-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfull_train.yaml
73 lines (70 loc) · 1.92 KB
/
full_train.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
defaults:
- agent: ddpg
- _self_ # this yaml file is overriding configs from the Defaults List (eg. {agent}.yaml)
- resources: null
# mode
reward_free: false
# task settings
domain: walker # primal task will be infered in runtime
obs_type: states # [states, pixels]
frame_stack: 3 # only works if obs_type=pixels
action_repeat: 1 # set to 2 for pixels
discount: 0.99
# train settings
#num_train_frames: 2000010
num_train_frames: 2000000
num_seed_frames: 4000
# eval
eval_every_frames: 10000
num_eval_episodes: 10
# snapshot
save_snapshot_after_each_task: false
snapshot_dir: ./${mode}/models/${obs_type}/${domain}/${agent.name}/${seed}
snapshot_base_dir: ./full_train/models/ # for testing loading from saved models only
# replay buffer
reset_buffer_every_task: false
replay_buffer_size: 1000000
replay_buffer_num_workers: 2
batch_size: ${agent.batch_size}
nstep: ${agent.nstep}
update_encoder: true # should always be true for pre-training
# misc
seed: 1
#device: cuda
device: cpu
save_eval_video: true
save_train_video: false
use_tb: false
use_wandb: false
# experiment
experiment: exp
num_exposures: 2
log_freq: 10 # log every n episodes
#log_freq: 10000 # log every n steps
terminate_after_first_task: false
same_reward_for_all_tasks: false
diff_dynamics_for_all_tasks: false
diff_run_speed_for_all_tasks: false
diff_domains_same_reward: false
walk_run_tasks: false
stand_run_tasks: false
run_jump_tasks: false
single_task_run_fast: false
single_task_run_backward: false
env_type: dm_control
wandb_dir: ./wandb
mode: full_train
hydra:
run:
dir: ./exp_local/${now:%Y.%m.%d}/${now:%H%M%S}_${agent.name}
sweep:
dir: ./exp_sweep/${now:%Y.%m.%d}/${now:%H%M}_${agent.name}_${experiment}
subdir: ${hydra.job.num}
launcher:
timeout_min: 4300
cpus_per_task: 10
gpus_per_node: 1
tasks_per_node: 1
mem_gb: 160
nodes: 1
submitit_folder: ./exp_sweep/${now:%Y.%m.%d}/${now:%H%M}_${agent.name}_${experiment}/.slurm