-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbissection-method.sce
34 lines (28 loc) · 1.26 KB
/
bissection-method.sce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
//Bolzano method by Rêmullo Costa
function y = f(x)
y = x^3-5*x+1;
endfunction
x = 0:0.1:3;
y = f(x);
plot(x,y);
xgrid;
a = 0.1; //ponto a avaliado por visualização grafica (point 'a' evaluated by graphical visualization)
b = 0.3; // ponto b avaliado por visualização grafica (point 'b' evaluated by graphical visualization)
x = a; //chute inicial (guess)
erro = 1; //erro inicial (1st error value)
iter = 1;
=
while(erro > 10^-2) //A condição de parada é quando o erro for menor que 10ˆ-2 (stop condition is when the error is smaller than 10^-2)
x_velho = x; //this variable saves the latest 'x', because it will be modified
x = (a+b)/2;
//Teorema de Bolzano
if(f(a)*f(x)<0) then // se a raiz tiver entre a e x, entao x será o novo b (if the found root is between 'a' and 'x', thus, 'x' will be the new 'b'
b = x;
elseif(f(b)*f(x)<0) then //se a raiz estiver entre "b e x", então "x" será o novo a (if the root is in between of 'b' and 'x', then 'x' will be the new 'a'
a = x;
end
//avaliar o erro no fim do loop para ver se a condição foi satisfeita (evaluate the error in the end of the loop to check if the condition were satisfied)
erro = abs((x - x_velho)/x);
disp([iter x erro]);
iter = iter +1;
end