-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathinference.py
100 lines (74 loc) · 3.44 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""Run inference a DeepLab v3 model using tf.estimator API."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import tensorflow as tf
import deeplab_model
from utils import preprocessing
from utils import dataset_util
from PIL import Image
import matplotlib.pyplot as plt
from tensorflow.python import debug as tf_debug
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='dataset/VOCdevkit/VOC2012/JPEGImages',
help='The directory containing the image data.')
parser.add_argument('--output_dir', type=str, default='./dataset/inference_output',
help='Path to the directory to generate the inference results')
parser.add_argument('--infer_data_list', type=str, default='./dataset/sample_images_list.txt',
help='Path to the file listing the inferring images.')
parser.add_argument('--model_dir', type=str, default='./model',
help="Base directory for the model. "
"Make sure 'model_checkpoint_path' given in 'checkpoint' file matches "
"with checkpoint name.")
parser.add_argument('--base_architecture', type=str, default='resnet_v2_101',
choices=['resnet_v2_50', 'resnet_v2_101'],
help='The architecture of base Resnet building block.')
parser.add_argument('--output_stride', type=int, default=16,
choices=[8, 16],
help='Output stride for DeepLab v3. Currently 8 or 16 is supported.')
parser.add_argument('--debug', action='store_true',
help='Whether to use debugger to track down bad values during training.')
_NUM_CLASSES = 21
def main(unused_argv):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
pred_hooks = None
if FLAGS.debug:
debug_hook = tf_debug.LocalCLIDebugHook()
pred_hooks = [debug_hook]
model = tf.estimator.Estimator(
model_fn=deeplab_model.deeplabv3_model_fn,
model_dir=FLAGS.model_dir,
params={
'output_stride': FLAGS.output_stride,
'batch_size': 1, # Batch size must be 1 because the images' size may differ
'base_architecture': FLAGS.base_architecture,
'pre_trained_model': None,
'batch_norm_decay': None,
'num_classes': _NUM_CLASSES,
})
examples = dataset_util.read_examples_list(FLAGS.infer_data_list)
image_files = [os.path.join(FLAGS.data_dir, filename) for filename in examples]
predictions = model.predict(
input_fn=lambda: preprocessing.eval_input_fn(image_files),
hooks=pred_hooks)
output_dir = FLAGS.output_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for pred_dict, image_path in zip(predictions, image_files):
image_basename = os.path.splitext(os.path.basename(image_path))[0]
output_filename = image_basename + '_mask.png'
path_to_output = os.path.join(output_dir, output_filename)
print("generating:", path_to_output)
mask = pred_dict['decoded_labels']
mask = Image.fromarray(mask)
plt.axis('off')
plt.imshow(mask)
plt.savefig(path_to_output, bbox_inches='tight')
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)