-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
154 lines (123 loc) · 6.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import tensorflow as tf
import os
import numpy
import sys
tf.logging.set_verbosity(tf.logging.INFO)
numpy.set_printoptions(threshold=sys.maxsize)
def cnn_model_fn(features, labels, mode):
"""Model function for CNN."""
# Input Layer
input_layer = tf.reshape(features, [-1, 28, 28, 3])
# Convolutional Layer #1
conv1 = tf.layers.conv2d( inputs = input_layer
, filters = 32
, kernel_size = [5, 5]
, padding = "same"
, activation = tf.nn.relu
)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs = conv1, pool_size = [2, 2], strides = 2)
# Convolutional Layer #2
conv2 = tf.layers.conv2d( inputs = pool1
, filters = 64
, kernel_size = [5, 5]
, padding = "same"
, activation = tf.nn.relu
)
# Pooling Layer #2
pool2 = tf.layers.max_pooling2d(inputs = conv2, pool_size = [2, 2], strides = 2)
# Dense Layer
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
dense = tf.layers.dense(inputs = pool2_flat, units = 1024, activation = tf.nn.relu)
# Add dropout operation; 0.6 probability that element will be kept
dropout = tf.layers.dropout( inputs = dense
, rate = 0.4
, training = mode == tf.estimator.ModeKeys.TRAIN
)
# Logits layer
logits = tf.layers.dense(inputs = dropout, units = 2)
# Generate predictions (for PREDICT and EVAL mode)
predictions = { "classes": tf.argmax(input = logits, axis = 1, name = "foobar")
, "probabilities": tf.nn.softmax(logits, name = "softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode = mode, predictions = predictions)
# Calculate Loss (for both TRAIN and EVAL modes)
onehot_labels = tf.one_hot(indices = tf.cast(labels, tf.int32), depth = 2)
loss = tf.losses.softmax_cross_entropy(onehot_labels = onehot_labels, logits = logits)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.001)
train_op = optimizer.minimize(loss = loss, global_step = tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode = mode, loss = loss, train_op = train_op)
# Add evaluation metrics (for EVAL mode)
eval_metric_ops = { "accuracy": tf.metrics.accuracy(labels = labels, predictions = predictions["classes"])
, "confusion": eval_confusion_matrix(labels = labels, predictions = predictions["classes"])
, "precision": tf.metrics.precision(labels = labels, predictions = predictions["classes"])
}
return tf.estimator.EstimatorSpec( mode = mode
, loss = loss
, eval_metric_ops = eval_metric_ops
)
def eval_confusion_matrix(labels, predictions):
with tf.variable_scope("eval_confusion_matrix"):
con_matrix = tf.confusion_matrix(labels = labels, predictions = predictions, num_classes = 2)
con_matrix_sum = tf.Variable(tf.zeros(shape = (2,2), dtype = tf.int32)
, trainable = False
, name = "confusion_matrix_result"
, collections = [tf.GraphKeys.LOCAL_VARIABLES]
)
update_op = tf.assign_add(con_matrix_sum, con_matrix)
return tf.convert_to_tensor(con_matrix_sum), update_op
def my_input_fn():
above_list = []
for f in os.listdir('./above_data_train/'):
above_list.append(os.path.join('./above_data_train/', f))
below_list = []
for g in os.listdir('./below_data_train/'):
below_list.append(os.path.join('./below_data_train/', g))
filename_list = above_list + below_list
label_list = [1]*len(above_list) + [0]*len(below_list)
filenames = tf.convert_to_tensor(filename_list, dtype = tf.string)
labels = tf.convert_to_tensor(label_list, dtype = tf.int32)
filenames_queue, labels_queue = tf.train.slice_input_producer([filenames, labels], shuffle = True)
images_queue = tf.read_file(filenames_queue)
images_queue = tf.image.decode_png(images_queue, channels = 3)
images_queue = tf.image.resize_images(images_queue, [28, 28])
return tf.train.batch([images_queue, labels_queue], batch_size = 50, num_threads = 32)
def my_eval_input_fn():
above_list2 = []
for f in os.listdir('./above_data_eval2/'):
above_list2.append(os.path.join('./above_data_eval2/', f))
below_list2 = []
for g in os.listdir('./below_data_eval2/'):
below_list2.append(os.path.join('./below_data_eval2/', g))
filename_list2 = above_list2 + below_list2
label_list2 = [1]*len(above_list2) + [0]*len(below_list2)
filenames2 = tf.convert_to_tensor(filename_list2, dtype = tf.string)
labels2 = tf.convert_to_tensor(label_list2, dtype = tf.int32)
filenames_queue2, labels_queue2 = tf.train.slice_input_producer([filenames2, labels2], shuffle = False)
images_queue2 = tf.read_file(filenames_queue2)
images_queue2 = tf.image.decode_png(images_queue2, channels = 3)
images_queue2 = tf.image.resize_images(images_queue2, [28, 28])
return tf.train.batch([images_queue2, labels_queue2], batch_size = 302, num_threads = 32)
def main(unused_argv):
# Create the Estimator
logo_classifier = tf.estimator.Estimator(
model_fn = cnn_model_fn, model_dir = "./logo_new_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor", "classes": "foobar"}
logging_hook = tf.train.LoggingTensorHook(
tensors = tensors_to_log, every_n_iter = 50)
# Train the model
#logo_classifier.train(
# input_fn = my_input_fn,
# steps = 200000,
# hooks = [logging_hook])
# Evaluate the model and print results
eval_results = logo_classifier.evaluate(input_fn = my_eval_input_fn, steps = 1, hooks = [logging_hook])
print(eval_results)
if __name__ == "__main__":
tf.app.run()