From 1436cac9de8b450a32e71d5b779503e9a29edaa6 Mon Sep 17 00:00:00 2001 From: Matthew Roeschke <10647082+mroeschke@users.noreply.github.com> Date: Thu, 10 Oct 2024 14:26:44 -1000 Subject: [PATCH] Remove unneeded pylibcudf.libcudf.wrappers.duration usage in cudf (#17010) Contributes to https://github.com/rapidsai/cudf/issues/15162 ~I just assumed since the associated libcudf files just publicly expose C types, we just want to match the name spacing when importing from pylibcudf (avoid importing from `pylibcudf.libcudf`) and not necessary expose a Python equivalent?~ ~Let me know if I am misunderstanding how to expose these types.~ https://github.com/rapidsai/cudf/pull/17010#issuecomment-2403658378 Authors: - Matthew Roeschke (https://github.com/mroeschke) Approvers: - Matthew Murray (https://github.com/Matt711) URL: https://github.com/rapidsai/cudf/pull/17010 --- python/cudf/cudf/_lib/scalar.pyx | 96 +------------------------------- 1 file changed, 1 insertion(+), 95 deletions(-) diff --git a/python/cudf/cudf/_lib/scalar.pyx b/python/cudf/cudf/_lib/scalar.pyx index 0dde91316fb..56712402919 100644 --- a/python/cudf/cudf/_lib/scalar.pyx +++ b/python/cudf/cudf/_lib/scalar.pyx @@ -6,7 +6,6 @@ import numpy as np import pandas as pd import pyarrow as pa -from libc.stdint cimport int64_t from libcpp cimport bool from libcpp.memory cimport unique_ptr from libcpp.utility cimport move @@ -25,25 +24,7 @@ cimport pylibcudf.libcudf.types as libcudf_types # DeviceScalar is phased out entirely from cuDF Cython (at which point # cudf.Scalar will be directly backed by pylibcudf.Scalar). from pylibcudf cimport Scalar as plc_Scalar -from pylibcudf.libcudf.scalar.scalar cimport ( - duration_scalar, - list_scalar, - scalar, - struct_scalar, - timestamp_scalar, -) -from pylibcudf.libcudf.wrappers.durations cimport ( - duration_ms, - duration_ns, - duration_s, - duration_us, -) -from pylibcudf.libcudf.wrappers.timestamps cimport ( - timestamp_ms, - timestamp_ns, - timestamp_s, - timestamp_us, -) +from pylibcudf.libcudf.scalar.scalar cimport list_scalar, scalar, struct_scalar from cudf._lib.types cimport dtype_from_column_view, underlying_type_t_type_id @@ -284,62 +265,6 @@ cdef class DeviceScalar: ] -# TODO: Currently the only uses of this function and the one below are in -# _create_proxy_nat_scalar. See if that code path can be simplified to excise -# or at least simplify these implementations. -cdef _set_datetime64_from_np_scalar(unique_ptr[scalar]& s, - object value, - object dtype, - bool valid=True): - - value = value if valid else 0 - - if dtype == "datetime64[s]": - s.reset( - new timestamp_scalar[timestamp_s](np.int64(value), valid) - ) - elif dtype == "datetime64[ms]": - s.reset( - new timestamp_scalar[timestamp_ms](np.int64(value), valid) - ) - elif dtype == "datetime64[us]": - s.reset( - new timestamp_scalar[timestamp_us](np.int64(value), valid) - ) - elif dtype == "datetime64[ns]": - s.reset( - new timestamp_scalar[timestamp_ns](np.int64(value), valid) - ) - else: - raise ValueError(f"dtype not supported: {dtype}") - -cdef _set_timedelta64_from_np_scalar(unique_ptr[scalar]& s, - object value, - object dtype, - bool valid=True): - - value = value if valid else 0 - - if dtype == "timedelta64[s]": - s.reset( - new duration_scalar[duration_s](np.int64(value), valid) - ) - elif dtype == "timedelta64[ms]": - s.reset( - new duration_scalar[duration_ms](np.int64(value), valid) - ) - elif dtype == "timedelta64[us]": - s.reset( - new duration_scalar[duration_us](np.int64(value), valid) - ) - elif dtype == "timedelta64[ns]": - s.reset( - new duration_scalar[duration_ns](np.int64(value), valid) - ) - else: - raise ValueError(f"dtype not supported: {dtype}") - - def as_device_scalar(val, dtype=None): if isinstance(val, (cudf.Scalar, DeviceScalar)): if dtype == val.dtype or dtype is None: @@ -361,22 +286,3 @@ def _is_null_host_scalar(slr): return True else: return False - - -def _create_proxy_nat_scalar(dtype): - cdef DeviceScalar result = DeviceScalar.__new__(DeviceScalar) - - dtype = cudf.dtype(dtype) - if dtype.char in 'mM': - nat = dtype.type('NaT').astype(dtype) - if dtype.type == np.datetime64: - _set_datetime64_from_np_scalar( - ( result.c_value).c_obj, nat, dtype, True - ) - elif dtype.type == np.timedelta64: - _set_timedelta64_from_np_scalar( - ( result.c_value).c_obj, nat, dtype, True - ) - return result - else: - raise TypeError('NAT only valid for datetime and timedelta')