-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
431 lines (348 loc) · 14.8 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from gaianet_rag_api_pipeline.config import ENV_FILE_PATH, get_settings, logger, Settings
from gaianet_rag_api_pipeline.utils import docker_replace_local_service_url, ping_service
import click
from codetiming import Timer
import dotenv
import logging
import os
import pathlib
import re
import shutil
def is_pipeline_setup() -> bool:
"""
Check if the pipeline environment file is set up.
This function verifies the existence of the environment file needed to run the pipeline.
If the file is not found, an error message is printed to the console indicating that the setup
needs to be completed before proceeding.
Returns:
bool: True if the environment file exists, False otherwise.
Side Effects:
Prints an error message to the console if the environment file is missing.
"""
env_file = pathlib.Path(ENV_FILE_PATH)
file_exists = env_file.exists()
if not file_exists:
click.echo(
click.style(
f"ERROR: {ENV_FILE_PATH} file not found. {click.style('rag-api-pipeline setup', fg='yellow')} {click.style('should be run first.', fg='red')}",
fg="red"
),
err=True
)
return file_exists
def check_services(settings: Settings) -> bool:
"""
Check the availability of required services (LLM Provider and QdrantDB).
This function verifies the status of the specified LLM provider and QdrantDB services.
It attempts to connect to each service endpoint and confirms if they are responsive.
The function prints the service status to the console and provides feedback if any service is down.
Args:
settings (Settings): The settings object containing configuration for services,
including URLs and provider details.
Returns:
bool: True if all required services are up and running; False if any service is down.
Side Effects:
- Prints status updates to the console for each service checked.
- If a service is down, prints error messages indicating which service is unavailable.
"""
click.echo(click.style("Checking services status...", fg="yellow"))
# LLM Provider
service_url = docker_replace_local_service_url(settings.llm_api_base_url, "host.docker.internal")
service_url = service_url if re.search("(v1)|(v1/)$", service_url) else f"{service_url}/v1"
service_url += "/models"
llm_provider_up = ping_service(service_url, settings.llm_provider)
if not llm_provider_up:
click.echo(click.style(f"ERROR: LLM Provider {settings.llm_provider} ({service_url}) is down.", fg="red"), err=True)
# QdrantDB
service_url = docker_replace_local_service_url(settings.qdrantdb_url, "qdrant")
qdrantdb_up = ping_service(service_url, "QdrantDB")
if not qdrantdb_up:
click.echo(click.style(f"ERROR: QdrantDB ({service_url}) is down.", fg="red"), err=True)
# Check all services status
services_ok = llm_provider_up and qdrantdb_up
if services_ok:
click.echo(click.style("Required services are up and running!", fg="green"))
return services_ok
@click.group()
@click.option('--debug', is_flag=True, help="enable logging debug level")
@click.pass_context
def cli(ctx, debug):
"""
Execute RAG API pipeline tasks.
"""
click.echo(f"Debug mode is {'on' if debug else 'off'}")
# ensure that ctx.obj exists and is a dict (in case `cli()` is called
# by means other than the `if` block below)
ctx.ensure_object(dict)
ctx.obj['DEBUG'] = debug
logger.setLevel(level=logging.INFO if not debug else logging.DEBUG)
if debug:
os.environ["AIRBYTE_STRUCTURED_LOGGING"] = "true"
@cli.command()
@click.pass_context
@click.argument("api-manifest-file", type=click.Path(exists=True))
@click.argument("openapi-spec-file", type=click.Path(exists=True))
@click.option("--api-key", default=lambda: os.environ.get("API_KEY", ""), help="API Auth key", type=click.STRING, prompt=True, prompt_required=False)
@click.option("--source-manifest-file", default="", help="Source YAML manifest", type=click.Path()) # TODO: fix validation when empty
@click.option("--full-refresh", is_flag=True, help="Clean up cache and extract API data from scratch")
@click.option("--normalized-only", is_flag=True, help="Run pipeline until the normalized data stage")
@click.option("--chunked-only", is_flag=True, help="Run pipeline until the chunked data stage")
@Timer(name="rag-api-pipeline", text="run-all pipeline executed after: {:.2f} seconds", logger=logger.info)
def all(
ctx,
api_manifest_file: str,
openapi_spec_file: str,
api_key: str,
source_manifest_file: str,
full_refresh: bool,
normalized_only: bool,
chunked_only: bool
):
"""
Run the complete RAG API Pipeline.
API_MANIFEST_FILE Path to the API manifest YAML file that defines pipeline config settings and API endpoints.
OPENAPI_SPEC_FILE Path to the OpenAPI YAML specification file.
\f
Executes the entire pipeline from extraction to embedding based on the provided configurations and options.
Args:
ctx (click.Context): The context object for the CLI.
api_manifest_file (str): Path to the API manifest YAML file that defines pipeline config settings and API endpoints.
api_key (str): API authentication key.
openapi_spec_file (str): Path to the OpenAPI YAML specification file.
source_manifest_file (str): Path to the source YAML manifest file. If empty, the API manifest file is used to load data.
full_refresh (bool): If set, clears the cache and extracts API data from scratch.
normalized_only (bool): If set, runs the pipeline up to the normalization stage only.
chunked_only (bool): If set, runs the pipeline up to the chunking stage only.
Raises:
Exception: If both `--normalized-only` and `--chunked-only` options are specified.
"""
if normalized_only and chunked_only:
raise Exception("Cannot specify both --normalized-only and --chunked-only options")
logger.info(f"context - {ctx.obj}")
if not is_pipeline_setup():
return
args = dict(
openapi_spec_file=openapi_spec_file, # NOTICE: CLI param
source_manifest_file=source_manifest_file # NOTICE: CLI param
)
if api_key:
args['api_key'] = api_key # NOTICE: CLI param over env var
settings = get_settings(**args)
logger.info(f"Config settings - {settings.model_dump()}")
logger.debug(f"Full refresh? - {full_refresh}")
logger.debug(f"source manifest - {source_manifest_file}")
if not settings.api_key:
raise Exception("API_KEY not found")
if not check_services(settings):
return
from gaianet_rag_api_pipeline.loader import api_loader, api_read
if not source_manifest_file:
(
(api_name, api_parameters),
(source_manifest, endpoints),
chunking_params
) = api_loader(
manifest_file=pathlib.Path(api_manifest_file),
openapi_spec_file=pathlib.Path(settings.openapi_spec_file),
output_folder=settings.output_folder,
)
else:
logger.info(f"Reading api spec form source manifest {source_manifest_file}")
(
(api_name, api_parameters),
(source_manifest, endpoints),
chunking_params
) = api_read(
source_manifest_file=source_manifest_file,
manifest_file=pathlib.Path(api_manifest_file),
openapi_spec_file=pathlib.Path(settings.openapi_spec_file),
)
logger.debug(f"api config: {api_name} - {api_parameters}")
logger.debug(f"endpoints - {endpoints}")
logger.debug(f"chunking params - {chunking_params}")
# set airbyte logging level if debug is enabled
if (ctx.obj['DEBUG']):
airbyte_logger = logging.getLogger(f"airbyte.{api_name}")
airbyte_logger.setLevel(logging.DEBUG)
# create pipeline cache/output folders
pathlib.Path(f"{settings.output_folder}/{api_name}").mkdir(exist_ok=True)
pathlib.Path(f"{settings.output_folder}/cache/{api_name}").mkdir(exist_ok=True, parents=True)
from gaianet_rag_api_pipeline.input import input
from gaianet_rag_api_pipeline.output import output
import gaianet_rag_api_pipeline.pipeline as rag_api_pipeline
# fetch data from endpoints as individual streams
from airbyte.exceptions import AirbyteConnectorCheckFailedError
stream_tables = None
try:
stream_tables = input(
api_name=api_name,
settings=settings,
endpoints=endpoints,
source_manifest=source_manifest,
config=dict(
api_key=settings.api_key,
**api_parameters
),
force_full_refresh=full_refresh # NOTICE: CLI param
)
except AirbyteConnectorCheckFailedError as error:
click.echo(error, err=True)
click.echo(click.style(AirbyteConnectorCheckFailedError.guidance, fg="yellow"), err=True)
click.echo(
click.style(
f"Failed to establish a connection to the REST API. Check your API Key or manifest definition are correct",
fg="red"
),
err=True
)
if stream_tables is None:
return
# pipeline from streams to normalized|chunked|embeddings data
output_table = rag_api_pipeline.execute(
api_name=api_name,
chunking_params=chunking_params,
endpoints=endpoints,
stream_tables=stream_tables,
settings=settings,
normalized_only=normalized_only,
chunked_only=chunked_only
)
if not normalized_only and not chunked_only:
# output to vector db
output(
api_name=api_name,
output_table=output_table,
settings=settings,
)
import pathway as pw
pw.run(monitoring_level=pw.MonitoringLevel.ALL)
@cli.command()
@click.pass_context
@click.argument("api-manifest-file", type=click.Path(exists=True))
@click.option("--normalized-data-file", required=True, help="Normalized data in JSONL format", type=click.Path(exists=True))
@Timer(name="rag-api-pipeline", text="from-normalized pipeline executed after: {:.2f} seconds", logger=logger.info)
def from_normalized(
ctx,
api_manifest_file: str,
normalized_data_file: str
):
"""
Execute the RAG API pipeline from normalized data.
API_MANIFEST_FILE Path to the API manifest YAML file that defines pipeline config settings and API endpoints.
\f
Processes the normalized data and generates embeddings using the provided configurations and options.
Args:
ctx (click.Context): The context object for the CLI.
api_manifest_file (str): Path to the API manifest YAML file that defines pipeline config settings and API endpoints.
normalized_data_file (str): Path to the JSONL file containing normalized data.
"""
if not is_pipeline_setup():
return
args = dict()
settings = get_settings(*args)
logger.info(f"Config settings - {settings.model_dump()}")
logger.debug(f"Data source - {normalized_data_file}")
if not check_services(settings):
return
manifest_file = pathlib.Path(api_manifest_file)
from gaianet_rag_api_pipeline.input import read_jsonl_source
from gaianet_rag_api_pipeline.loader import get_dict_field, get_str_field
from gaianet_rag_api_pipeline.output import output
from gaianet_rag_api_pipeline.schema import NormalizedAPISchema
import gaianet_rag_api_pipeline.pipeline as rag_api_pipeline
api_name = get_str_field(
manifest_file=manifest_file,
field_id="api_name"
)
chunking_params = get_dict_field(
manifest_file=manifest_file,
field_id="chunking_params"
)
logger.debug(f"chunking params - {chunking_params}")
# input data
normalized_table = read_jsonl_source(
source_file=normalized_data_file,
schema=NormalizedAPISchema,
mode="static"
)
# chunked data
chunks_table = rag_api_pipeline.step_2_chunking(
api_name=api_name,
input_table=normalized_table,
chunking_params=chunking_params,
settings=settings
)
# embeddings
embeddings_table = rag_api_pipeline.step_3_generate_embeddings(
input_table=chunks_table,
settings=settings,
)
# output to vector db
output(
api_name=api_name,
output_table=embeddings_table,
settings=settings,
)
import pathway as pw
pw.run(monitoring_level=pw.MonitoringLevel.ALL)
@cli.command()
@click.pass_context
@click.argument("api-manifest-file", type=click.Path(exists=True))
@click.option("--chunked-data-file", required=True, help="Chunked data in JSONL format", type=click.Path(exists=True))
@Timer(name="rag-api-pipeline", text="from-chunked pipeline executed after: {:.2f} seconds", logger=logger.info)
def from_chunked(
ctx,
api_manifest_file: str,
chunked_data_file: str
):
"""
Execute the RAG API pipeline from chunked data.
API_MANIFEST_FILE Path to the API manifest YAML file that defines pipeline config settings and API endpoints.
\f
Processes chunked data and generates embeddings using the provided configurations and options.
Args:
ctx (click.Context): The context object for the CLI.
api_manifest_file (str): Path to the API manifest YAML file that defines pipeline config settings and API endpoints.
chunked_data_file (str): Path to the JSONL file containing chunked data.
"""
if not is_pipeline_setup():
return
args = dict()
settings = get_settings(**args)
logger.info(f"Config settings - {settings.model_dump()}")
logger.debug(f"Data source - {chunked_data_file}")
if not check_services(settings):
return
from gaianet_rag_api_pipeline.input import read_jsonl_source
from gaianet_rag_api_pipeline.loader import get_dict_field, get_str_field
from gaianet_rag_api_pipeline.output import output
from gaianet_rag_api_pipeline.schema import ChunkedDataSchema
import gaianet_rag_api_pipeline.pipeline as rag_api_pipeline
api_name = get_str_field(
manifest_file=pathlib.Path(api_manifest_file),
field_id="api_name"
)
chunking_params = get_dict_field(
manifest_file=pathlib.Path(api_manifest_file),
field_id="chunking_params"
)
logger.debug(f"chunking params - {chunking_params}")
# input data
chunks_table = read_jsonl_source(
source_file=chunked_data_file,
schema=ChunkedDataSchema,
mode="static"
)
# embeddings
embeddings_table = rag_api_pipeline.step_3_generate_embeddings(
input_table=chunks_table,
settings=settings,
)
# output to vector db
output(
api_name=api_name,
output_table=embeddings_table,
settings=settings,
)
import pathway as pw
pw.run(monitoring_level=pw.MonitoringLevel.ALL)