pred_data)
sayVerbose(VERBOSE, "Done merging data for training.")
viewArgs = {}
viewArgs['batch_size'] = args.batch_size
viewArgs['pretrainEpochs'] = args.pretrainEpochs
viewArgs['trainEpochs'] = args.trainEpochs
viewArgs['cuda'] = args.cuda
viewArgs['modelLoc'] = args.modelLoc
viewArgs['dropout'] = args.dropout
viewArgs["maneuvers"] = args.maneuvers
viewArgs["lr"] = args.lr
viewArgs['pretrain_loss'] = args.pretrain_loss
viewArgs['train_loss'] = args.train_loss
viewArgs['predAlgo'] = args.predalgo
viewArgs['dir'] = args.dir
viewArgs["optim"] = args.optim
if args.train:
sayVerbose(VERBOSE, "Start training...")
model.train(viewArgs)
sayVerbose(VERBOSE, "Done training.")
if args.eval:
sayVerbose(VERBOSE, "Start evaluating...")
model.evaluate(viewArgs)
sayVerbose(VERBOSE, "Done evaluating.")