-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcubic.py
312 lines (240 loc) · 11.3 KB
/
cubic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import logging
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle, Circle, PathPatch
import mpl_toolkits.mplot3d.art3d as art3d
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from itertools import product, combinations, combinations
from random import uniform, randint
from scipy.integrate import dblquad
from scipy.spatial import ConvexHull, Delaunay
class Cuboid(object):
def __init__(self, o, length_=1, width_=1, height_=1):
self.dimension = 3 # TODO n
self.origin = o
self.length = length_
self.width = width_
self.height = height_
def print_cuboid(self):
print (' origin = ', self.origin, '\n')
print (' length = ', self.length, '\n' )
print (' width = ', self.width , '\n')
print (' height = ', self.height, '\n')
def draw(self, ax, o, color = 'b', alph = 0.1, centers=False):
# Draw the cube based on a point (x, y, z), height, length and width.
x, y, z_ = o[0], o[1], o[2]
if centers:
ax.plot([x], [y], [z_], 'ro')
ax.plot([x+self.length/2], [y+self.width/2], [z_+self.height/2], 'ro')
ax.plot([x+self.length/2,x+self.length/2], [y+self.width/2,y+self.width/2], [z_, self.height], 'r-')
if False:
ax.plot([x, x], [y,y], [0,1], 'k-')
ax.plot([x, x], [y+self.height,y+self.height], [0, self.height], 'm-')
ax.plot([x + self.length,x+self.length], [y,y], [0, self.height], 'r-')
ax.plot([x + self.length, x+self.length], [y+self.height, y+self.height], [0, self.height], 'g-')
height_, length_ = self.height, self.width
side = Rectangle((y, z_), length_, height_, facecolor=color, alpha=alph)
ax.add_patch(side)
art3d.pathpatch_2d_to_3d(side, z=x, zdir='x')
height_, length_ = self.height, self.length
side = Rectangle((x, z_), length_, height_, facecolor=color, alpha=alph)
ax.add_patch(side)
art3d.pathpatch_2d_to_3d(side, z=y, zdir='y')
height_, length_ = self.width, self.length
side = Rectangle((x, y), length_, height_, facecolor=color, alpha=alph)
ax.add_patch(side)
art3d.pathpatch_2d_to_3d(side, z=z_, zdir='z')
height_, length_ = self.height, self.width
side = Rectangle((y, z_), length_, height_, facecolor=color, alpha=alph)
ax.add_patch(side)
art3d.pathpatch_2d_to_3d(side, z=x+self.length, zdir='x')
height_, length_ = self.height, self.length
side = Rectangle((x, z_), length_, height_, facecolor=color, alpha=alph)
ax.add_patch(side)
art3d.pathpatch_2d_to_3d(side, z=self.width+y, zdir='y')
height_, length_ = self.width, self.length
side = Rectangle((x, y), length_, height_, facecolor=color, alpha=alph)
ax.add_patch(side)
art3d.pathpatch_2d_to_3d(side, z=z_+self.height, zdir='z')
#======================================================================================================================================================================================
# The function
def f(x, y, rho_x, rho_y, mu_x, mu_y, zeta_x, zeta_y, beta, delta_x, delta_y, gamma):
exponent = delta_x - np.power((zeta_x*x - mu_x), rho_x) + delta_y - np.power((zeta_y*y - mu_y), rho_y)
return gamma + beta * np.exp(exponent)
#======================================================================================================================================================================================
# Fitting the function to the cube
def funcuboid(cuboid, rho, ax, plot=False, view_squares=False, find_volume=False, function_alpha=0.1):
# init
ox, oy, oz = [cuboid.origin[_] for _ in range(cuboid.dimension)]
length, width, height = cuboid.length, cuboid.width, cuboid.height
o = [ox, oy, oz]
# filling
delta_x, delta_y = 0, 0 # unused
delta = [delta_x, delta_y]
beta = height
gamma = oz # to be initialized to the coords of the rectangle base (z)
zeta_x = 2. / ((rho/(rho-1))*length)
zeta_y = 2. / ((rho/(rho-1))*width)
zeta = [zeta_x, zeta_y]
# cube center
cx = ox + length/2
cy = oy + width/2
mu_x = cx * zeta_x
mu_y = cy * zeta_y
mu = [mu_x, mu_y]
if False:
ax.plot([1, 1], [-2, -2], [0,1], 'ro-')
theta_x = (1/zeta_x) * np.power( (rho-1)/rho, 1/rho ) # Lx/2
theta_y = (1/zeta_y) * np.power( (rho-1)/rho, 1/rho ) # Ly/2
x_3 = mu_x/zeta_x - theta_x
x_1 = mu_x/zeta_x + theta_x
x_4 = mu_y/zeta_y - theta_y
x_2 = mu_y/zeta_y + theta_y
corners = [[x_3, x_1], [x_4, x_2]]
if plot and view_squares:
ax.plot([x_1, x_1], [x_2, x_2], [0,beta], 'b-')
ax.plot([x_1, x_1], [x_4, x_4], [0,beta], 'b-')
ax.plot([x_3, x_3], [x_4, x_4], [0,beta], 'b-')
ax.plot([x_3, x_3], [x_2, x_2], [0,beta], 'b-')
ax.plot([x_1, x_1, x_3, x_3, x_1 ], [x_2, x_4, x_4, x_2, x_2], [0,0,0,0,0], 'b+-')
ax.plot([x_1, x_1, x_3, x_3, x_1 ], [x_2, x_4, x_4, x_2, x_2], [beta, beta, beta, beta, beta], 'b+-')
ax.plot([x_1], [x_2], 'm^', label='2_x') # A
ax.plot([x_1], [x_4], 'b^') # B
ax.plot([x_3], [x_4], 'b^') # C
ax.plot([x_3], [x_2], 'b^', label='1_x') # D
if plot:
# central axis of the function curve
ax.plot([mu_x/zeta_x, mu_x/zeta_x], [mu_y/zeta_y, mu_y/zeta_y], [0, beta], 'r-', label='$\mu/\zeta$')
# start point of cube
ax.plot([ox], [oy], [0], 'r^', label='$r_x, r_y$')
# start point of function curve
ax.plot([x_3], [x_4], [0], 'ro', label='$s$')
return o, beta, delta, gamma, zeta, mu, corners
#======================================================================================================================================================================================
def plot_function(ax, rho, mu, zeta, beta, delta, gamma, minmax, function_alpha, linewidth_):
min_x, max_x, step = minmax[0], minmax[1], minmax[2]
x = y = np.arange(min_x, max_x, step)
X, Y = np.meshgrid(x, y)
zs = np.array([f(x, y, rho, rho, mu[0], mu[1], zeta[0], zeta[1], beta, delta[0], delta[1], gamma) for x,y in zip(np.ravel(X), np.ravel(Y))])
Z = zs.reshape(X.shape)
ax.plot_surface(X, Y, Z, alpha=function_alpha, linewidth=linewidth_, edgecolors='b')
#======================================================================================================================================================================================
def paramprint(o, beta, delta, rho, gamma, zeta, mu, corners):
print ('\n o = ', o)
print ('\n beta = ', beta)
print ('\n delta =', delta)
print ('\n rho =', rho)
print ('\n gamma = ', gamma)
print ('\n zeta = ', zeta)
print ('\n mu = ', mu)
print ('\n corners = ', corners)
print ('\n________________________________________\n')
#======================================================================================================================================================================================
def main(rho, function_alpha, cube_alpha, view_cube, view_squares, find_volume, folder='figures/'):
fig = plt.figure(figsize = (14, 12))
ax = fig.gca(projection='3d')
ax.set_aspect("auto")
ax.set_autoscale_on(True)
_lim = 10.
logger = logging.getLogger('myapp')
hdlr = logging.FileHandler('./results1.csv')
formatter = logging.Formatter('%(message)s')
hdlr.setFormatter(formatter)
logger.addHandler(hdlr)
logger.setLevel(logging.WARNING)
logger.error('PointsInHull, PointsInConcavity, VInteg, VCube')
# draw the cube(s)
nb_cubes = 1
for cube in range(nb_cubes):
print (' ############')
print (' Cube #', cube)
print (' ############')
ox, oy, oz = uniform(-10, 10), uniform(-10, 10), 0
o = (ox, oy, oz)
length, width, height = uniform(1, 4), uniform(1, 6), uniform(1, 3)
C = Cuboid(o, length_=length, width_=width, height_=height)
C.draw(ax, o, color = 'r', alph = 0.1, centers=False)
o, beta, delta, gamma, zeta, mu, corners = funcuboid(C, rho, ax, plot=True, view_squares=False, find_volume=False, function_alpha=0.01)
paramprint(o, beta, delta, rho, gamma, zeta, mu, corners)
plot_function(ax, rho, mu, zeta, beta, delta, gamma, [-_lim, _lim, .1], function_alpha=0.15, linewidth_=0.1)
# volume part
'''
Checking if randommly generated points fall in both spaces.
Assumptions of concavity of the constraints, which allows us to check for appartenance.
using a function form for the constraints has the advantage of simplyfing the computation of the utility of a contract,
by returing its weights (embed it in the function f, i.e. using the beta? gamma? to represent the w_k, weight of constraint c_k).
the sutility will be the sum over the functions (constraints.)
'''
#{{
x_3, x_1 = corners[0]
x_4, x_2 = corners[1]
height = beta
mu_x, mu_y = mu
zeta_x, zeta_y = zeta
delta_x, delta_y = delta
n_points = randint(20, 100)
uniform_points = False
points = [[0,0,0]] * n_points
for i in range(n_points):
if uniform_points: # 1. Uniform, points anywhere
points[i] = [uniform(min_x, max_x), uniform(min_x, max_x), uniform(0, zl)]
else: # 2. In the cube
points[i] = [uniform(x_3, x_1), uniform(x_4, x_2), uniform(0, height)]
# the contract point
ax.scatter([points[i][0]], [points[i][1]], [points[i][2]], marker='o', c='c', s=1)
points = np.array(points)
# Construct the convex hull of the cube
hull = ConvexHull(points)
def in_hull(P, H):
# Test if points in P are in H. P should be a n*k coordinates of n points in k dimension
# H is either a scipy.spatial.Delaunay object or the m*k array of the coordinates of m points in k-dimension for which a Delaunay triangulation will be computed
if not isinstance(H, Delaunay):
H = Delaunay(H)
return H.find_simplex(P)>=0
delaunay = Delaunay(points)
n_points_in_cubes_hull = 0
n_points_in_fs_concavity = 0
for i in range(n_points):
# check if p[i] is in the cube's hull
if in_hull(points[i], delaunay):
n_points_in_cubes_hull += 1
# check if p[i] is in the function concavity
f_of_p = f(points[i][0], points[i][1], rho, rho, mu_x, mu_y, zeta_x, zeta_y, beta, delta_x, delta_y, gamma)
if f_of_p > 0:
n_points_in_fs_concavity += 1
print ('\nPoints in cube hull : ', n_points_in_cubes_hull, '/', n_points)
print (' concavity : ', n_points_in_fs_concavity, '/', n_points)
#}}
print ('\nComparing Volumes:')
def integrand(y, x):
'y must be the first argument, and x the second.'
return f(x, y, rho, rho, mu_x, mu_y, zeta_x, zeta_y, beta, delta_x, delta_y, gamma)
vinteg, err = dblquad(integrand, # http://kitchingroup.cheme.cmu.edu/blog/2013/02/02/Integrating-functions-in-python/
x_3, x_1,
lambda x: x_4, lambda x: x_2)
print ('\t V_integ = ', vinteg)
vcube = height * length * width
print ('\t V_cube = ', vcube)
# PointsInHull, PointsInConcavity, VInteg, VCube
logger.error('%f, %f, %f, %f' % ( n_points_in_cubes_hull, n_points_in_fs_concavity, vinteg, vcube ))
# TODO compute the contracts utlity using the cube (utility = beta if x in cube) and using f and show the equivalence.
ax.set_xlabel('x (length)')
ax.set_ylabel('y (width)')
ax.set_zlabel('z=f(x,y), height')
plt.xticks(np.arange(-_lim, _lim, 2))
plt.yticks(np.arange(-_lim, _lim, 2))
#zl = gamma + beta * 2.
#ax.set_zlim([0., zl])
ax.set_zlim([0., 3.1])
plt.legend(fontsize=16)
plt.title(r'$f(x, y; \rho, \beta, \gamma, \mu, \zeta)= \gamma+\beta e^{-(\zeta_1 x-\mu_1)^\rho-(\zeta_2 y-\mu_2)^\rho}$', fontsize=26)
plt.savefig(folder + 'Cube.pdf', format='pdf', dpi=1000)
if __name__ == '__main__':
main(5000,
function_alpha = .24,
cube_alpha = .04,
view_cube = True,
view_squares = False,
find_volume = False)