-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathQuestionRanker.py
110 lines (96 loc) · 2.77 KB
/
QuestionRanker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from SentenceParser import SentenceParser
from sklearn.naive_bayes import GaussianNB
from nltk.tree import Tree
from treehelpers import *
import pickle
def count_pps(t):
count = 0
if isinstance(t, Tree):
if t.label() == 'PP':
return 1
else:
for s in t:
count += count_pps(s)
return count
else:
return count
def count_nps(t):
count = 0
if isinstance(t, Tree):
if t.label() == 'NP':
return 1
else:
for s in t:
count += count_nps(s)
return count
else:
return count
def train():
# number of words
# number of PRP
# number of NP
# number of PP
# number of nouns
file = open('training.txt')
file_content = file.read()
feature_data = []
target_data = []
for line in file_content.splitlines():
question_is_good = line[0] == 'G'
if question_is_good:
target_data.append(1)
else:
target_data.append(0)
question = line[1:]
t = SentenceParser.parse(question)
pos = tuple(map(lambda w: w[1], t.pos()))
word_length = len(sentence_join(t).split())
num_pronouns = 0
for p in pos:
if p == 'PRP':
num_pronouns += 1
num_nps = count_nps(t)
num_pps = count_pps(t)
num_nouns = 0
for p in pos:
if p.startswith('NN'):
num_nouns += 1
feature_data.append([word_length, num_pronouns, num_nps, num_pps, num_nouns])
gnb = GaussianNB()
return gnb.fit(feature_data, target_data)
class QuestionRanker():
nb_classifier = pickle.load(open('nb.pickle', 'rb'))
def __init__(self, question):
self.question = question
def score(self):
if self.__has_illegal_first_five_words():
return 0
if self.question.startswith("Where had") or self.question.startswith("When had"):
return 0
return self.__vocab_score()
def __vocab_score(self):
try:
t = SentenceParser.parse(self.question)
except:
return 0
pos = tuple(map(lambda w: w[1], t.pos()))
word_length = len(sentence_join(t).split())
num_pronouns = 0
for p in pos:
if p == 'PRP':
num_pronouns += 1
num_nps = count_nps(t)
num_pps = count_pps(t)
num_nouns = 0
for p in pos:
if p.startswith('NN'):
num_nouns += 1
feature_vector = [[word_length, num_pronouns, num_nps, num_pps, num_nouns]]
return QuestionRanker.nb_classifier.predict_proba(feature_vector)[0][1]
def __has_illegal_first_five_words(self):
disallowed_first_five_words = ['it', 'its', 'he', 'his', 'she', 'her', 'they', 'their', 'we', 'our', 'I', 'my', 'you', 'your', 'the', 'this', 'that', 'those', 'these']
first_five_words = self.question.split()[:5]
for word in disallowed_first_five_words:
if word in first_five_words:
return True
return False