diff --git a/qualtran/bloqs/rotations/hamming_weight_phasing.py b/qualtran/bloqs/rotations/hamming_weight_phasing.py index 2c55d84b5..ab775915b 100644 --- a/qualtran/bloqs/rotations/hamming_weight_phasing.py +++ b/qualtran/bloqs/rotations/hamming_weight_phasing.py @@ -209,3 +209,94 @@ def _hamming_weight_phasing_via_phase_gradient() -> HammingWeightPhasingViaPhase bloq_cls=HammingWeightPhasingViaPhaseGradient, examples=(_hamming_weight_phasing_via_phase_gradient,), ) + + +@attrs.frozen +class HammingWeightPhasingWithConfigurableAncilla(GateWithRegisters): + r""" + Args: + bitsize: Size of input register to apply 'Z ** exponent' to. + ancillasize: Size of the ancilla register to be used to calculate the hamming weight of 'x'. + exponent: the exponent of 'Z ** exponent' to be applied to each qubit in the input register. + eps: Accuracy of synthesizing the Z rotations. + + Registers: + x: A 'THRU' register of 'bitsize' qubits. + + References: + """ + + bitsize: int + ancillasize: int # TODO: verify that ancillasize is always < bitsize-1 + exponent: float = 1 + eps: SymbolicFloat = 1e-10 + + @cached_property + def signature(self) -> 'Signature': + return Signature.build_from_dtypes(x=QUInt(self.bitsize)) + + + ''' + General strategy: find the max-bitsize number (n bits) we can compute the HW of using our available ancilla, + greedily do this on the first n bits of x, perform the rotations, then the next n bits and perform those + rotations, and so on until we have computed the HW of the entire input. Can express this as repeated calls to + HammingWeightPhasing bloqs on subsets of the input. + ''' + def build_composite_bloq(self, bb: 'BloqBuilder', *, x: 'SoquetT') -> Dict[str, 'SoquetT']: + num_iters = self.bitsize // (self.ancillasize + 1) + remainder = self.bitsize % (self.ancillasize+1) + x = bb.split(x) + x_parts = [] + for i in range(num_iters): + x_part = bb.join(x[i*(self.ancillasize+1):(i+1)*(self.ancillasize+1)], dtype=QUInt(self.ancillasize+1)) + x_part = bb.add(HammingWeightPhasing(bitsize=self.ancillasize+1, exponent=self.exponent, eps=self.eps), x=x_part) + x_parts.extend(bb.split(x_part)) + if remainder > 1: + x_part = bb.join(x[(-1*remainder):], dtype=QUInt(remainder)) + x_part = bb.add(HammingWeightPhasing(bitsize=remainder, exponent=self.exponent, eps=self.eps), x=x_part) + x_parts.extend(bb.split(x_part)) + if remainder == 1: + x_part = x[-1] + x_part = bb.add(ZPowGate(exponent=self.exponent, eps=self.eps), q=x_part) + x_parts.append(x_part) + x = bb.join(np.array(x_parts), dtype=QUInt(self.bitsize)) + return {'x': x} + + + def wire_symbol(self, reg: Optional[Register], idx: Tuple[int, ...] = tuple()) -> 'WireSymbol': + if reg is None: + return Text(f'HWPCA_{self.bitsize}/(Z^{self.exponent})') + return super().wire_symbol(reg, idx) + + + def build_call_graph(self, ssa: 'SympySymbolAllocator') -> 'BloqCountDictT': + num_iters = self.bitsize // (self.ancillasize + 1) + remainder = self.bitsize - (self.ancillasize + 1) * num_iters + # TODO: Surely there is a better way of doing this + if remainder > 1: + + return { + HammingWeightPhasing(self.ancillasize+1, self.exponent, self.eps): num_iters, + HammingWeightPhasing(remainder, self.exponent, self.eps): bool(remainder), + } + elif remainder: + return { + HammingWeightPhasing(self.ancillasize+1, self.exponent, self.eps): num_iters, + ZPowGate(exponent=self.exponent, eps=self.eps): 1 + } + else: + return { + HammingWeightPhasing(self.ancillasize+1, self.exponent, self.eps): num_iters, + } + + +@bloq_example +def _hamming_weight_phasing_with_configurable_ancilla() -> HammingWeightPhasingWithConfigurableAncilla: + hamming_weight_phasing_with_configurable_ancilla = HammingWeightPhasingWithConfigurableAncilla(4, 2, np.pi / 2.0) + return hamming_weight_phasing_with_configurable_ancilla + + +_HAMMING_WEIGHT_PHASING_WITH_CONFIGURABLE_ANCILLA_DOC = BloqDocSpec( + bloq_cls=HammingWeightPhasingWithConfigurableAncilla, + examples=(_hamming_weight_phasing_with_configurable_ancilla,), +) diff --git a/qualtran/bloqs/rotations/hamming_weight_phasing_test.py b/qualtran/bloqs/rotations/hamming_weight_phasing_test.py index 33dc21626..4b7f55857 100644 --- a/qualtran/bloqs/rotations/hamming_weight_phasing_test.py +++ b/qualtran/bloqs/rotations/hamming_weight_phasing_test.py @@ -23,6 +23,7 @@ from qualtran.bloqs.rotations.hamming_weight_phasing import ( HammingWeightPhasing, HammingWeightPhasingViaPhaseGradient, + HammingWeightPhasingWithConfigurableAncilla, ) from qualtran.bloqs.rotations.phase_gradient import PhaseGradientState from qualtran.cirq_interop.testing import GateHelper @@ -127,3 +128,30 @@ def test_hamming_weight_phasing_via_phase_gradient_t_complexity(n: int, theta: f naive_total_t = naive_hwp_t_complexity.t_incl_rotations(eps=eps / n.bit_length()) assert total_t < naive_total_t + +@pytest.mark.parametrize('n, ancillasize', [(n, ancillasize) for n in range(3, 9) for ancillasize in range(1, n-1)]) +@pytest.mark.parametrize('theta', [1 / 10, 1 / 5, 1 / 7, np.pi / 2]) +def test_hamming_weight_phasing_with_configurable_ancilla(n: int, ancillasize: int, theta: float): + gate = HammingWeightPhasingWithConfigurableAncilla(n, ancillasize, theta) + qlt_testing.assert_valid_bloq_decomposition(gate) + qlt_testing.assert_equivalent_bloq_counts( + gate, [ignore_split_join, cirq_to_bloqs, generalize_rotation_angle] + ) + + remainder = n % (ancillasize+1) + +# assert gate.t_complexity().rotations == (-(-n // (ancillasize+1))-1) * (ancillasize+1).bit_length() + remainder.bit_length() # exact, fails for remainder = 0. + assert gate.t_complexity().rotations <= (-(-n // (ancillasize+1))) * (ancillasize+1).bit_length() + remainder.bit_length() # upper bound + assert gate.t_complexity().t <= 4 * (ancillasize) * -(-n // (ancillasize+1)) + # TODO: add an assertion that number of ancilla allocated is never > ancillasize. + + gh = GateHelper(gate) + sim = cirq.Simulator(dtype=np.complex128) + initial_state = cirq.testing.random_superposition(dim=2**n, random_state=12345) + state_prep = cirq.Circuit(cirq.StatePreparationChannel(initial_state).on(*gh.quregs['x'])) + brute_force_phasing = cirq.Circuit(state_prep, (cirq.Z**theta).on_each(*gh.quregs['x'])) + expected_final_state = sim.simulate(brute_force_phasing).final_state_vector + + hw_phasing = cirq.Circuit(state_prep, HammingWeightPhasingWithConfigurableAncilla(n, ancillasize, theta).on(*gh.quregs['x'])) + hw_final_state = sim.simulate(hw_phasing).final_state_vector + assert np.allclose(expected_final_state, hw_final_state, atol=1e-7)