-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathelstd.py
83 lines (74 loc) · 2.6 KB
/
elstd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
Emphatic least-squares temporal difference learning, also known as ELSTD(λ).
TODO: Test the implementation
TODO: Add documentation
TODO: Add citations
"""
import numpy as np
class ELSTD:
"""Emphatic least-squares temporal difference learning.
Attributes
----------
n : int
The number of features (and therefore the length of the weight vector).
z : Vector[float]
The eligibility trace vector.
A : Matrix[float]
A matrix with shape `(n, n)` that acts like a potential matrix.
b : Vector[float]
A vector of length `n` that accumulates the trace multiplied by the
reward over a trajectory.
F : float
The followon trace scalar.
M : float
The emphasis scalar.
"""
def __init__(self, num_features=None, epsilon=0):
"""Initialize the learning algorithm.
Parameters
-----------
n : int
The number of features
epsilon : float
To avoid having the `A` matrix be singular, it is sometimes helpful
to initialize it with the identity matrix multiplied by `epsilon`.
"""
self.n = n
self.reset(epsilon)
def reset(self, epsilon=0):
"""Reset weights, traces, and other parameters."""
self.z = np.zeros(self.n)
self.A = np.eye(self.n) * epsilon
self.b = np.zeros(self.n)
self.F = 0
self.M = 0
@property
def theta(self):
"""Compute the weight vector via `A^{-1} b`."""
_theta = np.dot(np.linalg.pinv(self.A), self.b)
return _theta
def update(self, x, reward, xp, gm, gm_p, lm, interest):
"""Update from new experience, i.e. from a transition `(x,r,xp)`.
Parameters
----------
x : array_like
The observation/features from the current timestep.
r : float
The reward from the transition.
xp : array_like
The observation/features from the next timestep.
gm : float
Gamma, abbreviated `gm`, the discount factor for the current state.
gm_p : float
The discount factor for the next state.
lm : float
Lambda, abbreviated `lm`, is the bootstrapping parameter for the
current timestep.
interest : float
The 'interest' in the current state, from which emphasis is derived.
"""
self.F = gm * self.F + interest
self.M = (lm * I) + ((1 - lm) * self.F)
self.z = (gm * lm * self.z + self.M * x)
self.A += np.outer(self.z, (x - gm_p*xp))
self.b += self.z * reward