From 6b0c12378c2132fe82ded1b110e25b9f70d59618 Mon Sep 17 00:00:00 2001 From: Mamta Singh Date: Fri, 27 Dec 2024 12:33:54 +0000 Subject: [PATCH] Add trust_remote_code flag for samsum dataset Signed-off-by: Mamta Singh --- QEfficient/__init__.py | 4 ++++ QEfficient/cloud/finetune.py | 3 --- QEfficient/finetune/configs/peft_config.py | 2 +- QEfficient/finetune/configs/training.py | 2 +- QEfficient/finetune/dataset/samsum_dataset.py | 18 +----------------- scripts/finetune/run_ft_model.py | 6 +++--- 6 files changed, 10 insertions(+), 25 deletions(-) diff --git a/QEfficient/__init__.py b/QEfficient/__init__.py index 2ea0060c..4383e567 100644 --- a/QEfficient/__init__.py +++ b/QEfficient/__init__.py @@ -6,6 +6,10 @@ # ----------------------------------------------------------------------------- try: + import platform + import sys + + sys.path.append(f"/opt/qti-aic/dev/lib/{platform.machine()}") import qaicrt # noqa: F401 qaic_sdk_installed = True diff --git a/QEfficient/cloud/finetune.py b/QEfficient/cloud/finetune.py index b0ce3d99..eadab0d9 100644 --- a/QEfficient/cloud/finetune.py +++ b/QEfficient/cloud/finetune.py @@ -5,7 +5,6 @@ # # ----------------------------------------------------------------------------- -import os import random import warnings @@ -58,8 +57,6 @@ def main(**kwargs): update_config(train_config, **kwargs) device = train_config.device - os.environ["HF_DATASETS_TRUST_REMOTE_CODE"] = "True" - # dist init if train_config.enable_ddp: # TODO: may have to init qccl backend, next try run with torchrun command diff --git a/QEfficient/finetune/configs/peft_config.py b/QEfficient/finetune/configs/peft_config.py index 13b9d6aa..e2d018f0 100644 --- a/QEfficient/finetune/configs/peft_config.py +++ b/QEfficient/finetune/configs/peft_config.py @@ -20,7 +20,7 @@ class lora_config: bias = "none" task_type: str = "CAUSAL_LM" lora_dropout: float = 0.05 - inference_mode: bool = False + inference_mode: bool = False # should be False for finetuning # CAUTION prefix tuning is currently not supported diff --git a/QEfficient/finetune/configs/training.py b/QEfficient/finetune/configs/training.py index ac750ebe..41ffa3fb 100644 --- a/QEfficient/finetune/configs/training.py +++ b/QEfficient/finetune/configs/training.py @@ -38,7 +38,7 @@ class train_config: save_metrics: bool = True # saves training metrics to a json file for later plotting intermediate_step_save: int = 1000 batching_strategy: str = "packing" - enable_sorting_for_ddp: bool = "True" + enable_sorting_for_ddp: bool = True # TODO: vbaddi: Uncomment post adding qaic to Pytorch Profiler # flop_counter: bool = False # Enable flop counter to measure model throughput, can not be used with pytorch profiler at the same time. diff --git a/QEfficient/finetune/dataset/samsum_dataset.py b/QEfficient/finetune/dataset/samsum_dataset.py index e6680cf7..71814599 100644 --- a/QEfficient/finetune/dataset/samsum_dataset.py +++ b/QEfficient/finetune/dataset/samsum_dataset.py @@ -5,27 +5,11 @@ # # ----------------------------------------------------------------------------- -from unittest.mock import patch - import datasets -@patch("builtins.input", return_value="N") -def load_samsum(split, _): - try: - ds = datasets.load_dataset("Samsung/samsum", split=split) - except ValueError as e: - if "trust_remote_code" in str(e): - raise ValueError( - "Loading Samsung/samsum requires you to execute the dataset script in that repo on your local machine. Make sure you have read the code there to avoid malicious use, then set HF_DATASETS_TRUST_REMOTE_CODE env variable to True." - ) from e - else: - raise e - return ds - - def get_preprocessed_samsum(dataset_config, tokenizer, split, context_length=None): - dataset = load_samsum(split) + dataset = datasets.load_dataset("Samsung/samsum", split=split, trust_remote_code=True) prompt = "Summarize this dialog:\n{dialog}\n---\nSummary:\n" diff --git a/scripts/finetune/run_ft_model.py b/scripts/finetune/run_ft_model.py index f607d253..9d40e996 100644 --- a/scripts/finetune/run_ft_model.py +++ b/scripts/finetune/run_ft_model.py @@ -9,8 +9,8 @@ import warnings import torch -from configs.training import train_config as TRAIN_CONFIG from peft import AutoPeftModelForCausalLM +from Qefficient.finetune.configs.training import train_config as TRAIN_CONFIG from transformers import AutoModelForCausalLM, AutoTokenizer # Suppress all warnings @@ -19,7 +19,7 @@ try: import torch_qaic # noqa: F401 - device = "qaic:1" + device = "qaic:0" except ImportError as e: print(f"Warning: {e}. Moving ahead without these qaic modules.") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") @@ -29,7 +29,7 @@ train_config.model_name, use_cache=False, attn_implementation="sdpa", - torch_dtype=torch.float16 if torch.cuda.is_available() or device == "qaic:1" else None, + torch_dtype=torch.float16 if torch.cuda.is_available() or device == "qaic:0" else None, ) # Load the tokenizer and add special tokens