-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun-visualization-model.py
418 lines (409 loc) · 21.9 KB
/
run-visualization-model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import optparse
import os
import time
import _pickle as cPickle
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import networkx as nx
import tensorflow as tf
"""
Visualization of Patchy-San + Ego-Convolution
--------------------------------------------
[fixed] Patchy-San + 5 Ego-Convolution
[+] 1 Attention+1 Dense: to score importance of neighborhoods (for general classification layers)
"""
PROC_DIR = 'proc'
DATASET_DIR = 'dataset'
DATASET_LIST = ['MUTAG', 'PTC_MR', 'PROTEINS', 'NCI1', 'DD', 'IMDB-BINARY', 'IMDB-MULTI', 'REDDIT-BINAY', 'COLLAB', 'Compound_Alk-Alc', 'Compound_Asym-Sym']
def parse_arg():
"""utility function to parse argument from command line"""
parser = optparse.OptionParser()
parser.add_option('-n', dest='dataset', help='specify the name of dataset in one of {}'.format(DATASET_LIST))
parser.add_option('-g', dest='gpu_id', default='0', help='use which GPU')
parser.add_option('-f', dest='gpu_frac', default='0.99', help='GPU memory utilization')
parser.add_option('-k', dest='K', default='4', help='hyperparameter k(#neighbor) of Ego-Convolution')
parser.add_option('-p', dest='PK', default='10', help='hyperparameter k(size of neighborhood) of Patchy-San')
parser.add_option('-l', dest='loop', default='5', help='#rerun in each fold')
parser.add_option('-L', dest='lr', default='1e-4', help='learing rate for training')
parser.add_option('-b', dest='bsize', default='32', help='batch size for training')
parser.add_option('-c', dest='FOLD', default='10', help='10-Fold CV by default')
parser.add_option('-m', dest='model_type', default='6L', help="specify which model to use in one of ['6L', '3L']")
(options, args) = parser.parse_args()
return options
def prepare_G(G_adj, G_nbr, G_nn, G_att, V_num, E_map, N_map, k, dim_f, dim_a, pk=10):
"""
padded each graph with same # of nodes,
and each node with same # of neighbors
--------------------------------------
return
adjs: 1 x (|V|+1) x (k x k)
nbrs: 1 x (|V|+1) x k
nnlbls: 1 x (|V|+1) x (k x dim_f)
"""
dim_e = len(E_map)
adjs, nbrs, nnlbls, atts = [], [], [], []
pad_adj, pad_nn, pad_att, pad_nbr = np.zeros((pk,pk,dim_e)).reshape((-1)), np.zeros((pk,dim_f)).reshape((-1)), np.zeros((pk,dim_a)).reshape((-1)), np.zeros(k)
for Adj, Nbr in zip(G_adj, G_nbr):
adj, nbr, nn, att = [pad_adj], [pad_nbr], [pad_nn], [pad_att]
for i in range(V_num):
if i in Adj.keys():
adj.append(onehot(Adj[i].reshape((1,-1)).astype(np.int32), E_map).reshape((-1)))
nbr.append(np.array([j+1 for j in Nbr[i]]))
nnl = onehot(G_nn[i], N_map)
att_i = G_att[i]
att_i = att_i if att_i is not None else np.zeros((nnl.shape[0], 0))
pad_n = pk-nnl.shape[0]
if pad_n > 0:
nnl = np.vstack([nnl, np.zeros((pad_n,dim_f))]) if dim_f > 0 else None
att_i = np.vstack([att_i, np.zeros((pad_n,dim_a))])
nn.append(nnl.reshape((-1)) if dim_f > 0 else pad_nn)
att.append(att_i.reshape((-1)))
else:
adj.append(pad_adj)
nbr.append(pad_nbr)
nn.append(pad_nn)
att.append(pad_att)
adjs.append(adj)
nbrs.append(nbr)
nnlbls.append(nn)
atts.append(att)
return np.array(adjs), np.array(nbrs).astype(np.int32), np.array(nnlbls), np.array(atts)
def onehot(labels, Y_map):
"""onehot encoding labels"""
labels = np.array(labels).reshape((-1))
N, nY = len(labels), len(Y_map)
rst = np.zeros((N, nY))
for i in range(N):
if labels[i] in Y_map.keys():
rst[i,Y_map[labels[i]]] = 1
return rst.astype(np.int32)
def batch_generator(adjs, nbrs, nnlbls, atts, labels, N_map, E_map, Y_map, V_num=28, bsize=32, dim_f=0, dim_a=0, dim_e=0, nY=2, k=3, pk=10):
"""graph is processed(add padding) as needed"""
epch = 0
N = len(labels)
while True:
order = np.random.permutation(N)
for i in range(0, N-bsize, bsize):
Xs = [prepare_G(adjs[x], nbrs[x], nnlbls[x], atts[x], V_num, E_map, N_map, k, dim_f, dim_a, pk=pk) for x in order[i:i+bsize]]
adj, nbr, nnlbl, att, lbls = [[Xs[x][0] for x in range(len(Xs))]], [Xs[x][1] for x in range(len(Xs))], [Xs[x][2] for x in range(len(Xs))], [Xs[x][3] for x in range(len(Xs))], onehot([labels[x] for x in order[i:i+bsize]], Y_map)
adj = np.swapaxes(adj, 0,1).reshape((1, bsize, V_num+1, pk*pk*dim_e))
nbr = np.swapaxes(nbr, 0,1).reshape((1, bsize, V_num+1, k))
nnlbl = np.swapaxes(nnlbl, 0,1).reshape((1, bsize, V_num+1, pk*dim_f))
att = np.swapaxes(att, 0,1).reshape((1, bsize, V_num+1, pk*dim_a))
yield [adj, nbr, nnlbl, att, lbls, epch]
epch += 1
def xavier_init(size):
return tf.random_normal(shape=size, stddev=1./tf.sqrt(size[0]/2.))
def xavier_init_val(size):
return np.random.normal(size=size, scale=1./np.sqrt(size[0]/2.))
def bn(X, eps=1e-8, g=None, b=None):
if X.get_shape().ndims == 4:
mean = tf.reduce_mean(X, [0,1,2])
std = tf.reduce_mean( tf.square(X-mean), [0,1,2])
X = (X-mean) / tf.sqrt(std+eps)
if g is not None and b is not None:
g, b = tf.reshape(g, [1,1,1,-1]), tf.reshape(b, [1,1,1,-1])
X = X*g + b
elif X.get_shape().ndims == 2:
mean = tf.reduce_mean(X, 0)
std = tf.reduce_mean(tf.square(X-mean), 0)
X = (X-mean) / tf.sqrt(std+eps)
if g is not None and b is not None:
g, b = tf.reshape(g, [1,-1]), tf.reshape(b, [1,-1])
X = X*g + b
else:
raise NotImplementedError
return X
def aggregate_nbr(pb_nbr_dict, pb_fmap, k):
"""
nbr_dict: [1, bsize, nV, k]
fmap: [bsize, nV, nf]
return [1, bsize, nV, k, nf]
"""
return tf.stack([
[tf.nn.embedding_lookup(fmap, nbr_dict)\
for b_nbr_dict, b_fmap in zip(tf.unstack(pb_nbr_dict), tf.unstack(pb_fmap))\
for nbr_dict, fmap in zip(tf.unstack(b_nbr_dict), tf.unstack(b_fmap))
]])
def g_conv_bn(X, theta, shape):
"""
X: [1, bsize, nV, n1] => [1, bsize*nV, n1] == swap-axis ==> [bsize*nV, n1]
W: [n1, n2]
XW: [bsize*nV, 1, n2] == swap-axis => [1, bsize, nV, n2]
"""
_, bsize, nV, n2 = shape
X = tf.reshape(tf.transpose(tf.reshape(X, [1, bsize*nV, -1]), [1,0,2]), [bsize*nV, -1])
XW = tf.reshape(tf.transpose(tf.reshape(tf.nn.relu(bn(tf.matmul(X, theta[0])+theta[1])), [bsize*nV, 1, n2]), [1,0,2]), [1, bsize, nV, n2])
return XW
def model_6LAttention_Small(nV, dim_f, dim_a, dim_e, bsize=32, k=10, nY=2, pk=10):
adj = tf.placeholder(tf.float32, [1,bsize,nV,pk*pk*dim_e])
nnlbl = tf.placeholder(tf.float32, [1,bsize,nV,pk*dim_f])
att = tf.placeholder(tf.float32, [1,bsize,nV,pk*dim_a])
nbr = tf.placeholder(tf.int32, [1,bsize,nV,k]) # |V| x k
label = tf.placeholder(tf.float32, [bsize,nY])
n1, n2, n3, n4, n5, n6, f1, remain_rate = 128, 128, 128, 128, 128, 128, 256, 0.8
cv1_theta = [tf.Variable(xavier_init([pk*(pk*dim_e+dim_f+dim_a), n1])), tf.Variable(tf.zeros(shape=[n1]))]
cv2_theta = [tf.Variable(xavier_init([n1*k, n2])), tf.Variable(tf.zeros(shape=[n2]))]
cv3_theta = [tf.Variable(xavier_init([n2*k, n3])), tf.Variable(tf.zeros(shape=[n3]))]
cv4_theta = [tf.Variable(xavier_init([n3*k, n4])), tf.Variable(tf.zeros(shape=[n4]))]
cv5_theta = [tf.Variable(xavier_init([n4*k, n5])), tf.Variable(tf.zeros(shape=[n5]))]
cv6_theta = [tf.Variable(xavier_init([n5*k, n6])), tf.Variable(tf.zeros(shape=[n6]))]
a_theta = [tf.Variable(xavier_init([n6, 1])), tf.Variable(tf.zeros(shape=[1]))]
fc_theta = [tf.Variable(xavier_init([nV*n6, nY])), tf.Variable(tf.zeros(shape=[nY]))]
params = cv1_theta+cv2_theta+cv3_theta+cv4_theta+cv5_theta+cv6_theta+a_theta+fc_theta
x = tf.concat([adj, nnlbl, att], 3)
# Patchy-San
x = g_conv_bn(x, cv1_theta, [1,bsize,nV,n1])
# Ego-Convolution
x = tf.reshape(aggregate_nbr(nbr,x,k), [1,bsize,nV,k*n1])
x = g_conv_bn(x, cv2_theta, [1,bsize,nV,n2])
x = tf.reshape(aggregate_nbr(nbr, x, k), [1,bsize,nV,k*n2])
x = g_conv_bn(x, cv3_theta, [1,bsize,nV,n3])
x = tf.reshape(aggregate_nbr(nbr, x, k), [1,bsize,nV,k*n3])
x = g_conv_bn(x, cv4_theta, [1,bsize,nV,n4])
x = tf.reshape(aggregate_nbr(nbr,x,k), [1,bsize,nV,k*n4])
x = g_conv_bn(x, cv5_theta, [1,bsize,nV,n5])
x = tf.reshape(aggregate_nbr(nbr,x,k), [1,bsize,nV,k*n5])
x = tf.reshape(g_conv_bn(x, cv6_theta, [1,bsize,nV,n6]), [bsize*nV, n6])
# attention
a = tf.reshape(tf.nn.sigmoid(tf.matmul(x, a_theta[0]) + a_theta[1]), [bsize, nV])
x = tf.multiply(tf.reshape(x, [bsize, nV*n6]), tf.concat([a for i in range(n6)], axis=1))
# fc
out = tf.matmul(x, fc_theta[0]) + fc_theta[1]
return adj, nbr, nnlbl, att, label, out, params
def model_6LAttention(nV, dim_f, dim_a, dim_e, bsize=32, k=10, nY=2, pk=10):
adj = tf.placeholder(tf.float32, [1,bsize,nV,pk*pk*dim_e])
nnlbl = tf.placeholder(tf.float32, [1,bsize,nV,pk*dim_f])
att = tf.placeholder(tf.float32, [1,bsize,nV,pk*dim_a])
nbr = tf.placeholder(tf.int32, [1,bsize,nV,k]) # |V| x k
label = tf.placeholder(tf.float32, [bsize,nY])
n1, n2, n3, n4, n5, n6, f1, remain_rate = 128, 128, 128, 128, 128, 128, 256, 0.8
cv1_theta = [tf.Variable(xavier_init([pk*(pk*dim_e+dim_f+dim_a), n1])), tf.Variable(tf.zeros(shape=[n1]))]
cv2_theta = [tf.Variable(xavier_init([n1*k, n2])), tf.Variable(tf.zeros(shape=[n2]))]
cv3_theta = [tf.Variable(xavier_init([n2*k, n3])), tf.Variable(tf.zeros(shape=[n3]))]
cv4_theta = [tf.Variable(xavier_init([n3*k, n4])), tf.Variable(tf.zeros(shape=[n4]))]
cv5_theta = [tf.Variable(xavier_init([n4*k, n5])), tf.Variable(tf.zeros(shape=[n5]))]
cv6_theta = [tf.Variable(xavier_init([n5*k, n6])), tf.Variable(tf.zeros(shape=[n6]))]
a_theta = [tf.Variable(xavier_init([nV*n6, nV])), tf.Variable(tf.zeros(shape=[nV]))]
fc1_theta = [tf.Variable(xavier_init([nV*n6, f1])), tf.Variable(tf.zeros(shape=[f1]))]
fc2_theta = [tf.Variable(xavier_init([f1, nY])), tf.Variable(tf.zeros(shape=[nY]))]
params = cv1_theta+cv2_theta+cv3_theta+cv4_theta+cv5_theta+cv6_theta+a_theta+fc1_theta+fc2_theta
x = tf.concat([adj, nnlbl, att], 3)
# Patchy-San
x = g_conv_bn(x, cv1_theta, [1,bsize,nV,n1])
# Ego-Convolution
x = tf.reshape(aggregate_nbr(nbr,x,k), [1,bsize,nV,k*n1])
x = g_conv_bn(x, cv2_theta, [1,bsize,nV,n2])
x = tf.reshape(aggregate_nbr(nbr, x, k), [1,bsize,nV,k*n2])
x = g_conv_bn(x, cv3_theta, [1,bsize,nV,n3])
x = tf.reshape(aggregate_nbr(nbr, x, k), [1,bsize,nV,k*n3])
x = g_conv_bn(x, cv4_theta, [1,bsize,nV,n4])
x = tf.reshape(aggregate_nbr(nbr,x,k), [1,bsize,nV,k*n4])
x = g_conv_bn(x, cv5_theta, [1,bsize,nV,n5])
x = tf.reshape(aggregate_nbr(nbr,x,k), [1,bsize,nV,k*n5])
x = tf.reshape(g_conv_bn(x, cv6_theta, [1,bsize,nV,n6]), [bsize, nV*n6])
# attention
a = tf.reshape(tf.nn.sigmoid(tf.matmul(x, a_theta[0]) + a_theta[1]), [bsize, nV])
x = tf.multiply(x, tf.concat([a for i in range(n6)], axis=1))
# fc
x = tf.nn.relu(tf.matmul(x, fc1_theta[0]) + fc1_theta[1])
x = tf.nn.dropout(x, remain_rate)
out = tf.matmul(x, fc2_theta[0]) + fc2_theta[1]
return adj, nbr, nnlbl, att, label, out, params
def model_3LAttention(nV, dim_f, dim_a, dim_e, bsize=32, k=10, nY=2, pk=10):
adj = tf.placeholder(tf.float32, [1,bsize,nV,pk*pk*dim_e])
nnlbl = tf.placeholder(tf.float32, [1,bsize,nV,pk*dim_f])
att = tf.placeholder(tf.float32, [1,bsize,nV,pk*dim_a])
nbr = tf.placeholder(tf.int32, [1,bsize,nV,k]) # |V| x k
label = tf.placeholder(tf.float32, [bsize,nY])
n1, n2, n3, f1, remain_rate = 128, 128, 128, 256, 0.8
cv1_theta = [tf.Variable(xavier_init([pk*(pk*dim_e+dim_f+dim_a), n1])), tf.Variable(tf.zeros(shape=[n1]))]
cv2_theta = [tf.Variable(xavier_init([n1*k, n2])), tf.Variable(tf.zeros(shape=[n2]))]
cv3_theta = [tf.Variable(xavier_init([n2*k, n3])), tf.Variable(tf.zeros(shape=[n3]))]
a_theta = [tf.Variable(xavier_init([nV*n3, nV])), tf.Variable(tf.zeros(shape=[nV]))]
fc1_theta = [tf.Variable(xavier_init([nV*n3, f1])), tf.Variable(tf.zeros(shape=[f1]))]
fc2_theta = [tf.Variable(xavier_init([f1, nY])), tf.Variable(tf.zeros(shape=[nY]))]
params = cv1_theta+cv2_theta+cv3_theta+a_theta+fc1_theta+fc2_theta
x = tf.concat([adj, nnlbl, att], 3)
# Patchy-San
x = g_conv_bn(x, cv1_theta, [1,bsize,nV,n1])
# Ego-Convolution
x = tf.reshape(aggregate_nbr(nbr,x,k), [1,bsize,nV,k*n1])
x = g_conv_bn(x, cv2_theta, [1,bsize,nV,n2])
x = tf.reshape(aggregate_nbr(nbr, x, k), [1,bsize,nV,k*n2])
x = tf.reshape(g_conv_bn(x, cv3_theta, [1,bsize,nV,n3]), [bsize, nV*n3])
# attention
a = tf.reshape(tf.nn.sigmoid(tf.matmul(x, a_theta[0]) + a_theta[1]), [bsize, nV])
x = tf.multiply(x, tf.concat([a for i in range(n3)], axis=1))
# fc
x = tf.nn.relu(tf.matmul(x, fc1_theta[0]) + fc1_theta[1])
x = tf.nn.dropout(x, remain_rate)
out = tf.matmul(x, fc2_theta[0]) + fc2_theta[1]
return adj, nbr, nnlbl, att, label, out, params
def cv(name, lr=1e-3, bsize=32, max_epch=1000, patience=10, k=3, pk=10, gpu_frac=0.99, loop=5, FOLD=10, model_type='3L'):
# load data
nbrs = cPickle.load(open('{}/{}/{}-{}.pkl'.format(DATASET_DIR, PROC_DIR, name, k), 'rb'))
adjs = cPickle.load(open('{0}/{1}/{2}-{3}x{3}.pkl'.format(DATASET_DIR, PROC_DIR, name, pk), 'rb'))
nnlbls = cPickle.load(open('{}/{}/{}-{}-nnlabel.pkl'.format(DATASET_DIR, PROC_DIR, name, pk), 'rb'))
atts = cPickle.load(open('{}/{}/{}-{}-att.pkl'.format(DATASET_DIR, PROC_DIR, name, pk), 'rb'))
nlabels = cPickle.load(open('{}/{}/{}-nlabels.pkl'.format(DATASET_DIR, PROC_DIR, name), 'rb'))
elabels = cPickle.load(open('{}/{}/{}-elabels.pkl'.format(DATASET_DIR, PROC_DIR, name), 'rb'))
labels = cPickle.load(open('{}/{}/{}-label.pkl'.format(DATASET_DIR, PROC_DIR, name), 'rb'))
Y_map = {c:i for i,c in enumerate(sorted(list(set(labels))))}
N_map = {c:i for i,c in enumerate(sorted(list(set(nlabels))))}
E_map = {c:i for i,c in enumerate(sorted(list(set(elabels))))}
print(E_map)
N, dim_f, dim_a, dim_e = len(labels), len(N_map), atts[0][0].shape[1] if atts[0][0] is not None else 0, len(E_map)
dim_f = 0 if dim_f == 1 else dim_f
dim_f = 0 if 'Compound' in name else dim_f
nV = max([len(nbr) for nbr in nbrs])
print('max #node={}, #nlabel={}, #elabel={}, #class={}'.format(nV, dim_f, dim_e, len(Y_map)))
nY = len(set(labels))
# define model
st = time.time()
# adjust batch size
bsize = min(bsize, int((N+FOLD-1)/FOLD)-1)
egonet = model_6LAttention if name != 'REDDIT-BINARY' else model_6LAttention_Small
egonet = egonet if model_type == '6L' else model_3LAttention
nL = 3 if model_type == '3L' else 6
X_adj, X_nbr, X_nn, X_att, Y_gt, Y_logit, params = egonet(nV+1, dim_f, dim_a, dim_e, bsize=bsize, nY=nY, k=k, pk=pk)
print('[compile] takes {:.2f}s'.format(time.time()-st))
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Y_logit, labels=Y_gt))
pred_fn = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(Y_gt, 1), tf.argmax(tf.sigmoid(Y_logit), 1)), tf.float32))
opt = tf.train.AdamOptimizer(learning_rate=lr, beta1=0.5)
solver = opt.minimize(loss, var_list=params)
# define weight assign op
var_placeholders = var_placeholders = [tf.placeholder(tf.float32, shape=p.shape) for p in params]
trained_params = cPickle.load(open('{}-k{}-{}_cv_hist.pkl'.format(name, k, model_type), 'rb'))['params']
assign_op = [v.assign(p) for (v, p) in zip(params, var_placeholders)]
# init session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction=gpu_frac
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
params_val = sess.run(params)
# 10-fold CV
order = np.random.permutation(N)
cv_size = int((N+FOLD-1)/FOLD)
cv_acc, cv_vacc = [], []
h_accs, h_vaccs = [], []
bparams, times = [], []
test_accs, best_test = [], 0
dump = {}
for cv_i in range(FOLD):
acc_th, bvacc, bparam = 0.99, 0, None
for re in range(loop):
st = time.time()
# init weight
sess.run([assign_op], feed_dict={v:p for v,p in zip(var_placeholders, trained_params[:nL*2] + [xavier_init_val(p.shape) for p in params_val[nL*2:]])})
# train:test=9:1
test_cur = order[cv_i*cv_size:(cv_i+1)*cv_size]
train_all = [x for x in range(N) if x not in test_cur]
# train:val=9:1
torder = np.random.permutation(train_all)
tv_split = int(len(train_all)*0.9)
train_cur, val_cur = torder[:tv_split], torder[tv_split:]
train_nbrs, train_adjs, train_A, train_N, train_Y = [], [], [], [], []
for x in train_cur:
train_Y.append(labels[x])
train_N.append(nnlbls[x])
train_A.append(atts[x])
train_nbrs.append([nbrs[x]])
train_adjs.append([adjs[x]])
val_nbrs, val_adjs, val_A, val_N, val_Y = [], [], [], [], []
for x in val_cur:
val_Y.append(labels[x])
val_N.append(nnlbls[x])
val_A.append(atts[x])
val_nbrs.append([nbrs[x]])
val_adjs.append([adjs[x]])
print((len(train_Y), len(val_Y), len(test_cur)))
train_nbrs, train_adjs, train_N, train_A, train_Y = np.array(train_nbrs), np.array(train_adjs), np.array(train_N), np.array(train_A), np.array(train_Y)
val_nbrs, val_adjs, val_N, val_A, val_Y = np.array(val_nbrs), np.array(val_adjs), np.array(val_N), np.array(val_A), np.array(val_Y)
train_gen = batch_generator(train_adjs, train_nbrs, train_N, train_A, train_Y, N_map, E_map, Y_map, V_num=nV, bsize=bsize, dim_f=dim_f, dim_a=dim_a, dim_e=dim_e, nY=nY, k=k, pk=pk)
print('[{}-th CV]'.format(cv_i))
# training
it, epch, c, best, lparam = 0, 0, 0, 0, None
eaccs, evaccs, taccs, tvaccs = [], [], [], []
while True:
X_mb = next(train_gen)
_, acc = sess.run([solver, pred_fn], feed_dict={X_adj:X_mb[0], X_nbr:X_mb[1], X_nn:X_mb[2], X_att:X_mb[3], Y_gt:X_mb[4]})
if X_mb[5] == epch:
taccs.append(acc)
del X_mb
else:
epch = X_mb[5]
val_gen = batch_generator(val_adjs, val_nbrs, val_N, val_A, val_Y, N_map, E_map, Y_map, V_num=nV, bsize=bsize, dim_f=dim_f, dim_a=dim_a, dim_e=dim_e, nY=nY, k=k, pk=pk)
while True:
X_val = next(val_gen)
val_acc = sess.run([pred_fn], feed_dict={X_adj:X_val[0], X_nbr:X_val[1], X_nn:X_val[2], X_att:X_mb[3], Y_gt:X_val[4]})[0]
tvaccs.append(val_acc)
if X_val[5] > 0:
break
del X_val
macc, mvacc = np.mean(taccs), np.mean(tvaccs)
print('{}th epoch: acc={:.3f} | val_acc={:.3f}'.format(epch, macc, mvacc))
eaccs.append(macc)
evaccs.append(mvacc)
taccs, tvaccs = [], []
if best > mvacc:
c += 1
else:
best, c, lparam = mvacc, 0, sess.run(params)
if c > patience or epch > max_epch or (1.0-mvacc)<1e-5:
break
it += 1
mi = np.argmax(evaccs)
v = evaccs[mi]
if v > bvacc:
bacc, bvacc, baccs, bvaccs, border = eaccs[mi], v, eaccs, evaccs, order
bparam = lparam
ti = time.time()-st
print('take time = {:.3f}s'.format(ti))
# test acc
sess.run([assign_op], feed_dict={v:p for v,p in zip(var_placeholders, bparam)})
tnbrs, tadjs, tN, tA, tY = [], [], [], [], []
for x in test_cur:
tN.append(nnlbls[x])
tA.append(atts[x])
tnbrs.append([nbrs[x]])
tadjs.append([adjs[x]])
tY.append(labels[x])
tnbrs, tadjs, tN, tA, tY = np.array(tnbrs), np.array(tadjs), np.array(tN), np.array(tA), np.array(tY)
tgen = batch_generator(tadjs, tnbrs, tN, tA, tY, N_map, E_map, Y_map, V_num=nV, bsize=min(bsize, len(tY)-1), dim_f=dim_f, dim_a=dim_a, dim_e=dim_e, nY=nY, k=k, pk=pk)
taccs = []
while True:
tX = next(tgen)
tacc = sess.run([pred_fn], feed_dict={X_adj:tX[0], X_nbr:tX[1], X_nn:tX[2], X_att:tX[3], Y_gt:tX[4]})[0]
taccs.append(tacc)
if tX[5] > 0:
break
tacc = np.mean(taccs)
print('[{}th CV] test_acc={:.3f} | val_acc={:.3f}'.format(cv_i, tacc, bvacc))
test_accs.append(tacc)
ti = time.time()-st
times.append(ti)
cv_acc.append(bacc)
cv_vacc.append(bvacc)
h_accs.append(baccs)
h_vaccs.append(bvaccs)
if best_test < tacc:
bparams = bparam
dump['cv_acc'] = cv_acc
dump['cv_vacc'] = cv_vacc
dump['accs'] = h_accs
dump['vaccs'] = h_vaccs
dump['split'] = order
dump['time'] = times
dump['params'] = bparams
dump['test_acc'] = test_accs
cPickle.dump(dump, open('{}-k{}-V_cv_hist.pkl'.format(name, k), 'wb'))
cPickle.dump(dump, open('{}-k{}-V_cv_hist.pkl'.format(name, k), 'wb'))
sess.close()
print('[CV] val_acc={:.3f}, test_acc={:.3f}, time={:.3f}s'.format(np.mean(cv_vacc), np.mean(test_accs), np.mean(times)))
return dump
# parse argument
opt = parse_arg()
os.environ["CUDA_VISIBLE_DEVICES"]='{}'.format(opt.gpu_id)
cv(opt.dataset, lr=float(opt.lr), patience=10, k=int(opt.K), pk=int(opt.PK), bsize=int(opt.bsize), gpu_frac=float(opt.gpu_frac), loop=int(opt.loop), FOLD=int(opt.FOLD), model_type=opt.model_type)