A Probabilistic Data Structures without Redis Stack.
It is a space-efficient probabilistic data structure that is used to test whether an element is a member of a set. False positive matches are possible, but false negatives are not. In other words, a query returns either "possibly in set" or "definitely not in set". Elements can be added to the set, but not removed.
Example:
package main
import (
"context"
"fmt"
"github.com/redis/rueidis"
"github.com/redis/rueidis/rueidisprob"
)
func main() {
client, err := rueidis.NewClient(rueidis.ClientOption{
InitAddress: []string{"localhost:6379"},
})
if err != nil {
panic(err)
}
bf, err := rueidisprob.NewBloomFilter(client, "bloom_filter", 1000, 0.01)
err = bf.Add(context.Background(), "hello")
if err != nil {
panic(err)
}
err = bf.Add(context.Background(), "world")
if err != nil {
panic(err)
}
exists, err := bf.Exists(context.Background(), "hello")
if err != nil {
panic(err)
}
fmt.Println(exists) // true
exists, err = bf.Exists(context.Background(), "world")
if err != nil {
panic(err)
}
fmt.Println(exists) // true
}
It is a variation of the standard Bloom filter that adds a counting mechanism to each element. This allows for the filter to count the number of times an element has been added to the filter. And it allows for the removal of elements from the filter.
Example:
package main
import (
"context"
"fmt"
"github.com/redis/rueidis"
"github.com/redis/rueidis/rueidisprob"
)
func main() {
client, err := rueidis.NewClient(rueidis.ClientOption{
InitAddress: []string{"localhost:6379"},
})
if err != nil {
panic(err)
}
cbf, err := rueidisprob.NewCountingBloomFilter(client, "counting_bloom_filter", 1000, 0.01)
err = cbf.Add(context.Background(), "hello")
if err != nil {
panic(err)
}
err = cbf.Add(context.Background(), "world")
if err != nil {
panic(err)
}
exists, err := cbf.Exists(context.Background(), "hello")
if err != nil {
panic(err)
}
fmt.Println(exists) // true
exists, err = cbf.Exists(context.Background(), "world")
if err != nil {
panic(err)
}
fmt.Println(exists) // true
count, err := cbf.Count(context.Background())
if err != nil {
panic(err)
}
fmt.Println(count) // 2
err = cbf.Remove(context.Background(), "hello")
if err != nil {
panic(err)
}
exists, err = cbf.Exists(context.Background(), "hello")
if err != nil {
panic(err)
}
fmt.Println(exists) // false
count, err = cbf.Count(context.Background())
if err != nil {
panic(err)
}
fmt.Println(count) // 1
}
It is a variation of the standard Bloom filter that adds a sliding window mechanism. Useful for use cases where you need to keep track of items for a certain amount of time.
Example:
package main
import (
"context"
"fmt"
"time"
"github.com/redis/rueidis"
"github.com/redis/rueidis/rueidisprob"
)
func main() {
client, err := rueidis.NewClient(rueidis.ClientOption{
InitAddress: []string{"localhost:6379"},
})
if err != nil {
panic(err)
}
sbf, err := NewSlidingBloomFilter(client, "sliding_bloom_filter", 1000, 0.01, time.Minute)
err = sbf.Add(context.Background(), "hello")
if err != nil {
panic(err)
}
err = sbf.Add(context.Background(), "world")
if err != nil {
panic(err)
}
exists, err := sbf.Exists(context.Background(), "hello")
if err != nil {
panic(err)
}
fmt.Println(exists) // true
exists, err = sbf.Exists(context.Background(), "world")
if err != nil {
panic(err)
}
fmt.Println(exists) // true
count, err := sbf.Count(context.Background())
if err != nil {
panic(err)
}
fmt.Println(count) // 2
}