-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanswer2.py
executable file
·514 lines (423 loc) · 16 KB
/
answer2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
#!/usr/bin/python
# Usage: ./answer2.py src.txt q.txt
# input:
# - src.txt: source document to generate answers from
# - q.txt: document containing n line-separated questions
# assumes input document paths are under the same working directory
#
# output:
# n line-separated answers, each corresponding to one question in q.txt
#
# ** KNOWN ISSUE **:
# The John Reranking procedure in bllipparser sometimes causes a segfault -
# documented here: https://github.com/BLLIP/bllip-parser/issues/49
# If this happens, please just run the same command again, and it should work.
import en
import sys
import json
import nltk
import string
import unicodedata
import treehelpers
from nltk.tree import ParentedTree
from SentenceParser import SentenceParser
from nltk.stem.snowball import SnowballStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
sentences = []
original = dict()
stemmer = SnowballStemmer("english")
tagged = open("tagging.txt.pred.sst")
wh = ["who", "what", "when", "where", "how", "why", "which", "whose"]
stopwords = [
"a", "about", "above", "across", "after", "afterwards", "again", "against",
"all", "almost", "alone", "along", "already", "also", "although", "always",
"am", "among", "amongst", "amoungst", "amount", "an", "and", "another",
"any", "anyhow", "anyone", "anything", "anyway", "anywhere", "are",
"around", "as", "at", "back", "be", "became", "because", "become",
"becomes", "becoming", "been", "before", "beforehand", "behind", "being",
"below", "beside", "besides", "between", "beyond", "bill", "both",
"bottom", "but", "by", "call", "can", "cannot", "cant", "co", "con",
"could", "couldnt", "cry", "de", "describe", "detail", "do", "does", "did",
"done", "down", "due", "during", "each", "eg", "eight", "either", "eleven",
"else", "elsewhere", "empty", "enough", "etc", "even", "ever", "every",
"everyone", "everything", "everywhere", "except", "few", "fifteen", "fifty",
"fill", "find", "fire", "first", "five", "for", "former", "formerly",
"forty", "found", "four", "from", "front", "full", "further", "get", "give",
"go", "had", "has", "hasnt", "have", "he", "hence", "here", "hereafter",
"hereby", "herein", "hereupon", "hers", "herself", "himself", "his",
"how", "however", "hundred", "i", "ie", "if", "in", "inc", "indeed",
"interest", "into", "is", "it", "its", "itself", "keep", "last", "latter",
"latterly", "least", "less", "ltd", "made", "many", "may", "me",
"meanwhile", "might", "mill", "mine", "more", "moreover", "most", "mostly",
"move", "much", "must", "my", "myself", "name", "namely", "neither",
"never", "nevertheless", "next", "nine", "no", "nobody", "none", "noone",
"nor", "nothing", "now", "nowhere", "of", "off", "often", "on",
"once", "one", "only", "onto", "or", "other", "others", "otherwise", "our",
"ours", "ourselves", "out", "over", "own", "part", "per", "perhaps",
"please", "put", "rather", "re", "seem", "seemed",
"seeming", "seems", "serious", "several", "she", "should", "show", "side",
"since", "sincere", "six", "sixty", "so", "some", "somehow", "someone",
"something", "sometime", "sometimes", "somewhere", "still", "such",
"system", "take", "ten", "than", "that", "the", "their", "them",
"themselves", "then", "thence", "there", "thereafter", "thereby",
"therefore", "therein", "thereupon", "these", "they", "thick", "thin",
"third", "this", "those", "though", "three", "through", "throughout",
"thru", "thus", "to", "together", "too", "top", "toward", "towards",
"twelve", "twenty", "two", "un", "under", "until", "up", "upon", "us",
"very", "via", "was", "we", "well", "were", "what", "whatever", "when",
"whence", "whenever", "where", "whereafter", "whereas", "whereby",
"wherein", "whereupon", "wherever", "whether", "which", "while", "whither",
"who", "whoever", "whole", "whom", "whose", "why", "will", "with",
"within", "without", "would", "yet", "you", "your", "yours", "yourself",
"yourselves"]
def main(args):
d = open(args[0])
append(d)
doc = d.read()
doc=unicodedata.normalize('NFKD',doc.decode("utf8")).encode('ascii','ignore')
questions = readQ()
readDoc(doc)
tfidf = TfidfVectorizer(tokenizer=tokenize, stop_words=stopwords)
count = 0
for q in questions:
answer(q, count, tfidf)
count += 1
# return the first space-delimited word in the string
def first_word(string):
result = ""
for c in string:
if c == " ":
break
else:
result += c
return result
# append words in the article title to the list of stop words (i.e. words to
# ignore when doing tfidf calculations)
def append(d):
first_line = d.readline()
for w in first_line.split():
w = w.replace("\n", "").lower()
stopwords.append(w)
# tokenize function for sentences using the nltk snowball stemmer
def tokenize(text):
tokens = nltk.word_tokenize(text)
stems = []
for t in tokens:
stems.append(stemmer.stem(t))
return stems
# return list of parsed questions read in from parsedQs.txt
def readQ():
q = open("parsedQs.txt").read()
return q.splitlines()
# read in parsed lines of the document and its mapping to the original sentence
# from original.txt
# also read in the list of target sentences corresponding to each question from
# targetSentences.txt
def readDoc(doc):
o = open("original.txt").read().splitlines()
for l in o:
words = l.split(" XIAOHANLANDREW ")
original[words[0]] = words[1]
tmp = open("targetSentences.txt").read().splitlines()
for i in xrange(len(tmp)):
sentences.append(tmp[i])
# return true if information in q is (approximately) all contained in s
def contained(q, s):
s = s.lower().translate(None, string.punctuation)
q1 = q.split()
count = 0
for w in q1:
if(w not in stopwords):
if(w not in s):
count += 1
if(float(count) / len(q1) < 0.2):
return True
else:
return False
# generate sentence from leaves of the nltk tree t
def sentfromleaves(t):
return " ".join(t.leaves()).replace(" 's ", "'s ")
# routine to answer who questions
# algorithm: look at the rest of the question apart from the wh-word, and based
# on the structure of that part, split out a target portion of the target
# sentence to generate the answer from.
def whoHelper(fw, q, stp, t, tfidf):
stitch = fw + " " + q
tstitch = SentenceParser.parse(stitch)
rest = tstitch[0][1]
if(len(rest) == 1):
rest = rest[0]
if(len(rest) == 2 and 'VB' in rest[0].label() and rest[1].label() == 'NP'):
ret = ""
tstp = SentenceParser.parse(stp)[0]
for i in xrange(len(tstp)):
if(tstp[i].label() == 'NP'):
ret = treehelpers.leftmost(t[i])[0]
if(rest[0][0] in ["is", "was", "were", "are"]):
# example question: Who was the teacher?
# the answer could be in the form of "The teacher was..." or
# "... was the teacher". Therefore, get both the object and subject NP
# of the target sentence and return the most likely one using tfidf
find = stp.split(rest[0][0] + " ")[1]
first = SentenceParser.parse(find)[0]
for i in xrange(len(first)):
if(first[i].label() == 'NP'):
n2 = sentfromleaves(first[i])
rest1 = sentfromleaves(rest)
tfidf_matrix = tfidf.fit_transform([ret, rest1])
cosine_sim1 = ((tfidf_matrix * tfidf_matrix.T).A)[0,1]
tfidf_matrix = tfidf.fit_transform([n2, rest1])
cosine_sim2 = ((tfidf_matrix * tfidf_matrix.T).A)[0,1]
if cosine_sim1 > cosine_sim2:
return n2
else:
return ret
return ret
elif(len(rest) == 3 and rest[2].label() == 'VP'):
aux = treehelpers.leftmost(rest)[0]
if(aux in ["does", "did", "do"]):
verb = treehelpers.leftmost(rest[2])[0]
if(aux=="did"):
verb = en.verb.past(verb)
l = ""
tmp = stp.split(verb + " ")
if(first_word(stp) == verb):
l = tmp[0]
else:
l = tmp[1]
first = SentenceParser.parse(l)[0]
nps = list(first.subtrees(filter=lambda x: x.label()=='NP'))
return sentfromleaves(nps[0])
else:
return stp
# routine to answer when/where questions
# algorithm: use AMALGrAM to supersense tag words in the target sentence, and
# also generate a list of PPs from the target sentence. For when questions, if
# a word tagged as TIME appears in a PP, return that PP. For where questions,
# generate a list of possible PPs that could be answer, and then verify the tags
# with nltk.ne_chunks
def whenWhere(fw, q, stp, t, tfidf, whenere):
superS = json.loads(whenere.split("\t")[2])["labels"]
td = parsetd(superS)
tstp = SentenceParser.parse(stp)
pps = list(tstp.subtrees(filter=lambda x: x.label()=='PP'))
pts = list()
for p in pps:
pts.append(sentfromleaves(p))
keyword = ""
nopp = []
if(fw == "when"):
keyword = "TIME"
else:
keyword = "LOCATION"
matched = filter(lambda x: td[x]==keyword, td.keys())
nechunk = ["FACILITY", "GPE", "GSP", "LOCATION", "ORGANIZATION", "PERSON"]
if(len(matched) != 0):
likely = list()
for m in matched:
for p in pts:
if(m in p):
if(fw == "when"):
return p
likely.append(p)
if(fw == "where"):
for l in likely:
chunktags = nltk.ne_chunk(SentenceParser.parse(l).pos())
ctl = map(lambda x: x.label(), list(chunktags.subtrees()))
ctl = filter(lambda x:x in nechunk, ctl)
ctl = filter(lambda x: x != 'PERSON', ctl)
if(len(ctl) != 0):
return l
# routine to answer how questions
# algorithm: first get the main verb of the question, and look for adverbs next
# to it in the target sentence, return any if they exist. Else, return the PP
# that belongs under the same S as the VP in the question
def howHelper(fw, q, stp, t, tfidf):
tstp = SentenceParser.parse(stp)
pt = tstp.pos()
tq = SentenceParser.parse(q)[0]
while(len(tq) <= 1):
if(len(tq) == 0):
break
tq = tq[0]
if(len(tq) > 1):
tq = tq[1:]
for i in xrange(len(tq)):
if(tq[i].label() == 'VP'):
vs = list(tq[i].subtrees(filter=lambda x: 'VB' in x.label()))
verb = vs[0][0]
for j in xrange(len(pt)):
(w, l) = pt[j]
if(w==verb):
c = j
# look before verb
if(c > 0):
c -= 1
ret = ""
while(c >= 0):
(w1, l1) = pt[c]
if('RB' in l1):
ret = w1 + " " + ret
c -= 1
else:
break
if(ret != ""):
return ret
# look after verb
if(c < len(pt)):
c += 1
ret = ""
while(c < len(pt)):
(w1, l1) = pt[c]
if('RB' in l1):
ret = ret + " " + w1
c += 1
else:
break
if(ret != ""):
return ret
qnew = q
sqnew = SentenceParser.parse(qnew)[0]
for i in xrange(len(sqnew)):
if(sqnew[i].label() == 'VP'):
qnew = sentfromleaves(sqnew[i])
tstp1 = ParentedTree.convert(tstp)
pps = list(tstp1.subtrees(filter=lambda x: x.label()=='PP'))
for p in pps:
tmp = p.parent()
while(tmp.label() != 'S'):
if(tmp.label() == 'VP'):
tmps = sentfromleaves(tmp)
if(contained(qnew, tmps)):
return tmps
tmp = tmp.parent()
# routine to answer why questions
# algorithm: keywords to consider: because of, because, for, since, so that, so
# based on if each keyword exist in the target sentence, get the part that is
# the logical explanation of the question based on the sentence structure
def whyHelper(fw, q, stp, t, tfidf):
tstp = SentenceParser.parse(stp)
if("because of " in stp or "Because of " in stp):
pps = list(tstp.subtrees(filter=lambda x: x.label()=='PP'))
for p in pps:
if((p[0][0]=="because" or p[0][0]=="Because") and p[1][0]=="of"):
return sentfromleaves(p)
return stp
elif("because " in stp or "Because " in stp):
sbars = list(tstp.subtrees(filter=lambda x: x.label()=='SBAR'))
for sbar in sbars:
if(sbar[0][0]=="because" or sbar[0][0]=="Because"):
return sentfromleaves(sbar)
return stp
elif("for " in stp):
sbars = list(tstp.subtrees(filter=lambda x: x.label()=='SBAR'))
for sbar in sbars:
if(sbar[0][0]=="for"):
return sentfromleaves(sbar[1])
return stp
elif("since " in stp or "Since " in stp):
sbars = list(tstp.subtrees(filter=lambda x: x.label()=='SBAR'))
for sbar in sbars:
if(sbar[0][0]=="since" or sbar[0][0]=="Since"):
return sentfromleaves(sbar[1])
elif("so that " in stp):
sbars = list(tstp.subtrees(filter=lambda x: x.label()=='SBAR'))
for sbar in sbars:
if(sbar[0][0]=="so" and sbar[1][0]=="that"):
return sentfromleaves(sbar)
return stp
elif("so " in stp or "So " in stp):
sbars = list(tstp.subtrees(filter=lambda x: x.label()=='SBAR'))
for sbar in sbars:
if(sbar[0][0]=="so" or sbar[0][0]=="So"):
return sentfromleaves(sbar)
# helper to parse supersense tagging output
def parsetd(superS):
td = dict()
for i in superS.keys():
(word, tag) = superS[i]
td[word] = tag
return td
# main routine to answer wh-questions
# algorithm: for each question/target sentence pair, get all sub-sentences of
# the target sentence. Starting from the shortest one, if any of the sub-
# sentences contain roughly all the information contained in the question, try
# to generate an answer from that sub-sentence for conciseness.
def whAnswer(fw, q, ts, tfidf):
# read the supersense tagging output for the corresponding question
whenere = tagged.readline()
s = original[ts]
t = SentenceParser.parse(s)
ss = reversed(list(t.subtrees(filter=lambda x: x.label()=='S')))
for st in ss:
stp = sentfromleaves(st)
if(contained(q, stp)):
ret = ""
if(fw == "who"):
ret = whoHelper(fw, q, stp, t, tfidf)
elif(fw == "what" or fw == "which"):
if(fw == "what" and "happen" in first_word(q)):
return stp
ret = whoHelper(fw, q, stp, t, tfidf)
elif(fw == "when" or fw == "where"):
ret = whenWhere(fw, q, stp, t, tfidf, whenere)
elif(fw == "how"):
ret = howHelper(fw, q, stp, t, tfidf)
elif(fw == "why"):
ret = whyHelper(fw, q, stp, t, tfidf)
else:
return stp
if(ret != None and ret != ""):
return ret
return ""
# main routine to answer all questions, splits off for wh-questions
# algorithm for yes/no questions: get the features of both the target sentence
# and the question using tfidf, and if all features of the question are roughly
# contained in the features of the target sentence, return yes; else, no
def answer(q, count, tfidf):
targetSentence = sentences[count]
fw = first_word(q)
q = q.replace(fw + " ", "")
# yes/no question
if (fw not in wh):
tfidf.fit_transform([q])
fsq = set(tfidf.get_feature_names())
tfidf.fit_transform([targetSentence])
fst = set(tfidf.get_feature_names())
if(fsq.issubset(fst)):
print "Yes."
else:
if(len(fsq.difference(fst)) / float(len(fsq)) > 0.85):
if("not" in fsq and "not" not in fst):
print "No."
else:
print "Yes."
print "No."
# wh-question
else:
# if the target sentence is short enough, just return it immediately
if(len(targetSentence.split()) <= len(q.split())+7):
print original[targetSentence]
else:
ret = ""
try:
ret = whAnswer(fw, q, targetSentence, tfidf)
except IndexError:
ret = ""
if(ret == ""):
# fall back: could not generate answer
print original[targetSentence]
else:
# correctly format output
ret = ret.strip()
if(ret[0].islower()):
ret = ret[0].upper() + ret[1:]
if('.' not in ret):
ret = ret+'.'
print ret
if __name__ == '__main__':
if len(sys.argv) != 3:
print "Wrong number of arguments"
sys.exit(0)
else:
main(sys.argv[1:])