diff --git a/dev/.buildinfo b/dev/.buildinfo index 353a986c3..0d6631f02 100644 --- a/dev/.buildinfo +++ b/dev/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file records the configuration used when building these files. When it is not found, a full rebuild will be done. -config: b48dffec42a9ee16f63fa82725465f94 +config: 5a1201d6c18eb3c0eb0190847b5c0d21 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/dev/.doctrees/environment.pickle b/dev/.doctrees/environment.pickle index f2a72c98d..cb8c3872e 100644 Binary files a/dev/.doctrees/environment.pickle and b/dev/.doctrees/environment.pickle differ diff --git a/dev/.doctrees/explanations/hamiltonians.doctree b/dev/.doctrees/explanations/hamiltonians.doctree index 86dafae22..9d23af9b7 100644 Binary files a/dev/.doctrees/explanations/hamiltonians.doctree and b/dev/.doctrees/explanations/hamiltonians.doctree differ diff --git a/dev/.doctrees/how-to-guides/entanglement-forging.doctree b/dev/.doctrees/how-to-guides/entanglement-forging.doctree index 5944fa220..15d8f0127 100644 Binary files a/dev/.doctrees/how-to-guides/entanglement-forging.doctree and b/dev/.doctrees/how-to-guides/entanglement-forging.doctree differ diff --git a/dev/.doctrees/how-to-guides/fermion-operator.doctree b/dev/.doctrees/how-to-guides/fermion-operator.doctree index b1cfd9e9f..879bb4938 100644 Binary files a/dev/.doctrees/how-to-guides/fermion-operator.doctree and b/dev/.doctrees/how-to-guides/fermion-operator.doctree differ diff --git a/dev/.doctrees/how-to-guides/lucj.doctree b/dev/.doctrees/how-to-guides/lucj.doctree index 796393a95..efbff0ea9 100644 Binary files a/dev/.doctrees/how-to-guides/lucj.doctree and b/dev/.doctrees/how-to-guides/lucj.doctree differ diff --git a/dev/.doctrees/how-to-guides/qiskit-circuits.doctree b/dev/.doctrees/how-to-guides/qiskit-circuits.doctree index 5e7dc9b9f..4da1d2b29 100644 Binary files a/dev/.doctrees/how-to-guides/qiskit-circuits.doctree and b/dev/.doctrees/how-to-guides/qiskit-circuits.doctree differ diff --git a/dev/.doctrees/how-to-guides/qiskit-sampler.doctree b/dev/.doctrees/how-to-guides/qiskit-sampler.doctree index 98046ca06..488fa97d8 100644 Binary files a/dev/.doctrees/how-to-guides/qiskit-sampler.doctree and b/dev/.doctrees/how-to-guides/qiskit-sampler.doctree differ diff --git a/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb b/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb index 4e643fbb9..4d0529d56 100644 --- a/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/hamiltonians.ipynb @@ -33,10 +33,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:26.141961Z", - "iopub.status.busy": "2024-11-08T21:58:26.141772Z", - "iopub.status.idle": "2024-11-08T21:58:26.857424Z", - "shell.execute_reply": "2024-11-08T21:58:26.856740Z" + "iopub.execute_input": "2024-11-08T22:03:37.127792Z", + "iopub.status.busy": "2024-11-08T22:03:37.127290Z", + "iopub.status.idle": "2024-11-08T22:03:37.841488Z", + "shell.execute_reply": "2024-11-08T22:03:37.840951Z" } }, "outputs": [], @@ -68,10 +68,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:26.860028Z", - "iopub.status.busy": "2024-11-08T21:58:26.859641Z", - "iopub.status.idle": "2024-11-08T21:58:26.862526Z", - "shell.execute_reply": "2024-11-08T21:58:26.862061Z" + "iopub.execute_input": "2024-11-08T22:03:37.844041Z", + "iopub.status.busy": "2024-11-08T22:03:37.843565Z", + "iopub.status.idle": "2024-11-08T22:03:37.846519Z", + "shell.execute_reply": "2024-11-08T22:03:37.846060Z" } }, "outputs": [], @@ -99,10 +99,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:26.864476Z", - "iopub.status.busy": "2024-11-08T21:58:26.864115Z", - "iopub.status.idle": "2024-11-08T21:58:26.867371Z", - "shell.execute_reply": "2024-11-08T21:58:26.866921Z" + "iopub.execute_input": "2024-11-08T22:03:37.848534Z", + "iopub.status.busy": "2024-11-08T22:03:37.848156Z", + "iopub.status.idle": "2024-11-08T22:03:37.851149Z", + "shell.execute_reply": "2024-11-08T22:03:37.850693Z" } }, "outputs": [], @@ -127,10 +127,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:26.869230Z", - "iopub.status.busy": "2024-11-08T21:58:26.868872Z", - "iopub.status.idle": "2024-11-08T21:58:26.873426Z", - "shell.execute_reply": "2024-11-08T21:58:26.872900Z" + "iopub.execute_input": "2024-11-08T22:03:37.853062Z", + "iopub.status.busy": "2024-11-08T22:03:37.852705Z", + "iopub.status.idle": "2024-11-08T22:03:37.857142Z", + "shell.execute_reply": "2024-11-08T22:03:37.856600Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:26.876399Z", - "iopub.status.busy": "2024-11-08T21:58:26.875580Z", - "iopub.status.idle": "2024-11-08T21:58:26.904003Z", - "shell.execute_reply": "2024-11-08T21:58:26.903414Z" + "iopub.execute_input": "2024-11-08T22:03:37.859539Z", + "iopub.status.busy": "2024-11-08T22:03:37.859137Z", + "iopub.status.idle": "2024-11-08T22:03:37.887287Z", + "shell.execute_reply": "2024-11-08T22:03:37.886661Z" } }, "outputs": [ { "data": { "text/plain": [ - "np.float64(-99.55717072551552)" + "np.float64(-99.55717072551562)" ] }, "execution_count": 5, @@ -191,10 +191,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:26.940093Z", - "iopub.status.busy": "2024-11-08T21:58:26.939889Z", - "iopub.status.idle": "2024-11-08T21:58:27.577895Z", - "shell.execute_reply": "2024-11-08T21:58:27.577257Z" + "iopub.execute_input": "2024-11-08T22:03:37.919970Z", + "iopub.status.busy": "2024-11-08T22:03:37.919479Z", + "iopub.status.idle": "2024-11-08T22:03:38.680256Z", + "shell.execute_reply": "2024-11-08T22:03:38.679625Z" } }, "outputs": [ @@ -202,7 +202,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_4130/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", + "/tmp/ipykernel_4150/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", " evolved_vec = scipy.sparse.linalg.expm_multiply(-1j * time * linop, vec)\n" ] } @@ -224,10 +224,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:27.581327Z", - "iopub.status.busy": "2024-11-08T21:58:27.580475Z", - "iopub.status.idle": "2024-11-08T21:58:28.174486Z", - "shell.execute_reply": "2024-11-08T21:58:28.173870Z" + "iopub.execute_input": "2024-11-08T22:03:38.683082Z", + "iopub.status.busy": "2024-11-08T22:03:38.682645Z", + "iopub.status.idle": "2024-11-08T22:03:39.279766Z", + "shell.execute_reply": "2024-11-08T22:03:39.279034Z" } }, "outputs": [], diff --git a/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb b/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb index aa11f241f..71d04f774 100644 --- a/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/orbital-rotation.ipynb @@ -62,10 +62,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:31.248455Z", - "iopub.status.busy": "2024-11-08T21:58:31.248263Z", - "iopub.status.idle": "2024-11-08T21:58:31.950434Z", - "shell.execute_reply": "2024-11-08T21:58:31.949837Z" + "iopub.execute_input": "2024-11-08T22:03:42.161536Z", + "iopub.status.busy": "2024-11-08T22:03:42.161304Z", + "iopub.status.idle": "2024-11-08T22:03:42.868059Z", + "shell.execute_reply": "2024-11-08T22:03:42.867403Z" } }, "outputs": [], diff --git a/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb b/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb index eb6ea629f..4ca798782 100644 --- a/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/qiskit-gate-decompositions.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:33.557591Z", - "iopub.status.busy": "2024-11-08T21:58:33.557135Z", - "iopub.status.idle": "2024-11-08T21:58:35.100647Z", - "shell.execute_reply": "2024-11-08T21:58:35.100092Z" + "iopub.execute_input": "2024-11-08T22:03:44.292215Z", + "iopub.status.busy": "2024-11-08T22:03:44.291717Z", + "iopub.status.idle": "2024-11-08T22:03:48.540631Z", + "shell.execute_reply": "2024-11-08T22:03:48.540030Z" } }, "outputs": [ @@ -81,10 +81,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:35.102807Z", - "iopub.status.busy": "2024-11-08T21:58:35.102486Z", - "iopub.status.idle": "2024-11-08T21:58:35.297381Z", - "shell.execute_reply": "2024-11-08T21:58:35.296777Z" + "iopub.execute_input": "2024-11-08T22:03:48.542988Z", + "iopub.status.busy": "2024-11-08T22:03:48.542466Z", + "iopub.status.idle": "2024-11-08T22:03:48.750116Z", + "shell.execute_reply": "2024-11-08T22:03:48.749579Z" } }, "outputs": [ @@ -119,10 +119,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:35.299622Z", - "iopub.status.busy": "2024-11-08T21:58:35.299284Z", - "iopub.status.idle": "2024-11-08T21:58:35.406801Z", - "shell.execute_reply": "2024-11-08T21:58:35.406257Z" + "iopub.execute_input": "2024-11-08T22:03:48.752180Z", + "iopub.status.busy": "2024-11-08T22:03:48.751804Z", + "iopub.status.idle": "2024-11-08T22:03:48.863238Z", + "shell.execute_reply": "2024-11-08T22:03:48.862623Z" } }, "outputs": [ @@ -156,10 +156,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:35.408715Z", - "iopub.status.busy": "2024-11-08T21:58:35.408383Z", - "iopub.status.idle": "2024-11-08T21:58:35.517195Z", - "shell.execute_reply": "2024-11-08T21:58:35.516583Z" + "iopub.execute_input": "2024-11-08T22:03:48.865716Z", + "iopub.status.busy": "2024-11-08T22:03:48.865312Z", + "iopub.status.idle": "2024-11-08T22:03:48.977937Z", + "shell.execute_reply": "2024-11-08T22:03:48.977376Z" } }, "outputs": [ @@ -196,10 +196,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:35.519146Z", - "iopub.status.busy": "2024-11-08T21:58:35.518799Z", - "iopub.status.idle": "2024-11-08T21:58:35.702341Z", - "shell.execute_reply": "2024-11-08T21:58:35.701705Z" + "iopub.execute_input": "2024-11-08T22:03:48.979921Z", + "iopub.status.busy": "2024-11-08T22:03:48.979714Z", + "iopub.status.idle": "2024-11-08T22:03:49.173170Z", + "shell.execute_reply": "2024-11-08T22:03:49.172569Z" } }, "outputs": [ @@ -250,10 +250,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:35.704423Z", - "iopub.status.busy": "2024-11-08T21:58:35.704044Z", - "iopub.status.idle": "2024-11-08T21:58:35.923073Z", - "shell.execute_reply": "2024-11-08T21:58:35.922563Z" + "iopub.execute_input": "2024-11-08T22:03:49.175454Z", + "iopub.status.busy": "2024-11-08T22:03:49.175010Z", + "iopub.status.idle": "2024-11-08T22:03:49.410346Z", + "shell.execute_reply": "2024-11-08T22:03:49.409742Z" } }, "outputs": [ @@ -292,10 +292,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:35.925120Z", - "iopub.status.busy": "2024-11-08T21:58:35.924704Z", - "iopub.status.idle": "2024-11-08T21:58:36.058740Z", - "shell.execute_reply": "2024-11-08T21:58:36.058269Z" + "iopub.execute_input": "2024-11-08T22:03:49.412561Z", + "iopub.status.busy": "2024-11-08T22:03:49.412145Z", + "iopub.status.idle": "2024-11-08T22:03:49.548360Z", + "shell.execute_reply": "2024-11-08T22:03:49.547839Z" } }, "outputs": [ @@ -334,10 +334,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:36.060870Z", - "iopub.status.busy": "2024-11-08T21:58:36.060461Z", - "iopub.status.idle": "2024-11-08T21:58:36.572165Z", - "shell.execute_reply": "2024-11-08T21:58:36.571582Z" + "iopub.execute_input": "2024-11-08T22:03:49.550576Z", + "iopub.status.busy": "2024-11-08T22:03:49.550188Z", + "iopub.status.idle": "2024-11-08T22:03:50.085499Z", + "shell.execute_reply": "2024-11-08T22:03:50.084879Z" } }, "outputs": [ @@ -378,10 +378,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:36.574342Z", - "iopub.status.busy": "2024-11-08T21:58:36.573973Z", - "iopub.status.idle": "2024-11-08T21:58:36.753240Z", - "shell.execute_reply": "2024-11-08T21:58:36.752684Z" + "iopub.execute_input": "2024-11-08T22:03:50.087522Z", + "iopub.status.busy": "2024-11-08T22:03:50.087324Z", + "iopub.status.idle": "2024-11-08T22:03:50.269563Z", + "shell.execute_reply": "2024-11-08T22:03:50.268906Z" } }, "outputs": [ @@ -430,10 +430,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:36.755304Z", - "iopub.status.busy": "2024-11-08T21:58:36.754933Z", - "iopub.status.idle": "2024-11-08T21:58:36.922262Z", - "shell.execute_reply": "2024-11-08T21:58:36.921762Z" + "iopub.execute_input": "2024-11-08T22:03:50.271902Z", + "iopub.status.busy": "2024-11-08T22:03:50.271515Z", + "iopub.status.idle": "2024-11-08T22:03:50.439704Z", + "shell.execute_reply": "2024-11-08T22:03:50.439044Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:36.924284Z", - "iopub.status.busy": "2024-11-08T21:58:36.923912Z", - "iopub.status.idle": "2024-11-08T21:58:37.062735Z", - "shell.execute_reply": "2024-11-08T21:58:37.062048Z" + "iopub.execute_input": "2024-11-08T22:03:50.442148Z", + "iopub.status.busy": "2024-11-08T22:03:50.441731Z", + "iopub.status.idle": "2024-11-08T22:03:50.573820Z", + "shell.execute_reply": "2024-11-08T22:03:50.573309Z" } }, "outputs": [ @@ -513,10 +513,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:37.065292Z", - "iopub.status.busy": "2024-11-08T21:58:37.064861Z", - "iopub.status.idle": "2024-11-08T21:58:37.251921Z", - "shell.execute_reply": "2024-11-08T21:58:37.251405Z" + "iopub.execute_input": "2024-11-08T22:03:50.576237Z", + "iopub.status.busy": "2024-11-08T22:03:50.575719Z", + "iopub.status.idle": "2024-11-08T22:03:50.756041Z", + "shell.execute_reply": "2024-11-08T22:03:50.755423Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:37.254053Z", - "iopub.status.busy": "2024-11-08T21:58:37.253673Z", - "iopub.status.idle": "2024-11-08T21:58:37.413303Z", - "shell.execute_reply": "2024-11-08T21:58:37.412713Z" + "iopub.execute_input": "2024-11-08T22:03:50.758244Z", + "iopub.status.busy": "2024-11-08T22:03:50.757859Z", + "iopub.status.idle": "2024-11-08T22:03:50.916841Z", + "shell.execute_reply": "2024-11-08T22:03:50.916220Z" } }, "outputs": [ @@ -593,10 +593,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:37.415486Z", - "iopub.status.busy": "2024-11-08T21:58:37.415117Z", - "iopub.status.idle": "2024-11-08T21:58:37.548505Z", - "shell.execute_reply": "2024-11-08T21:58:37.547919Z" + "iopub.execute_input": "2024-11-08T22:03:50.918941Z", + "iopub.status.busy": "2024-11-08T22:03:50.918593Z", + "iopub.status.idle": "2024-11-08T22:03:51.049059Z", + "shell.execute_reply": "2024-11-08T22:03:51.048468Z" } }, "outputs": [ @@ -630,10 +630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:37.550932Z", - "iopub.status.busy": "2024-11-08T21:58:37.550561Z", - "iopub.status.idle": "2024-11-08T21:58:37.709744Z", - "shell.execute_reply": "2024-11-08T21:58:37.709145Z" + "iopub.execute_input": "2024-11-08T22:03:51.051038Z", + "iopub.status.busy": "2024-11-08T22:03:51.050837Z", + "iopub.status.idle": "2024-11-08T22:03:51.211346Z", + "shell.execute_reply": "2024-11-08T22:03:51.210712Z" } }, "outputs": [ @@ -677,10 +677,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:37.711751Z", - "iopub.status.busy": "2024-11-08T21:58:37.711404Z", - "iopub.status.idle": "2024-11-08T21:58:37.887148Z", - "shell.execute_reply": "2024-11-08T21:58:37.886638Z" + "iopub.execute_input": "2024-11-08T22:03:51.213860Z", + "iopub.status.busy": "2024-11-08T22:03:51.213469Z", + "iopub.status.idle": "2024-11-08T22:03:51.391503Z", + "shell.execute_reply": "2024-11-08T22:03:51.390854Z" } }, "outputs": [ @@ -736,16 +736,16 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:37.889300Z", - "iopub.status.busy": "2024-11-08T21:58:37.888946Z", - "iopub.status.idle": "2024-11-08T21:58:38.351989Z", - "shell.execute_reply": "2024-11-08T21:58:38.351431Z" + "iopub.execute_input": "2024-11-08T22:03:51.393701Z", + "iopub.status.busy": "2024-11-08T22:03:51.393357Z", + "iopub.status.idle": "2024-11-08T22:03:51.857335Z", + "shell.execute_reply": "2024-11-08T22:03:51.856721Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADVjUlEQVR4nOzdeXhU1f3H8ffMJGQhGwmyhySQAGFLUpAdGSCoaAURQUUUEbTVqsW6FqFFBZRSl5/V0lrRIi2KUi1oUQElskXCFnayQFhkCUsMWUlIZn5/jAwMWVhCZjKTz+t58pB77pl7v/fkcufOd84512C1Wq2IiIiIiIiIiIh4AKOrAxAREREREREREblWlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHsPL1QHUZaX5Rfy0+6Crw/AYjWJb0yDQ/5L1Cs5CZp4TAqpEdBAEeLtm3yIiIiIiIiJSc0p2VeOn3Qf5avgUV4fhMYYunk7THh0uWS8zDyaudUJAlXivL8SHuWbfIiIiIiIiIlJzGsYoIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIYmqBePkPaCmcI9yRi8vDGYvPBt2YEWY2cQFDfY1aGJiIiIiIiIiBOpZ5d4jBZjZ5CwsICu87Jp2L43e2feTnnhaVeHJSIiIiIiIiJOpGSXeByjtw+Nh0zAcqaAM0czXR2OiIiIiIiIiDiRkl3icSwlxZxc/h5G/yB8W8S4OhwRERERERERcSK3SXaVlpYydepUwsPD8fPzY9CgQaSkpGAwGFi8eLGrw5M64MiCqaSOCWH7Q5EUZW0lesqXmPyDXB2WSxSchV25kHYayiyujsZznSmHPbm2nzNlro5GpGasVtibBzt+gpwSV0cjUnPHimzn84+Fro5ERNxFURnszoU9p6G03NXRiEhNuMUE9VarlVGjRpGSksK0adOIjo5mwYIFjBgxAoCEhASnxmMwGbl+2jjajrwBg9HI/v/9wPrJ71FectapcYijFmNeptmIp10dhkv9VAJ/3QP/OwSlPye5GjWAu6LggRjwcpv0dt12pgz+ngafHYDCn5NcDb1geGv4VQfb7yLuwmqF/x6EeRnwY5GtzAiYm8OjsRAZ4NLwRK7YllMwZw9sPnW+rGMIPNwe+jV1WVgiUofln7VdN5YctH2ZCRDkDSMjYWI78DG5NDwRuQpu8ZHs3XffZenSpaSmptKpUycAzGYzUVFRhIaG0rp1a6fG0/WJO2jWpzOLBz1F+dkyBv/zObpNuY+Uqe87NQ6RC+WUwPjVcLQILuzM9VMp/C3N1tNrdg8wGVwVoWc4Uw6PJNt6C1gvKC8sg4/22T5cvdsX/N3i6ioCf9kNH2bChZcGC5B0FNafgPf7Qdv62UlW3NCabHgqxZbEvdDuXHhyPfwxHn7p3NtGEanjCs7CxDWwL9/x3i7vLHyQAdtz4K1e0EAJLxG34hb9PGbNmsXYsWPtiS4Ak8lEVFSUvVdXeno6vXv3pl27dvTu3ZuMjIxaiyfm3sFsf+szio7lUHIqj9TXPiH6LjMGo1s0p3iod3ZXTHRdaFU2LD3k1JA80oK9sP2iRNc5VmxDRz/UcxHETez46fz5evE5bQGKy+DlVCcHJXKVSsrhD5vBYq34Xmj9+Wf6VsgtdUFwIlJnvZdeMdF1oY2nYNF+Z0YkItdCnc/OZGRkkJWVxciRIyusO3TokD3Z9etf/5rf/OY3pKen85vf/IZf/epXtRJPgyB/AlpeR87OLHvZqe1ZNAj0JyD8ulrZp8il5J+Fr36sOtEFtv/sn2RVU0EuqdwKn+6vvo4V+M9+zZUm7uE/+6u/EbAAO3Ih/bRz4hGpie+O2npiVPWBFaDMCl8edFpIIlLHlZTD5weqv24YsN1DX9xjVETqtjo/0Obw4cMANGnSxKF8z549HDhwgISEBI4fP87mzZtZvnw5APfccw+PPfYYJ06c4LrrLp2ACgwMpLS04td8bb0a8WxQP4cyrwA/AEpPF9nLSk/bZj71/nmdVG7gQDN7y366ZD3/9r1pOz3pirbdfsaV1a/KwIFmitKSr8m2nMkvpgfRM1dXW8cC7Mopw8enoXOC8kCmoOvoOPfHS9b7qRRCWrXl7KlL1xVxpZjXt+Ab3vGS9W4Y/RA/JX3ohIhErl7zcX8ibOhvMJiqvr21lp9l2t8XMeGtB5wXmIjUWT4t2tPu/7ZVW8eKbU5Lv+BGWEuKqq0rIteW1WrFy8uLY8eOERR0ZfNq1PmeXWFhYQBkZp4fF2S1WnnuueewWCwkJCRw6NAhWrZsiclkG0htMplo0aIFhw5d+zFbZQXFAHgH+dvLGgTbkgdnf14n4nTll/coQKtFj5WpEcvlP3JRbS3uwKprh3gQ2/l8qYkpDTqfRcTOegX3dujaIeJ0VquV4uJitm/ffsWvrfM9u2JjY4mOjmby5Ml4e3sTEBDAnDlz2LJlC/7+/rRv354tW7bUaB/5+fmVlmen7OGr4VMcykrziig4fILQTpHk7T0CQFjnKErziyg4dKJGcXi6lSuTaNqjwyXrpZ6CiWudEFAlVq5MIj7MNfuuidJyuHmZbfhGVYwG6NvSh80lJc4LzMNYrXBPEuytZl4HA9A6ADYc3Y9BDwOQOu7/dsK/9l56+MbWJe/TzE8PYZG6Lfk4PP5D9XUMJi/+b9JYfvnaWOcEJSJ1WrkVhi2H7DNV1zECnRrBxoI8p8UlIjZr166lX79+l65YiTrfs8vLy4tFixbRvHlzxo0bx6RJkxg6dCgDBgyga9euGI1GwsPDOXz4MOXltmx7eXk5R44cITw8vFZiyvj3t3R9fAR+TRvhExZE/FOjyVyYhNWiSXrENRqYYFRU9XUsVri7jXPi8VQGA4xpW31iwArcE4USXeIWRkZWf64agQHNoJlG6Ysb6HkdhDes+ubWCAR7w5AWzoxKROoykwHuucT9sYVL1xGRuqfOJ7sA4uLiSE5OpqioiLS0NB555BG2bNlin5y+SZMmxMfH89FHHwHw0UcfkZCQcFnzdV2NbW99xrEfdnN70huMXPcXcjN+ZNOMf9XKvkQu18R20PvnU/7Cz67n/pM/1A56N7n4VXKlbguHERG23y+8gJ77/dZWcEekk4MSuUqtGsJLCbbzt7IbgsgAmBLn7KhEro7RAK/1gKAGFQczGgEfE7zR0/aviMg597SFxJ+T4JXd293TRklyEXdU54cxVqa4uJi0tDQmTZpkL/vb3/7GuHHjeOmll2jUqBEfflh7E+layy2kTH2flKka0uEKZfk5ZPxxCGcOp5GwsMBh3U9rP+XY57MxGIy0mvgmAe17kfaC2fa60ycIih9C+MQ3nR+0E3gbbTfxSw7anhiT+fPo3J7X2Xp09W3q2vg8hcEAk7tCj8bwcRZszbGVd2oEd0XBTS3Vq0vcy82tbL1hFuyDb2zPhKG5n63X152REODtyuhErkybQFgwwHZ9XnIQcn9+/tCdUTCmjS3BKyJyIZMBZnSDfk3gk/2wK9dWnhBmu4c2N9O9nYg7cstk17Zt2ygvL7f37ALo0KED69evd2FU4iwmv0BiXlzOvj+NrrDu+NJ3aD9zFWX5ORz6xxMEPL/I/qTGwx/+nsAuA50crXN5GW29iu6IhO5LbGV/6e3KiDyTwQBDWtp+zrXzB/1dG5NITXRqZLvRP5fs+mKIa+MRqYkmfvBER9vPuWv0s11cG5OI1G0mA/yyte3n3HXj731dG5OI1IxbJrt69uyJ1VrdrDniyQxe3ngFhla6zqdJJJYzhZQXna5QJ39HEs3vedEZIYqIiIiIiIiIi7hlskukKsHX38auJxPAUk70H5bay88czaTBdREYvRu4MDoRERERERERqW1uMUG9yOU69tksOr2zmw5/3sCRf0+1l59ev5iQnsNdGJmIiIiIiIiIOIOSXeJRjN6+GBv4YfIPwlJSaC8/vWkpwd1ucWFkIiIiIiIiIuIMSnaJW0qfmkhR1hbSpyZSsGsNxz6bDUDYwPtJe64P6VMH0XT47wAoyzuJweSNqWGwK0MWERERERERESfQnF3iltq9vMJhOaBjPwAa3ziRxjdOdFjnFdSYmGlfOy02EREREREREXEd9ewSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkMT1EudEx0E7/V13b5FRERERERExH0p2SV1ToA3xIe5OgoRERERERERcUcaxihSTyUlJREVFYXZbGbcuHEV1s+YMYOMjIxqt/H444/Tv39/Zs6c6VBeXFzMLbfcwoABAxg/fjwAOTk5dOvWjYCAAHu9lJQU+vbtS58+fZgyZQoAu3fvZtasWTU9PBEREREREamnlOwSqccmTJhAUlISwcHBJCcn28stFgvbtm0jJiamytdu3LgRLy8vVq9ezebNm8nOzravW7ZsGf369eP777/H29ubHTt2EBgYyPLly+nVq5e9XkJCAmvXrmXdunUkJyeTl5dHbGwsmzdvxmq11s5Bi4iIiIiIiEdTsktE6Ny5M4cPH7Yvb926lXbt2lX7mvXr1zNo0CAABgwYwKZNm+zroqKiKCwsBKCgoIDg4GC8vb0JDQ112Ia3tzcA5eXltGjRAn9/fwDatGnDzp07a35gIiIiIiIiUu8o2SUiJCcnEx0dbV/OyMggMjKy2tfk5uYSFGSb0T8wMJDc3Fz7uujoaFavXk1sbCwGg4Hw8PAqt7NgwQJiY2MJCQnBy8s2jWBERATp6elXf0AiIiIiIiJSbynZJVKPzZ07F7PZTMuWLYmPj6+0zq5duzCbzQ4/r776KiEhIeTl5QGQn59PSEiI/TXz5s3jrrvuYvfu3TRu3Jh169ZVGcOYMWPYs2cPR44cYfv27dfy8ERERERERKQe0tMYReqxCRMm2CeGv1BMTAyfffYZAB07diQpKalCnQ0bNvDRRx9x2223sWrVKkaPHm1fZ7FY7EMWQ0NDHXp9XaikpAQfHx+MRiOBgYH4+voCcODAAfr27VvDoxMREREREZH6SD27RKSCuLg40tLSqq1z/fXXU1JSQv/+/YmLi6Np06YcO3aM2bNnM2bMGD744APMZjOpqakMGTIEgMTERLZs2UJiYiI7duxgyZIlmM1mbrjhBlq1amWfED8zM5POnTvX+nGKiIiIiIiI51HPLpF66tyQxMoYjUa6du1KRkZGtU9kfOeddxyWmzVrxjPPPAPYnsh4sRUrVjgsd+7cmVGjRjmU7d69m27dumEwGC7nMEREREREREQcKNklIpWqbHijM8TGxhIbG+uSfYuIiIiIiIj70zBGERERERERERHxGEp2iYiIiIiIiIiIx9AwRqlzCs5CZp5r9h0dBAHertm3iIiIiIiIiNSckl1S52TmwcS1rtn3e30hPsw1+xYRERERERGRmtMwRhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxNEG9eIS0F8wU7knG4OWNweSFb8sOtBg7g6C4wa4OTUREREREREScSD27xGO0GDuDhIUFdJ2XTcP2vdk783bKC0+7OiwRERERERERcSIlu8TjGL19aDxkApYzBZw5munqcERERERERETEiZTsEo9jKSnm5PL3MPoH4dsixtXhiIiIiIiIiIgTuU2yq7S0lKlTpxIeHo6fnx+DBg0iJSUFg8HA4sWLXR2e1AFHFkwldUwI2x+KpChrK9FTvsTkH+TqsFyitPz871ar6+IQuRasVjhWBD8WQkn5peuL1HU/lcDBAig46+pIRMRdnCmHQwVwrFj3duL+LFY48vO93VmLq6MRT+UWE9RbrVZGjRpFSkoK06ZNIzo6mgULFjBixAgAEhISnBZL5G29iZ14C6GdIinJyWdRj0edtm+pXosxL9NsxNOuDsOlCs7C+xnw+YHzZSO+hXvawqhIMBpcFprIFbNa4T8HYMFeOFhoK2voBbe3hgntIKiBa+MTuVIbTtiu0RtO2paNBhjUHCa2g+j6+d2MiFzCTyUwNx2WHISin7/wiQqAsdEwLBwMurcTN1JuhY/32X6OFtvKgr3hjkh4MAb83CI7Ie7CLU6nd999l6VLl5KamkqnTp0AMJvNREVFERoaSuvWrZ0WS8npQva8/zW+1wXT6eFfOm2/IpeSfxYmroF9+XDhF36Hi2D2dtj1E/wxQQkvcQ9WK8zYCv89CBeesoVlsGAfrD0Oc/tBsBJe4ia+/hGmbnY8ny1W+O4IrMmGOb2hS6jLwhOROujUGXhwja0HzIX3dvsL4OVUyMyD33VSwkvcQ7kVJm+Eb486vheePgv/zIAfjsPf+4K/W2QoxB24xTDGWbNmMXbsWHuiC8BkMhEVFWXv1fX0008TFRWFwWBgx44dtRbL0VXbyFq8lsIfT9TaPkSuxl93V0x0wfnl//0Iy484OyqRq5N0zJbogsrP6YMF8NYuZ0clcnV+KoFpW2zn7sWjNSzYhp7/fpPtg4CIyDmv7YCjRVXf2320D9brI4m4iS8O2hJdUPk5vec0/CPN2VGJJ6vzya6MjAyysrIYOXJkhXWHDh2yJ7tuv/12Vq1aRUREhLNDFHG5wjL44lDFN44LGYGF+5wVkUjNfJJV/RuUBfjqR8grdVZEIldv8UEoq+YCbcE2D0/ycaeFJCJ13KkztsRAddMZGQ2wMMtpIYnUyCdZjj26LmbFNhWL5meVa6XOdxI8fPgwAE2aNHEo37NnDwcOHLAnu/r163fV+wgMDKS0tOInprZejXg26Oq3K44GDjSzt+ynS9bzb9+bttOTrmjb7WdcWf2qDBxopigt+Zpsy5n8oq8n+pU11daxAFtPnMXHJ8A5QdUTnT85A4CPj6+LI/Esnf71E0Yf/2rrlFogosdginZXf+7L5dP5XDtaP/MJQd1+icFkqrKO1VLOPc+8yvGFLzkxMs+nc1rcVUD8TUS9sKTaOhYrrMw4ic8NLZ0UVf2g60YtMHnR5ePCS1YrKIPr2idQckjd98XGYrn6JxjU+Z5dYWFhAGRmZtrLrFYrzz33HBaLxamT04vUWdbLvQhojIy4B+vlntN6JJW4A4uFy7r+6nwWkXN0byee5Ere3/ReKNdIne/ZFRsbS3R0NJMnT8bb25uAgADmzJnDli1b8Pf3p3379jXeR35+fqXl2Sl7+Gr4lBpvX2xWrkyiaY8Ol6yXegomrnVCQJVYuTKJ+DDX7LsmzpTBTctswxmrYgS6NWvAppISp8VVH3T/+UvXErXrNfXbHyD5hO1b66r4muDHTd/RsM6/k7kPnc+1Y8FeeH1n9XUMRhP/eX0KPebrvuNa0jkt7iq3FG7+pvoh0Ebg5g7Xkarz+5rSdaN2PLAKduVWPzQ3pAGcykjFu853yRFnWbt27VWP4qvzp5GXlxeLFi2iefPmjBs3jkmTJjF06FAGDBhA165dMRqdewgGoxGTjzcGLy8wGDD5eGNsoE9a4lq+XjAiovpx8BbgrihnRSRSM3e1qT7RZQCGtUaJLnELvwwHH2PV12gj0LohXN/YmVGJSF0W0gCGtrr0vd1o3duJm7i7TfWJLoBRkSjRJdeMW5xKcXFxJCcnU1RURFpaGo888ghbtmxxyRDGtnfewH37P2LgP54ioNV13Lf/I+5Y85bT4xC52K/bQ5dGFcvP/Se/pw0MaObUkESuWp8mcH+07ffK3qg6BMNjsU4NSeSqBTWAV7uDyVDxfDYCDb3hT9eDobpPtSJS7/yuM7QNrJjwOncdebg9/MINRyRI/XRTS7i9te33C98Lz53f1zeG8THOjko8mVskuy5WXFxMWlqaQ7LriSeeoFWrVvz4448kJibSqVOnWtl35idJ/LP5nQ4/i3o8Wiv7korK8nPY/btubLmr4iTr2YtfZ9v4lhz9ZLpDuaX0DFsfaE7BLs+exNrXC/7ax5YAaHrBfJqxITD9F/C7TvogJe7l8VhbgqDTBUnc63zh0Q7wbl/wV68ucSP9m8EH/WFwi/Nlvia4IxL+dQNEB7ksNBGpowK94b1+tqRWqM/58rhQ+PP1tnIRd2EwwAtxMC3e8T2vuT9M6gRv9YIGVT/HReSKueVHhW3btlFeXu6Q7Hrrrbd46y31sPJ0Jr9AYl5czr4/ja6wLnTAWPyi4incs86h/NS3H+AX3tFZIbqUrwkeiLH1iCkss/UiUEJA3JXBAIktbD/n5s/43xDbo9ZF3FFsCLzSHZb/fD4nDQUvt/zaUUScJcAbHmoPE9pBjy9sZf/Qw+LFTRkM8MvWtp9z93aLB+sLeakdbvkxuGfPnlj1lIZ6yeDljVdgaKXrvEOacOaQ46cGa3k5BbvWENCxvzPCqzOMBtu3gSKeRoku8SRKdInI5dL7n3gqJbqktug2SzxazuqPCelzp6vDEBEREREREREnUbJLPJbVaiV3/X8J6Tnc1aGIiIiIiIiIiJMo2SUey1JcQGn2PjJfuoWcpH/x4wdPYyk94+qwRERERERERKQWueWcXVK/pU9NpChrC+lTE2lxzzQK9iTT7I5nOPXdhxz/8v8oLzxNeVEerR74E7GvbwLgyEfTCIpLxNjA9xJbFxERERERERF3pmSXuJ12L69wWA7oaHskTdig+wkbdH+lr2lxz7TaDktERERERERE6gANYxQREREREREREY+hZJeIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQxPUS50THQTv9XXdvkXEvSQlJTF+/HgiIiKIiIhg3rx5Duvnz59P8+bNSUxMpH///mzZsoU9e/bQqlUrh3qrVq3imWeeAWDy5MkMHz6cEydO8PDDD5Obm8s999zDww8/zPjx43n//fcxGAxOO0YREREREbl8SnZJnRPgDfFhro5CRNzJhAkTmDJlCk888QTJycn07t3bvu6LL75g4cKFAHz66ac8//zzlW7jjTfe4PPPPyc0NJRbb72V4cOH89JLL/Hmm28SERFhr9ezZ09WrlzJoEGDavegRERERETkqmgYo4hILUpKSiIqKgqz2cy4ceMqrJ8xYwYZGRnVbuPxxx+nf//+zJw5s9L1f//73xk8eDBms5mzZ88C8Oabb5KYmAjAmjVr6NWrF3369OG1114DYPfu3cyaNasmh1Ynde7cmcOHD9uXc3Jy8PX1tffCatasWZWvjYmJ4fTp0xQWFhIYGAhAeno6zz//PDfeeCNpaWkADBw4kKVLl9biUYiIiIiISE0o2SUiUssmTJhAUlISwcHBJCcn28stFgvbtm0jJiamytdu3LgRLy8vVq9ezebNm8nOznZYf/DgQbZv3863335LUlIS3t7enD17ltTUVHudNm3asGrVKtatW8eXX35JUVERsbGxbN68GavVes2P15WSk5OJjo62L2dmZjr0yqrO8OHDuemmm4iLi+PXv/41YEsUTp8+nXfeeYcXXngBgIiICNLT06998CIiIiIick0o2SUi4iQX9zraunUr7dq1q/Y169evtw+XGzBgAJs2bXJYv2zZMgoLCxk0aBDTpk0DbHNU3XPPPfY6LVq0oEGDBgCYTCaMRtulv02bNuzcubPGx1UXzJ07F7PZTMuWLYmPj7+qbUydOpUNGzY49Hrr1KkTbdu2tff6EhERERGRuk/JLhERJ7m411FGRgaRkZHVviY3N5egINuTEwIDA8nNzXVYf/z4cQwGA9999x1ZWVls3ryZb775hptuuqnCtpYvX07btm3x9fUFPKuH0rnec9OnT3coj46O5sCBA5e1DZPJRFBQEP7+/pSUlAAQGRnJyZMnyc7Oxt/fH4ADBw5U2xtPRERERERcSxPUi4jUsrlz57JixQr69etXZa+jXbt28eijjzqU3XzzzYSEhJCXlwdAfn4+bdu2dagTHBzMgAEDALjhhhvIyMhg2LBhFbb/448/8sorr7BkyZJrcETuIzQ0lKKiIvvy2LFj+e6779i7dy/Tpk1j8ODBPPXUU7z22mtMmjSJgQMHYrVaeeihhwCYMmUKd9xxB2VlZbz11lsArFy5kqFDh7rkeERERERE5NKU7BIRqWXnnhR4sZiYGD777DMAOnbsSFJSUoU6GzZs4KOPPuK2225j1apVjB492mF97969WbBgAQDbt2+nUaNGrFmzhvnz55Oamsp7773HfffdxwMPPMCcOXMICAiwv/bAgQP07dv3Gh6pa5jNZsxmc5Xrhw0bxooVK0hMTORf//pXhfXnJu2/9dZbufXWWx3Wde3alVWrVjmUrV+/nocffrjmgYuIiIiISK3QMEYREReJi4uzP+GvKtdffz0lJSX079+fuLg4mjZtyrFjx5g9ezYAv/jFLygrK8NsNlNUVMQf//hHli9fztdff018fDwTJ05kwYIF7Nq1i1/96leYzWb7vGGZmZl07ty51o/T1e6//377kymvhQ8++MA+75mIiIiIiNQ96tklIlKLqut1ZDQa6dq1KxkZGdXOAfXOO+84LDdr1oxnnnnGvvzmm29W+roVK1YAMH78eMaPH++wbvfu3XTr1g2DwXAZRyEiIiIiIuI+lOwSEXGhyoY3OkNsbCyxsbEu2beIiIiIiEht0jgMERERERERERHxGEp2iYiIiIiIiIiIx9AwRqlzCs5CZp5r9h0dBAHertm3iIiIiIiIiNSckl1S52TmwcS1rtn3e30hPsw1+xYRERERERGRmtMwRhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxNEG9eIS0F8wU7knG4OWNweSFb8sOtBg7g6C4wa4OTUREREREREScSD27xGO0GDuDhIUFdJ2XTcP2vdk783bKC0+7OiwRERERERERcSIlu8TjGL19aDxkApYzBZw5munqcERERERERETEiZTsEo9jKSnm5PL3MPoH4dsixtXhiIiIiIiIiIgTuU2yq7S0lKlTpxIeHo6fnx+DBg0iJSUFg8HA4sWLXR2e1AFHFkwldUwI2x+KpChrK9FTvsTkH+TqsMSDWa2V/y61x6J2FhGpU8oskFsCZ8pcHYmIiFysqAxyS6G8Ht5Du8UE9VarlVGjRpGSksK0adOIjo5mwYIFjBgxAoCEhASnxWJs4EWvmRNp3q8LvmFBFGX/xO73v2LP+185LQapXIsxL9NsxNOuDkPqgXIrfL4fPs46XzbyO7irDYyMAC+3+RqhbrNaYfkRWLD3fNmty2FkJNzbBvzc4h1MRMQznTwDH2bC4oNQWAYGoE8TuC8aujd2dXQiIvXb98fgX5mwJce23KiB7R56bFsI8HZpaE7jFh8V3n33XZYuXUpqaiqdOnUCwGw2ExUVRWhoKK1bt3ZaLEaTieLjuSy7+2XyD2QT2jGCIR9N4cyJXPZ/key0OETENcqtMHkjfHvUdmN/zqFCmL0d1h+HP12vhNe18NYumL/XsQvyiTPwtz3w/VH4W19o6BbvYiIinuVIEUxYY0t4nessYAWST8C64zA1HoY57/ZcREQu8H46/HUPGC/4sPJTKcxNh2+PwD/6QUgD18XnLG7xcWzWrFmMHTvWnugCMJlMREVFkZCQwKlTp7jlllto3749Xbp04Y477uDEiRO1EktZcQlb/vQx+fuPgdVKzs79HFq2kSY9YmtlfyJSt3y235bogvM3+Bf+virbsceXXJ212bZEF4ClkvV7TsPbu5wakoiI/OwPm+HUGcf3QbANNbcC01PhcKELAhMRqee25dgSXVBx+g8rcKAA/rzd6WG5RJ1PdmVkZJCVlcXIkSMrrDt06BAJCQkYDAaeffZZ0tLS2L59O23btuX55593SnwGLxNNe8by0+4DTtmfiLiO1Qof7XPs0XUxA7Bwn+aWqqlPshy/jbqYFfjikG3ojIiIOE9mHqTmVP5FxDlW4DPdGouION0nWdUneSzYpgk5dcZZEblOnR8AcvjwYQCaNGniUL5nzx4OHDhAQkICoaGhmM1m+7pevXoxZ86cy95HYGAgpaWlFcrbejXi2aB+1b6218wJnC0oZu+n31/2/uqrgQPN7C376ZL1/Nv3pu30pCvadvsZV1a/KgMHmilK03BUqZwpMIyO7x+pto4VOFoMgS2iKMupvq5UrdP8HIy+Dautc6YcWnUbRNGetU6KyvN1/sR25+Pj4+viSDyb2tl51NbXXuiNv6LlQ29VW8cK/HXpDzydMMA5QdUTOp+dQ+3sHGrn2tHh7/vxDm1ebZ1yK7QfdAf5m/7npKiunsVS3Vcr1avzPbvCwsIAyMzMtJdZrVaee+45LBZLhcnpLRYLc+bMYdiwYbUe2/XTxnFdt/Ysv3cGlrPqXiDi8QzV9emqULnWwqgXLretr+hvIiIiNXaZ112D3gdFRJxP99B2db5nV2xsLNHR0UyePBlvb28CAgKYM2cOW7Zswd/fn/bt2zvUf/zxxwkICOCxxx677H3k5+dXWp6dsoevhk+pdF2Plx6geb8ufD3qRUpyKn+9OFq5MommPTpcsl7qKZjooo4aK1cmER/mmn1L3WexwvAVcKy44jwlF7rOF9Yf2YfJ899Das0j62DTyeqHyTQwwoGUbwmqBxNsOkv3JbZ/S0pKXBuIh1M7O4/a+trbnQv3raq+jgGYeHNPfve02v1a0vnsHGpn51A7145nN0DSseqnVDECu1b8hyZ+Tgvrqq1du5Z+/aofbVeVOt+zy8vLi0WLFtG8eXPGjRvHpEmTGDp0KAMGDKBr164YjecP4emnnyYjI4OFCxc6lF9rPV5+kOb9u9oSXafyam0/IlK3GA1wV5vqE10AoyJRoquG7oqqPtFlAIa2QokuEREniw2BjiHVz6sItkfci4iIc42OunSiy9wct0h01VSd79kFEBcXR3Ky4zxKb7/9NgMGnJ8HYPLkyWzatIn//e9/+Pj41FosDVs1puPEWyg/U8qd69+xl2ev38OKe2fU2n5FpG64OwrWH7c9Xr0y3cNgbFvnxuSJBjSDERHw+QFbYuvC92wDEBEAT3R0UXAiIvXcSwnw4BooOOv4xYQR2/JTnW3XaRERca7ujeG+tranmld2D93UD57t4qLgnMwtkl0XKy4uJi0tjUmTJgGwc+dOXnnlFdq1a0efPn0AiIqK4vPPP7/m+y788ST/bH7nNd+uXJ6y/Bwy/jiEM4fTSFhY4LAue/HrZP/3Na4b+gjNR0+pskykJryM8HpP+PdeWJgFJ35+kkljH7gzCu5vCw1Mro3RExgMMLkrdAiGBftsj0kGCPCyJcHGx6hXl4iIq0QGwvwbYG4GfPUjnP0549W5ETwQAzc0c218IiL12RMdIToI5mdC5s8zLvmZYHhreLAdhNZe36A6xS2TXdu2baO8vNw+OX2nTp2wWi81sEg8gckvkJgXl7PvT6MrrAsdMBa/qHgK96yrtkykpryNtpv5+6Lh+M/zdzXxtSXC5NoxGGzDYO6IgONnbB+mmvgqmSgiUhe0bAh/iIenO8MNS21l7/d3aUgiIoLtHvrWcLilFVz/ha1s+c3gW8/uod0y2dWzZ08lt+opg5c3XoGhla7zDmnCmUPGS5aJXCsmAzT3d3UUns9gsHW5FhGRusffLT9NiIh4vgsfuFjfEl3gBhPUi4iIiIiIiIiIXC4lu0RERERERERExGMo2SUiIiIiIiIiIh5Do+zF7aRPTaQoawvpUxNpcc80CvYk0+yOZzj13Ycc//L/KC88TXlRHq0e+FOlZSIiIiIiIiLiuZTsErfT7uUVDssBHfsBEDbofsIG3e+wrrIyEREREREREfFcGsYoIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIYmqJc6JzoI3uvrun2LiIiIiIiIiPtSskvqnABviA9zdRQiIiIiIiIi4o40jFFEREQuS1JSElFRUZjNZsaNG1dh/YwZM8jIyKh2G48//jj9+/dn5syZFdalpKTQt29f+vTpw5QpU8jJyaFbt24EBARUWQdg9+7dzJo1q4ZHV3fUtJ0ra7eLXfh3qA9tKq5Vm9eOr7/+GrPZjNlsJiwsjNTUVM6ePcvo0aMxm83Mnj0bgOLiYm655RYGDBjA+PHjAZ3nIiKeTMkuERERuWwTJkwgKSmJ4OBgkpOT7eUWi4Vt27YRExNT5Ws3btyIl5cXq1evZvPmzWRnZzusT0hIYO3ataxbt47k5GRMJhPLly+nV69eVdbJy8sjNjaWzZs3Y7Var/0Bu0hN2jkwMLBCu13o4r9DREREvWhTca3aunbcfPPNJCUlsXLlStq0aUNcXByfffYZffr0ISkpiU2bNnHixAmWLVtGv379+P777/H29mbHjh06z0VEPJiSXSIiInLFOnfuzOHDh+3LW7dupV27dtW+Zv369QwaNAiAAQMGsGnTJof13t7eAJSXl9OiRQsaNmxIaGhotXX8/f0BaNOmDTt37qzZQdVBV9PO3t7eFdrtQlX9HepLm4pr1ca1A2DDhg10794dg8FAVlYWXbp0ASA2NpYNGzYQFRVFYWEhAAUFBQQHBwM6z0VEPJWSXSIiInLFkpOTiY6Oti9nZGQQGRlZ7Wtyc3MJCrI9CSQwMJDc3NwKdRYsWEBsbCwhISF4eVU+tWhldSIiIkhPT7+6g6nDrqadL6Wyv0N9alNxrdq6dixevJjhw4cD0L59e77//nusViurV6/m9OnTREdHs3r1amJjYzEYDISHhwM6z0VEPJWSXSIiInLZ5s6di9lspmXLlsTHx1daZ9euXfY5dM79vPrqq4SEhJCXlwdAfn4+ISEhFV47ZswY9uzZw5EjR9i+fXul27+cOu6uJu18KZX9HepDm4pr1fa1Y+XKlfbeX8OGDePEiRMMGTKE6667jiZNmjBv3jzuuusudu/eTePGjVm3bl1tHaqIiNQBehqjiIiIXLYJEybYJzG/UExMDJ999hkAHTt2JCkpqUKdDRs28NFHH3HbbbexatUqRo8e7bC+pKQEHx8fjEYjgYGB+Pr6VthGVXUOHDhA3759r8ER1g01aedL6dGjR6V/B09vU3Gt2rx27Nu3j1atWtGgQQMATCYTc+bMwWq1Mm7cOHr37s2ePXvsw3tDQ0PtvcN0nouIeCb17BIREZEai4uLIy0trdo6119/PSUlJfTv35+4uDiaNm3KsWPH7E9LW7JkCWazmRtuuIFWrVoRExNDYmIiW7ZsITExkR07dlRaByAzM5POnTvX+nG62uW0M1Ch3S5s54v/DqtWrarXbSqudS2uHRcOYQQ4ePAgZrOZwYMHc+edd+Lv78+YMWP44IMPMJvNpKamMmTIEEDnuYiIp1LPLhEREbks54YVVcZoNNK1a1cyMjKqfaraO++847DcrFkznnnmGQBGjRrFqFGjHNavWLHCYblz584V6uzevZtu3bphMBgu91DqtGvRzhe3G2BvZ6j4d/D0NhXXqu1rx5NPPumwrnXr1hV6iDVq1Ihly5Y5lOk8FxHxXEp2iYiIyDVR2RAlZ4iNjSU2NtYl+3YFZ7RzfWtTcS1dO0RE5FrTMEYREREREREREfEYSnaJiIiIiIiIiIjH0DBGqXMKzkJmnmv2HR0EAd6u2beIiIiIiIiI1JySXVLnZObBxLWu2fd7fSE+zDX7FhEREREREZGa0zBGERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jE0Qb14hLQXzBTuScbg5Y3B5IVvyw60GDuDoLjBrg5NRERERERERJxIPbvEY7QYO4OEhQV0nZdNw/a92TvzdsoLT7s6LBERERERERFxIiW7xOMYvX1oPGQCljMFnDma6epwRERERERERMSJlOwSj2MpKebk8vcw+gfh2yLG1eGIiIiIiIiIiBO5TbKrtLSUqVOnEh4ejp+fH4MGDSIlJQWDwcDixYtdHZ7UAUcWTCV1TAjbH4qkKGsr0VO+xOQf5OqwRERERERERMSJ3GKCeqvVyqhRo0hJSWHatGlER0ezYMECRowYAUBCQoJT4+n1ykTCh3THO8ifswXFHPgymY0v/wvL2TKnxiGOWox5mWYjnnZ1GCIibmfHT7Bg7/nlXy6HkZEwKhICvF0VlefZnw//3nd+ecjXMLw13N0GGvu6Li6Rq5FXCp9kwX8OnC+buhnubQMdQlwWloiICOAmya53332XpUuXkpqaSqdOnQAwm81ERUURGhpK69atnRrP7g++ZuNL8ykrLsEnNBDzu0/R9Yk7SH3tE6fGISIiUlNLD8G0LYDhfNmxYnhnt23dP/pCiI/LwvMYG0/CEz9AmeV82U+lMC8Tvvi5nVsHuC4+kStx8gxMXAM/FjmWf/MjLDsMM7vB4BauiU1ERATcZBjjrFmzGDt2rD3RBWAymYiKirL36rr99tuJi4sjISGB/v37k5qaWmvxnE7/kbLiEtuCwYDVYiWwTfNa25+IiEht+LEQpqWCBbBYK64/UADTtzo7Ks9TWAZPpdgSXZaL1lmxJb2e3QDWSv4GInXRH7fAkaKK5eeuJS9sguPFTg9LRETErs4nuzIyMsjKymLkyJEV1h06dMie7Jo3bx5bt25ly5YtPP300zz44IO1GleXx27n3sz53LPjfUI7RbDr3S9rdX8iIiLX2n/2V59gsQDfH4NjlXyolcv31SFbwuviRNc5Fitk5sPWHKeGJXJV9hfA+hNVn89WoNwKnx+oooKIiIgT1PlhjIcPHwagSZMmDuV79uzhwIED9mRXcHCwfd3p06cxGi8/jxcYGEhpaWmF8rZejXg2qF+lr9n+9n/Z/vZ/CY5pSZs7+lN8/KfL3l99NXCgmb1ll24n//a9aTs96Yq23X7GldWvysCBZorSkq/JtkRE6rro2Rvwi+xabR0rEDf8QXJX/ds5QXmg1k99RND1wzCYqr7tslos3PbbGRz/dLoTI/N8nT85A4CPjyZFu1ZChzxEy4ffrraOxWrlzS9+4Ik4s3OCqid0PjuH2tk51M7O4e7tbLFU9dXKpdX5nl1hYWEAZGZm2susVivPPfccFovFYXL6iRMn0rp1a1544QXmzZvnlPhOZxwmZ+cB+v/lCafsT0RE5FqpLvniUM9oquVIPJzRCwyGS1Syqp3FLVzOdcNgMOh8FhERl6rzPbtiY2OJjo5m8uTJeHt7ExAQwJw5c9iyZQv+/v60b9/eXve9994DYP78+TzzzDMsXbr0svaRn59faXl2yh6+Gj7lkq83epsI0pxdl7RyZRJNe3S4ZL3UUzBxrRMCqsTKlUnEh7lm3yIizvbiFvjfoaqHI52z6pN/0C74H06JyRO9lwZ/S6u+jsFoYt6syQz8cLJzgqonui+x/VtSUuLaQDzIthx4cE31dYzAuCE9eO4ptfu1pPPZOdTOzqF2dg53b+e1a9fSr1/lo+0upc737PLy8mLRokU0b96ccePGMWnSJIYOHcqAAQPo2rVrpcMV77vvPlauXMmpU6eueTzegf5EjzbTIMgfgEaxEcRNGsmRJM3gKyIi7mVkZPWJLiPQpRG0C66mklzS7RFgrKZjlxEI84H+TZ0WkshV69II2gZW/yHCgu36IiIi4ip1vmcXQFxcHMnJjvMovf322wwYMACAgoICfvrpJ8LDwwH44osvCA0NJTQ09NoHY7XSZuQNXD9tHMYGXpw5mceBpetJnb3w2u9LRESkFnVuBOOiYV4mGLDNz3WOEfD3gilxLgrOgzT2hee6wCvbbO16YYLRiC0RNv0X4FXnv4IUsY3IffEX8NAaKCl3PJ/PXUd+3R6ig1wUoIiICG6S7LpYcXExaWlpTJo0CYDCwkJGjRpFYWEhJpOJ0NBQvvjiCwyXnB/jyp0tKGbZXS9d8+2KiIi4wmOxEN7QlvA6VGgrMxpgUDN4JBYiAlwbn6cYGWnrvfVeOuw5fb68x3Xw6w62xKOIu+gQDP/sD3P22J7Yei5RHhEA42Pg1nCXhiciIuKeya5t27ZRXl5un5y+adOm/PDDDy6OSpzl4LuPU5yVStAvhtJ81Pm5TdJeMANQdvoEQfFDCJ/4JkcXvkxe6nIaNI0i8vG5lz0Zs4hIfWEw2IbZDW8N+wuguBya+0EjH1dH5nnMzW0/PxbC6VK4zhea+Lk6KpGr0zYI/twDTp2B7DO2nqARDS/jWQwiIiJO4Jaf/Hv27InVar10RfE4hRkbMRi9aP/Kava+eidnc7PxDrFNctJ+RhIAhz/8PYFdBnI25yhF+7bQ/pVVHP/f2+SmfEGj3iNcGL2ISN1lMEBUoKujqB9aNbT9iHiCMF/bj4iISF2i2SHErRSmryew6yAAAjsPoChzU4U6+TuSCOhspuTEAXxbdwLAL6ILhWnJFeqKiIiIiIiIiGdRskvcSnlhLiZ/24ynRr9AygtzHdafOZpJg+siMHo3wKdpGwrTfsBqsVCwcxXlRacr2aKIiIiIiIiIeBIlu8StmBqGUF6UB4ClOB9TwxCH9afXLyak53AAvEOaENJrBOlTB3E2Nxuv4CbODldEREREREREnEzJLnErDdv1IH/7SgDyd67CP7qbw/rTm5YS3O0W+3KTWx6l/YwkGlwX4VAuIiIiIiIiIp5JyS5xKw1jrsd6toS03/fHPyqOszlHObVyPgBleScxmLwxNQy219/7yh2kT03EUlpEQIfergpbRERERERERJzELZ/GKPVb61+/47Ds3yYeAK+gxsRM+9phXdvff+assERERERERESkDlDPLhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyG5uyqY/q9+RvOFp5h/QtzXR1KBfdmzuer2/9Azo6sWt1PdBC817dWd1HtvkVERMTzJSUlMX78eCIiIoiIiGDevHkO6+fPn0/z5s1JTExk5syZfPXVV8THx/OXv/zFod7dd9/NsWPHyM/PJzw8nP/+97/ceOONFBcXExQUxMKFCwkICGD9+vVMnjwZi8XCrFmziI6OZvr06bz++uvOPGwREbdwra7R48aNY+/evfj4+PDhhx/SsmVLMjMzeeyxxygpKeHJJ5+kR48e3H333QAcOnSIxx9/nPvvv1/XaDenZFctatanE/FPjSasaxsATm3bR+qfP+FY8k4XR2YT/9RowuLa8u39r1xW/X9H31fLEdkEeEN8mFN2JSIiIvXYhAkTmDJlCk888QTJycn07n3+yc1ffPEFCxcuJDs7m82bN7N69WqefPJJNm7cSPfu3e31Pv74YwD+/ve/YzAYAHj33XeJjIxk7ty5LFiwgIceeojXXnuNpUuX4uPjY39tbm4uBQUFBAQEOOmIRUTcx7W4Rr/44otERkby7bff8s477zBz5kxefPFFPv74Y0JCQuz1kpKSALjnnnu45ZZbCA0N1TXazWkYYy1pldiNIQumcGjFJj75xa/45Be/4tCKTQz5aAqtBv+i0tcYTNfuz2HwMl2zbYmIiIh4ss6dO3P48GH7ck5ODr6+vhgMBjZu3MiAAQMAGDRoECkpKZVu44svvuC2224DIDIyEgCTyYTBYGDv3r0UFxczbNgw7r33XgoLCwHo2bOn/QOWiIhUribX6Iuvx6WlpRw6dIj777+f4cOHk52dba979uxZsrKyaNeuHaBrtLtTsquW9Jz+IJmfJrFzzhLO5hdxNr+InXOWsHfR9/SY/iAAd6b8la6TRnLLkhmM3fdvGse1BcC7oS/md5/i3oz53P79G7Qwx11yf816d+LezPm0G5vInRvmMGzFnwFofkNXfvnNLMakzWPYt6/R+ubrAWh98/V0eWIELQfGc2/mfO7NnI+xQfUd/R44uoiwuLYYTEbGpH9ISPtw2777dOKBo4uI+KUt0+7XJIT7D36Md4Df1TWeiIiIiBMlJycTHR1tX87MzCQiIgKw9b4KCrLNcxAYGEhubm6F1xcUFJCfn0/z5s3tZUVFRfzjH/9g9OjRHD9+nL1797JkyRISExP5xz/+AUBERATp6em1eGQiIu6vptdoi8XCzJkzmTBhAidPnmTHjh3MmzePSZMm8cor50c5JSUlYTab7cu6Rrs3JbtqQVDbFgRGNCXrv2srrNv3+RqCIpsR1MZ2MxQ9yszap/7Kv6Pv49TPc2FF3d6PfZ+vZkGHcWz7y+cMev9Z/JuFXnK/Xn4+NI6P5r83TOLLoc8RGNmMxHnPs+Pt//JRx/FsmvEvBsx5ktBOkRz8egPb3/qcwytT+Xf0ffw7+j4spWWXdXzWcgvZ63fTvF8XAJr370Je1lGa9+tsW+7XhVPb9nG2oPiyticiIiLiCnPnzsVsNtOyZUvi4+MrrRMSEkJeXh4A+fn5DsNezvnmm2+4+eabHcp+/etfM23aNIKDgwkODqZnz574+Phwww03kJaWdq0PRUTE41yra/TUqVO5++67adOmDcHBwXTp0oVGjRrRv39/h+vxkiVLGD58eG0ciriAkl21wDc0EIDi7JwK64qP/2SrE2bLPqfNX87pjMNYLRZ7sunYD7s4+FUK1nIL+xat4qddB4i8rXeFbV3MYDSyaea/KSsuoby4lKjhfchev5v9XyRjLbdw+LstHFy2kbajBtT4GI+t2eGQ3Er98yf25Fezvp05unZHjfchIiIiUpsmTJhAUlIS06dPdyiPjo7mwIEDAHTr1o1Vq1YBsHLlSnr06FFhO4sXL3b4gPT666/TsWNHhgwZAkC7du04evQoVquV7du324fVHDhwgJiYmNo4NBERt3ctrtH/+c9/yMnJ4cEHbaOrGjZsiK+vLyUlJezYscN+PQZYv349PXv2tC/rGu3elOyqBWdy8gHwa1qxN5Zfk0a2Oqds2efCwycq1Cn80bGs4NCJy+rZVVZcQsnP+wbwbx5GwcXbOpCNf/Oaz/5+dM12mvbqSIMgf4LatCDrv2sxNfDCv3kozft15ujq7TXeh4iIiIgrhIaGUlRUBECzZs3o2rUr/fv3p6SkhO7du3Ps2DFmz54NQHl5Oenp6XTs2BGA0tJSfv/73/P1119jNpuZO3cu3t7e3Hvvvdxwww3MmTOHhx56CIAffvjBYciMiIhc2pVco3/3u9+xdetWzGYzM2bMAOCpp55i8ODB/Pa3v+XZZ58FYMuWLcTFxWE0nk+R6Brt3vQ0xlqQt/cI+QeziRrWh2MX9XCKGt6H/IPZ5O07CoDVYq3w+oatrnNYDgi/jhObLz1W2GqxOCwXHT1Fs96dLtpWE4qOnqq0/pXI2bkfq8VCx4d+yfENe7BaLBxds4N2YxLxb9KI4xv2XPW2RURERGqb2Wyu9kPMsGHDWLFiBYmJiUydOpWpU6fa1zVr1oxnnnkGsE16/MMPP9jXNWjQgJKSkgrbu++++7jvvvNPts7JySEkJITAwMBrcDQiIp7lWl2jz/UAu1BiYiKJiYkOZQkJCfb5FEHXaE+gnl21JOUP/yT6roF0+tVteAf44R3oT8df/ZLo0QNJmfpBta9t1qsj4Td2x2Ay0uaO/jTqGMH+//1Q7Wsqk7V4HU17xhJxa08MRiMtB8YTflN39i6ydfMsPnmahi0bX/VTII+t20nHh2/l6BpbL66ja7fT8eFbOb4pnfKSs1e1TREREZG64P7776/wYehaCg0N5Y033qi17YuIeDJdo+VS1LOrlhz6ZgMrxs4k7nd3Ev/MaABObdvHirEz7cmhqmT9dw1tRw3ghnd+S+HRU6yc+GeKjpy64hjy9x/juwf/xC9+fy993/gNhT+eYNVjb5Hz80T4+79Ips3t/bh7x/sYDAY+7jrhsiepBzi6ejuRv+zN0TW23mtH1+ygQVBDzdclIiIiIiIiIi6jZFctOrpme7WJrUU9Hq1QtmbSO1e1r2PJO/l39H0Vyg+vTOXwytRKX1OaW8DXI/94Wds3/Dx2+cJkWNqHy0j7cJl9uTj7J/7Z/M4riFpERERERERE5NrSMEa5LI06RWA5W1bphPoiIiIiIiIiInWFena5keFJbxDQqnGF8kPLNrHq0TdrvP3Ef79A054dKpSfLTiD0dvEppkLKM0rqvF+RERERERERERqi5JdbmSx+cla3f6Ke2fU6vZFRERERERERGqbkl1S5xSchcw81+w7OggCvF2zbxERERERERGpOSW7pM7JzIOJa12z7/f6QnyYa/YtIiIiIiIiIjWnCepFRERERERERMRjKNklIiIiIiIiIiIeQ8kuERERERERERHxGJqzSzxC2gtmCvckY/DyxmDywrdlB1qMnUFQ3GBXhyYiIiIiIiIiTqSeXeIxWoydQcLCArrOy6Zh+97snXk75YWnXR2WiIiIiIiIiDiRkl3icYzePjQeMgHLmQLOHM10dTgiIiIiIiIi4kRKdonHsZQUc3L5exj9g/BtEePqcERERERERETEidwi2VVaWsrUqVMJDw/Hz8+PQYMGkZKSgsFgYPHixa4OT+qIIwumkjomhO0PRVKUtZXoKV9i8g9ydVgiIiIiIiIi4kR1foJ6q9XKqFGjSElJYdq0aURHR7NgwQJGjBgBQEJCgkviMvk2YPh3r+HXJIR/R9/nkhjEUYsxL9NsxNOuDsOlLFb49gh8kgVpp8FkgN5N4K42EBfq6ug8S/JxWztvPmVbjguF0VHQtwkYDK6NTeRKZeXDwixYcQTOlEPrhnBHJPwyHHxNro5O5MrklsJn+2HxwfNlf90No6LgOl+XhSUiIsCmk7Z7jnMeWQejImFgc91Dy7VV55Nd7777LkuXLiU1NZVOnToBYDabiYqKIjQ0lNatW7skroRn7qLgx5P4NQlxyf5FLlZmgSmbbR9WjYDl5/IVR2HZEXiyE9zb1pURegarFd7aBfP3OrbzDydg3XG4Owqe6qw3a3Ef3x+D5zbYkuXnzueMPHh1Gyw5CH/tDQHeLg1R5LL9WAgPr4XjZxzLP8iARfthTh9oH+yS0ERE6r256TBnDxgvuE/edBI2nIRbW8EfExzXidREnR/GOGvWLMaOHWtPdAGYTCaioqIq9Op68cUXMRgM7Nixo1ZjCuvahpYD49nxzn9rdT8iV2Jepi3RBec/sILtAyzAGzttbyZSM98ctiW6oPJ2/jgLvjzk9LBErsqxInh+I5RbHc/nn09ndufakl4i7sBqhadS4OSZStYBBWfhtz/AWUvF9SIiUrvWZtsSXXD+vhnO33/870f4eJ/TwxIPVqeTXRkZGWRlZTFy5MgK6w4dOuSQ7Nq8eTM//PADERERtRqTwWSkz59/zQ+T38NSWlar+xK5XGWWS785GNEbyLWwYF/1F04D8O+9tg9dInXdZwds14+qTlcrtp6hlSUPROqaTadgb75j4vZCFuBkCaw86syoREQE4KN9l+61tWCfYyJMpCbq9DDGw4cPA9CkSROH8j179nDgwAF7squkpITf/OY3fPTRR5jN5iveT2BgIKWlpRXK23o14tmgfg5lnR8dzqntWWT/sJtmvTtVeI1UbeBAM3vLfrpkPf/2vWk7PemKtt1+xpXVr8rAgWaK0pKvybacybdNAjGzfqi2jgX49uAZfPpr/MbVMjYModM/s6utYwUy8yGgWWvKcquvK+Jq0bNT8I3oiqGacbcWK3T65QPkrv7IiZGJXLlm986g8bAnMRirnmjOWl7GI68t4Md3HnJiZCLXRudPbN88+Pho8rnapHauBUYjnT8uxGCovq/NsWIIadOVkiNpTgrM87n7+WyxXH137DrdsyssLAyAzMxMe5nVauW5557DYrHYk11/+MMfGDt2LJGRkbUaT2BkM9rffyMbX55fq/sRuVIG0+VNqHO59aRyV9J+Bq8GtRiJyLVhMDWoNtFlr6fzWdyAwcsbrJe+Kdb5LCLiXAaj1yUTXfa6Xvq8ItdGne7ZFRsbS3R0NJMnT8bb25uAgADmzJnDli1b8Pf3p3379iQnJ7Nx40ZeffXVq95Pfn5+peXZKXv4avgU+3LTHh3waxzMHWvfAsDoZcK7oR9373yflRNmk/3D7quOoT5YuTKJpj06XLJe6imYuNYJAVVi5cok4sNcs++ayC2Fm7+Bsmq6/RqA6BATm0pKnBaXpym32tr5p4odQR0EecNPhzLxrtNfJ4jAC5tg+ZFLDxn49qN36dToXecEJXKVlhyEl1Krr2MwefHCQ3cz/k93OyUmkWup+xLbvyW6l6tVaufacfsKOFxU9dQJAD5GOLJ7Ew3rdJbCvbj7+bx27Vr69et36YqVqNMfxby8vFi0aBHNmzdn3LhxTJo0iaFDhzJgwAC6du2K0Wjk+++/Z/fu3URFRREZGcmPP/7ITTfdxLJly655PFlfrOM/fR5jSeLTLEl8mrVP/Y2zRWdYkvg0JzZnXPP9iVyukAYwpGX1/6GtwOgoZ0XkmUwGuDPSljisigEYEYESXeIW7oysPtFlBNoFQccQJwUkUgM3tgB/U/XXaJMBhoU7LSQREfnZqKjqE11G4NZwlOiSa6bOfxyLi4sjOTmZoqIi0tLSeOSRR9iyZYt9COPzzz/PkSNH2L9/P/v376dVq1Z888033Hjjjdc8lvLiUoqO5th/Sk7lgdVK0dEcTVYvLvdYLIT5Vv2funsY3NbaqSF5pLHR0Daw8g9TRiAiAB6IcXZUIlcnPhRGVvFcFyO2pO2UeLiMkY4iLufrBVPjbb9ffMqeW/5dZ9t7pYiIONedkdC1UdX30E394FftnRyUeLQ6n+y6WHFxMWlpaQ5PYnSVY8k7+Xf0fa4OQwSwvUF80B8GNXd80om/Ce5tA//XS72NroWGXvCPfnB7BDS4oD29jbZvo+b2g0BNNSBuwmCA57rCEx0h1MdxXbfGMLe/enWJexnSEt7oCdFBjuXhDWFGN7hLPZxFRFzCxwTv9LaNNPG94DkiJoPt2v1Bf30ZIdeW23US3LZtG+Xl5VUmu/bv3+/cgMTpyvJzyPjjEM4cTiNhYYHDup/Wfsqxz2djMBhpNfFNAtr3Iu0Fs+11p08QFD+E8IlvOj9oJ2nmB69eDyfPwM0/j+T95ibwc7v/6XVboDe8EGdLEAz8ylb29Y0QrDmPxQ0ZDXB/NIxpA72+tJX9dzC0aujauESuVr+m0LcJ7M23vR+GNID2weqhKCLian5e8EwXeDQWdufaplKIDqr4hZvIteB2H4F79uyJ1XqJmXTFo5n8Aol5cTn7/jS6wrrjS9+h/cxVlOXncOgfTxDw/CLaz0gC4PCHvyewy0AnR+sajS/4VkSJrtpzYQ8uJbrE3Xld0FNRiS5xdwaD7QPUxT28RETE9Rp6QffGro5CPJ0GNYnbMXh54xUYWuk6nyaRWM4UUl50ukKd/B1JBHQ2OyFCEREREREREXEV9fkQjxJ8/W3sejIBLOVE/2GpvfzM0UwaXBeB0Vvdb0REREREREQ8mXp2iUc59tksOr2zmw5/3sCRf0+1l59ev5iQnsNdGJmIiIiIiIiIOIOSXeJRjN6+GBv4YfIPwlJSaC8/vWkpwd1ucWFkIiIiIiIiIuIMSnaJW0qfmkhR1hbSpyZSsGsNxz6bDUDYwPtJe64P6VMH0XT47wAoyzuJweSNqWGwK0MWERERERERESfQnF3iltq9vMJhOaBjPwAa3ziRxjdOdFjnFdSYmGlfOy02EREREREREXEd9ewSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEY2jOLqlzooPgvb6u27eIiIiIiDtJSkpi/PjxREREEBERwbx58xzWz58/n+bNmxMeHs6DDz6I0Wike/fuvPHGGw71Pv30U2bPno3RaOTNN9+kV69ePP3008ybN4833niDsWPHAjB+/Hjef/99DAaD046xLrjcdk5MTGTmzJl89dVXxMfH85e//MWh3rhx49i7dy8+Pj58+OGHtGzZkszMTB577DFKSkp48skn6dGjB3fffTcAhw4d4vHHH+f+++9n+vTpvP766047ZhF3pWSX1DkB3hAf5uooRERERETcx4QJE5gyZQpPPPEEycnJ9O7d277uiy++YOHCheTk5PDNN98QEBDAfffdR3p6Ou3atbPXe+edd1i1ahU5OTk88cQTLFq0iGeeeYbOnTs77Ktnz56sXLmSQYMGOe346orLaefs7Gw2b97M6tWrefLJJ9m4cSPdu3e313vxxReJjIzk22+/5Z133mHmzJm8+OKLfPzxx4SEhNjrJSUlAXDPPfdwyy23EBoaSm5uLgUFBQQEBDjrkEXckoYxitRTSUlJREVFYTabGTduXIX1M2bMICMjo9ptPP744/Tv35+ZM2c6lBcXF3PLLbcwYMAAxo8fD0BOTg7dunVzeGNOSUmhb9++9OnThylTpgCwe/duZs2aVdPDExEREamXOnfuzOHDh+3LOTk5+Pr6YjAYCAsLs9+LmUymCj2zIiMjKSws5PTp04SGhgLQtGnTCvsYOHAgS5curcWjqPuqa+eNGzcyYMAAAAYNGkRKSorDayMjI4Hzf4PS0lIOHTrE/fffz/Dhw8nOzrbXPXv2LFlZWfakZM+ePe1JMBGpmpJdIvXYhAkTSEpKIjg4mOTkZHu5xWJh27ZtxMTEVPnajRs34uXlxerVq9m8ebPDm/KyZcvo168f33//Pd7e3uzYsYPAwECWL19Or1697PUSEhJYu3Yt69atIzk5mby8PGJjY9m8eTNWq7V2DlpERETEgyUnJxMdHW1fzszMJCIiwqHOzp07OXnyZIV7vdtuu42EhAQSExP5zW9+U+U+IiIiSE9Pv7aBu5nq2jk3N5egINv8KIGBgeTm5lZ4vcViYebMmUyYMIGTJ0+yY8cO5s2bx6RJk3jllVfs9ZKSkjCbzfZltb3I5VGyS0QqfDO1detWhy7tlVm/fr296/qAAQPYtGmTfV1UVBSFhYUAFBQUEBwcjLe3t/0bwnO8vb0BKC8vp0WLFvj7+wPQpk0bdu7cWfMDExEREakn5s6di9lspmXLlsTHx1dZLy8vj8cee4x33323wrpZs2axe/duNmzYwNSpU2sxWvd1Oe0cEhJCXl4eAPn5+Q5DE8+ZOnUqd999N23atCE4OJguXbrQqFEj+vfvT1pamr3ekiVLGD58eG0ciohHU7JLRCp8M5WRkWHvXl2V6r6xio6OZvXq1cTGxmIwGAgPD69yOwsWLCA2NpaQkBC8vGzTCOobKxEREZErc67H/vTp0x3Ko6OjOXDgAABWq5UHH3yQl156iRYtWlTYhq+vL35+fgQFBdm/uKzMgQMHqh0B4Mkup527devGqlWrAFi5ciU9evRwqPuf//yHnJwcHnzwQQAaNmyIr68vJSUl7Nixw+E+fP369fTs2dO+XJ/bXuRKKNklUo9dzjdTu3btwmw2O/y8+uqr1X5jNW/ePO666y52795N48aNWbduXZUxjBkzhj179nDkyBG2b99+LQ9PREREpN4LDQ2lqKgIsA2J++6775g6dSpms5lNmzZx7NgxZs+eDcD9999Pnz59GDRoEL/73e8AmD17NrNnz+bVV1+1PwVw5cqVDB061DUHVEdd2M7NmjWja9eu9O/fn5KSErp37+7Qzr/73e/YunUrZrOZGTNmAPDUU08xePBgfvvb3/Lss88CsGXLFuLi4jAaz39s/+GHHxyGNYpI5fQ0RpF67NzTZC4WExPDZ599BkDHjh0rnQRzw4YNfPTRR9x2222sWrWK0aNH29dZLBb7kMVzT42pTElJCT4+PhiNRgIDA/H19QVs31j17du3hkcnIiIiUj+c+0KyKsOGDWPFihUkJiaSk5NTYf0zzzwDwMSJE5k4cWKFdefWn7N+/XoefvjhmgfuZq6knadOneowFLRZs2b2djzXA+xCiYmJJCYmOpQlJCTwj3/8w76ck5NDSEgIgYGBNTwSEc+nnl0iUkFcXJzDXAGVuf766ykpKaF///7ExcXRtGlT+zdWY8aM4YMPPsBsNpOamsqQIUMA25v4li1bSExMZMeOHSxZsgSz2cwNN9xAq1at7F2yMzMzKzziWkRERESuzv33318hkVITH3zwgUNvI7G51u18sdDQUN54441a276IJ1HPLpF6qrpvpoxGI127diUjI6PaOQHeeecdh+ULv7FatmxZhforVqxwWO7cuTOjRo1yKNu9ezfdunWr8ChsERERERERkcuhZJeIVKqy4Y3OEBsbS2xsrEv2LSIiIiIiIu5PfU9FRERERERERMRjKNklIiIiIiIiIiIeQ8kuERERERERERHxGJqzS+qcgrOQmeeafUcHQYC3a/YtIiIiIiIiIjWnZJfUOZl5MHGta/b9Xl+ID3PNvkVERERERESk5jSMUUREREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hObvEI6S9YKZwTzIGL28MJi98W3agxdgZBMUNdnVoIiIiIiIiIuJE6tklHqPF2BkkLCyg67xsGrbvzd6Zt1NeeNrVYYmIiIiIiIiIEynZJR7H6O1D4yETsJwp4MzRTFeHIyIiIiIiIiJOpGSXeBxLSTEnl7+H0T8I3xYxrg5HRERERERERJzIbZJdpaWlTJ06lfDwcPz8/Bg0aBApKSkYDAYWL17s6vCkDjiyYCqpY0LY/lAkRVlbiZ7yJSb/IFeHJSIiIiIiIiJO5BYT1FutVkaNGkVKSgrTpk0jOjqaBQsWMGLECAASEhKcFku/N39D1Ih+WM6W2cuSHnqNwytTnRaDVK7FmJdpNuJpV4fhUlYrrD8Bi/afL3t1G9wZCdHK+4kbysqHT/fDmmwos0D7YNv53KcJGAyujk7kyuSWwH8Pwtc/Qm4pNPOH4a1haEvwdYs7MhFxNovV9h74n/3ny17bAaMioXWAq6LyTJtPwadZ55dfSoXRkdAhxEUBiUiNuMWt1bvvvsvSpUtJTU2lU6dOAJjNZqKioggNDaV169ZOjSf9XytY/8Jcp+5T5FIsVnhlG3x+AIwXJAE+22+7QZoSb/tQJeIulh6CaamAFSw/l508A6uz4dZW8IcEMCnhJW4iMw8eWQc/lZ4vO1UCO36Cj/bB3/pAqI/r4hORuqfMAlM2w4ojjsNxPt5nS8rM6AaDW7gsPI9htcJbu2D+Xsd2/vIgLDkIv+sEY9q6LDwRuUpuMYxx1qxZjB071p7oAjCZTERFRdl7dUVGRtKhQwfi4+OJj4/nm2++cVW4Ii7x0T5bogtsia9zLIAVmJ4K23NcEJjIVdhzGqZtsZ3LlgvKz/3+vx9hvp4/IW6itBwe/wFOlzqWn7tU78+H3290elgiUsf9I92W6ALH90IrUG6FyZtsPaClZr44ZEt0QeX3HK/vhB+OOzsqEampOp/sysjIICsri5EjR1ZYd+jQIYchjIsWLSI1NZXU1FRuuummWoupzR39uWfXB9y+6k26/vYODKY634zi4cqt8K+91dcxAB9nVV9HpK5YuO/Sdf691/att0hd9+1ROHHG8UPUhSzAplOQftqZUYlIXXamvPr3Qiu2Hkmf6N6uRqxW25dn1XUUN2K75xAR91LnhzEePnwYgCZNmjiU79mzhwMHDlyT+boCAwMpLS2tUN7WqxHPBvVzKNs1dykbX57PmZx8wrq2YcBfJ2HyacCWP31c4zg83cCBZvaW/XTJev7te9N2etIVbbv9jCurX5WBA80UpSVfk205k29kV2Jmb6i2jgX4al8Rf+7TyDlB1ROdPzkDgI+Pr4sj8SwdPziGKaD6c/WnUmjctT/FGSlOisrz6XyuHeGT5hPc6w4Mpqpvu6xWC4N+/SInPnvViZGJSF3VsLOZNn+sfqSKBViw+Qh/uD7KOUF5IO/rIujw1/Rq61iAdcct+DYMwlp21jmBiVwj7n5vZ7Fc/Tfbdb5LUlhYGACZmefHq1itVp577jksFotDsuvee++la9euPProo+Tm5tZKPDnbszhzKg+sVk5t3cuWPy8kanjfWtmXyOUyNvC7rHoGb00II+7B0ODy3pAv99wXcSVjA79LP1HBYsXoo/NZRGwu+95O74M1ctntbDBi8NJ9tIg7qfM9u2JjY4mOjmby5Ml4e3sTEBDAnDlz2LJlC/7+/rRv3x6A1atXEx4eTklJCZMmTeKxxx7jX//612XtIz+/8sHu2Sl7+Gr4lOpfbLFW3+9V7FauTKJpjw6XrJd6CiaudUJAlVi5Mon4MNfsuyZySuDmZY5zdV3MAEQGmdhUUuK0uOqD7kts/5aoXa+pMUmQkXd+TqPKGIDda5fRVPf514zO59rx1i7bMJlqz2eTib+9/Dy3/PN5p8UlInXXoQIY8V31dYxAt/BGpOqafdWKyiDxayi9ROeRMB8oyj2lJ0GL23H3e7u1a9fSr1+/S1esRJ3v2eXl5cWiRYto3rw548aNY9KkSQwdOpQBAwbQtWtXjEbbIYSHhwPg4+PDo48+ytq1tZMtiRzWB+9AfwAaxUYQ99Qo9n/pfsPexLOE+sDAZtX/h7YCd0Y6KSCRGrozsvrEgBHo1xQlusQtjGh96cRtgBcM0lPVRORn4QHQPaz6ezsLcKdGMNaIvxfcGl59OxuAUZGX7qArInVLne/ZBRAXF0dysmNC6e2332bAgAEAFBYWUlZWRnBwMFarlY8//pj4+PhaiaXDAzfRe9bDGL1NFGfnsnfR92z7y+e1si+RK/F4R9hwEgrKKvbwMgAdQ+D21q6ITOTK/TLc9sTFbTkVkwRGA/ib4LcdXRKayBULD4DxMfBBRsV1Bmzn+PNdwdfk7MhEpC57qjM8uAZKyit/wEWPxjBESfIae6gdrMmGU5U8SMQIRAbA3W1cEZmI1IRbJLsuVlxcTFpaGpMmTQIgOzubkSNHUl5eTnl5OR07duSvf/1rrez76zv+WCvbFampVg3hg/7w6jZb0uscLwMMbQVPdwFft/wfL/VRAxO83cv2uO8vD8HZC+4+40NtiYHIQNfFJ3KlHu0AjRrYEl4/XfBMnJb+8ERH9eoSkYpigmFuP5i1HbbmnC9vYIThreG3ncCrzo/Tqfua+MEH/eCVbbDu+Pkv2YwGWzLx2S4Q4O3SEEXkKrjlR99t27ZRXl5un5y+TZs2bNmyxcVRiTOU5eeQ8cchnDmcRsLCAod12YtfJ/u/r3Hd0EdoPvr8XGuW0jNsfziKts9+SkDHqxvv6y4iAmBOHzhYAOl5tkRXfCiEaD5NcUN+XvBCHDwWC4O/tpUtGmT7hlXE3RgMMKYtjI6CXl/ayt7rC3GhGhojIlVr93PCa1++7cfbCN3ClHy51pr5w//1giNFsDvX1uu2ayg0ds8H2IkIbprs6tmzJ1ZrdbNfiKcy+QUS8+Jy9v1pdIV1oQPG4hcVT+GedQ7lp779AL/w+jXeqXWA7UfEEwQ3OP+7El3i7i7sheGOD0QREddoE2j7kdrVwt/2IyLuTx1fxa0YvLzxCgytdJ13SBMMBsdT2lpeTsGuNQR07O+M8ERERERERETExZTsEo+Ws/pjQvrc6eowRERERERERMRJlOwSj2W1Wsld/19Ceg53dSgiIiIiIiIi4iRKdonHshQXUJq9j8yXbiEn6V/8+MHTWErPuDosEREREREREalFbjlBvdRv6VMTKcraQvrURFrcM42CPck0u+MZTn33Ice//D/KC09TXpRHqwf+ROzrmwA48tE0guISMTbQI1VEREREREREPJmSXeJ22r28wmE5oGM/AMIG3U/YoPsrfU2Le6bVdlgiIiIiIiIiUgdoGKOIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ3N2SZ0THQTv9XXdvkXEvSQlJTF+/HgiIiKIiIhg3rx5Duvnz59P8+bNSUxMpH///mzZsoU9e/bQqlUrh3qrVq3imWeeAWDy5MkMHz6cEydO8PDDD5Obm8s999zDww8/zPjx43n//fcxGAxOO0YRERERkWvpSu6hGzVqRFxcHA0aNGDZsmUO9R566CHS09MpLy/n/fffp127dgwcOBCr1QrAX//6V9q1a8evf/1r3nvvPacdn5JdUucEeEN8mKujEBF3MmHCBKZMmcITTzxBcnIyvXv3tq/74osvWLhwIQCffvopzz//fKXbeOONN/j8888JDQ3l1ltvZfjw4bz00ku8+eabRERE2Ov17NmTlStXMmjQoNo9KBERERGRWnS599DdunVjxYoVlW7jr3/9K97e3qxevZq//e1vvP7665hMpgr1r7vuOvbu3Uvbtm1r74AuoGGMIiK1KCkpiaioKMxmM+PGjauwfsaMGWRkZFS7jccff5z+/fszc+bMStf//e9/Z/DgwZjNZs6ePQvAm2++SWJiIgBr1qyhV69e9OnTh9deew2A3bt3M2vWrJocWp3UuXNnDh8+bF/OycnB19fX3gurWbNmVb42JiaG06dPU1hYSGBgIADp6ek8//zz3HjjjaSlpQEwcOBAli5dWotHISIiIiLiPJe6h966dSv9+/e3f5a4kLe3NwAFBQV07twZAKvVitlsZuLEiZw5cwYAs9nMV199VduHYqdkl4hILZswYQJJSUkEBweTnJxsL7dYLGzbto2YmJgqX7tx40a8vLxYvXo1mzdvJjs722H9wYMH2b59O99++y1JSUl4e3tz9uxZUlNT7XXatGnDqlWrWLduHV9++SVFRUXExsayefNme/diT5GcnEx0dLR9OTMz06FXVnWGDx/OTTfdRFxcHL/+9a8BW6Jw+vTpvPPOO7zwwgsAREREkJ6efu2DFxERERFxgUvdQ6enp5OUlMSaNWvYsWNHhdcPHjyYxx57jOuvvx6ARYsWkZSURGxsLHPnzgWcfw+tZJeIiJNc/I3J1q1badeuXbWvWb9+vX243IABA9i0aZPD+mXLllFYWMigQYOYNm0aYBtff88999jrtGjRggYNGgBgMpkwGm2X/jZt2rBz584aH1ddMHfuXMxmMy1btiQ+Pv6qtjF16lQ2bNjg0OutU6dOtG3b1t7rS0RERETEU1zuPXSjRo0wmUzccsst7Nq1q8L6b7/9ls8++8z+eaRRo0YADBs2zGWfN5TsEhFxkou/McnIyCAyMrLa1+Tm5hIUZHtyQmBgILm5uQ7rjx8/jsFg4LvvviMrK4vNmzfzzTffcNNNN1XY1vLly2nbti2+vr6AZ/VQOtd7bvr06Q7l0dHRHDhw4LK2YTKZCAoKwt/fn5KSEgAiIyM5efIk2dnZ+Pv7A3DgwIFqe+OJiIiIiLiDy7mHLioqory8HLB9nomKinKoe+6+OTg4GD8/PwDy8/Mr1Hf2PbQmqBcRqWVz585lxYoV9OvXr8pvTHbt2sWjjz7qUHbzzTcTEhJCXl4eYHvTuHhCx+DgYAYMGADADTfcQEZGBsOGDauw/R9//JFXXnmFJUuWXIMjch+hoaEUFRXZl8eOHct3333H3r17mTZtGoMHD+app57itddeY9KkSfYnxzz00EMATJkyhTvuuIOysjLeeustAFauXMnQoUNdcjwiIiIiIrXtwnvovXv38sADD+Dn50ePHj24/vrrOXbsGPPnz+eZZ55hxIgRFBcXYzAYeOeddwBITEykQYMGhISE8K9//QuwzWU8YcIEpx2Dkl0iIrXs3FNOLhYTE8Nnn30GQMeOHUlKSqpQZ8OGDXz00UfcdtttrFq1itGjRzus7927NwsWLABg+/btNGrUiDVr1jB//nxSU1N57733uO+++3jggQeYM2cOAQEB9tceOHCAvn37XsMjdQ2z2YzZbK5y/bBhw1ixYgWJiYn2N9sLnZto89Zbb+XWW291WNe1a1dWrVrlULZ+/XoefvjhmgcuIiIiIuIiV3IPffFUKs2aNeOZZ54BqPTBTevXr3dYLisr4/jx4w6jXGqbhjGKiLhIXFyc/Ql/Vbn++uspKSmhf//+xMXF0bRpU44dO8bs2bMB+MUvfkFZWRlms5mioiL++Mc/snz5cr7++mvi4+OZOHEiCxYsYNeuXfzqV7/CbDbb5w3LzMy0PzHFk91///32J1NeCx988IF93jMREREREU90Le+hvby87BPVO4t6domI1KLqvjExGo107dqVjIyMasevn+sOfM6F36QAvPnmm5W+bsWKFQCMHz+e8ePHO6zbvXs33bp1sz9OWERERERExFMo2SUi4kKVDW90htjYWGJjY12ybxERERERkdqkcRgiIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DM3ZJXVOwVnIzHPNvqODIMDbNfsWERERERERkZpTskvqnMw8mLjWNft+ry/Eh7lm3yIiIiIiIiJScxrGKCIiIiIiIiIiHkPJLhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGJqgXj5D2gpnCPckYvLwxmLzwbdmBFmNnEBQ32NWhiYiIiIiIiIgTqWeXeIwWY2eQsLCArvOyadi+N3tn3k554WlXhyUiIiIiIiIiTqRkl3gco7cPjYdMwHKmgDNHM10djoiIiIiIiIg4kdsku0pLS5k6dSrh4eH4+fkxaNAgUlJSMBgMLF682NXhSR1iKSnm5PL3MPoH4dsixtXhiIiIiIiIiIgTucWcXVarlVGjRpGSksK0adOIjo5mwYIFjBgxAoCEhASnx9Rq8C9IeO5ugtq2oKygmB1/+4Kdc5Y4PQ4578iCqRz7dDoGLx98wzsSPeVLTP5Brg5LPNT+AvjP/vPLf9oOd0ZCm0BXReSZsovh8wPnl6dtgZER0LkRGAyui0tE6q6zFvjuKHxxEE6cgZAGcEs43NQCfN3izldERKRmTp6BxQfPL7+wCUZGQkJo/bmHdou3/HfffZelS5eSmppKp06dADCbzURFRREaGkrr1q2dGk+LAXH0nv0r1jzxNseSd+Ll50PDlo2dGoNU1GLMyzQb8bSrw5B64NMsW3LrQouy4JMs+F0nGNPWNXF5mu+PwfMbocxyvmzpIfjyENzTxtbW9eXNWkQuT24J/CYZ0vJswxcs2P7ddAo+SIe/9YFm/i4OUkREpBalnIDfpcCZ8vNly4/AN4fhtnCYEg+menAP7RbDGGfNmsXYsWPtiS4Ak8lEVFSUvVfXmTNneOSRR4iJiaFLly48/PDDtRZPwrN3s+3N/3B0zXas5RbOFhSTm3ao1vYnInXHD8dh1nawYvs551w+5vWdsOqYCwLzMHvz4LkNtkRXZe380T5YmOWKyESkLntuI2Tk2X4/d7049++RInjiB7BYK3uliIiI+ztaBE+uh5Jyx/Jz731fHIL3050flyvU+WRXRkYGWVlZjBw5ssK6Q4cO2ZNdzz77LL6+vqSnp7N9+3ZefvnlWonHy8+HxvFt8bsuhBGr/4+7tr3HoH8+R0B4k1rZn4jULR9mVn/hNP5cR2pmYZbtTbm6z6TzMqFcH1pF5Ge7c209uCxVrLcA+wog+bgTgxIREXGiRfuh1FL9PfSCfRWTYZ6ozg9jPHz4MABNmjgmk/bs2cOBAwdISEigoKCADz/8kB9//BHDz2NamjZtetn7CAwMpLS0tEJ5W69GPBvUz6GsQUhDDEYjEbf2ZPk90yk+dZoeL41n4Nxn+OLGZ6708OqVgQPN7C376ZL1/Nv3pu30pNoOp1IDB5opSkt2yb6l7jP6BtBp/qlq61iA1Bzwb9yC8vzq60rVYt8/ildgaLV1TpyBsE59KN67yUlReb7On5wBwMfH18WReDa1c+1oevc0rhvxLAajqco61vIy7psxj8N/f9SJkYmIiDhHu7d349O0TbV18s9Ci163ULDtWydFdfUslqq+wrq0Ot+zKywsDIDMzPNdJaxWK8899xwWi4WEhAT27t1LWFgYL774It27d8dsNrNmzZpaiedsge0Gddd7Syn48QTlxaVsfmUBYV2iNG+XC7WfkaT5uqTWGX0bXn5dn8uvKxUZfS5vUh2jb0AtRyIi7sLoGwDWS98U67ohIiKeynSZ73FX8rnGXdX5nl2xsbFER0czefJkvL29CQgIYM6cOWzZsgV/f3/at29Pamoq+/btIyEhgdmzZ7N+/Xpuu+02MjMzCQq69NP48vPzKy3PTtnDV8OnOJSdzS+i4NBxsGrszJVauTKJpj06XLJe6imYuNYJAVVi5cok4sNcs2+p+8osMPhrKCyrvp6vCU4ezMC36s4FcgmjvrM98fJSV9qda5bRXJNNXzPdf36ocElJiWsD8XBq59qxMAtmb6++jtHkxe/G38Wjf7rLOUGJiIg40YTVsP2nqof0n7Puy0+JCXZKSDWydu1a+vXrd+mKlajzPbu8vLxYtGgRzZs3Z9y4cUyaNImhQ4cyYMAAunbtitFopHXr1nh5eXHPPfcA0LNnTxo3bkx6eu3MvJb24TJiJ96Kf4swTD7eJDx7Nye37qXw8Mla2Z+I1A1eRhjWGqp7eIkR+GU4SnTV0MjI6hNdRqDXdSjRJSJ2Q1tCg8u4sx3u3Id4i4iIOM0dkdUnuoxAxxDcItFVU3U+2QUQFxdHcnIyRUVFpKWl8cgjj7Blyxb75PSNGzdm4MCBLF++HID09HSOHz9OdHR0rcSz/Z3FHP5uC8OW/YlRm9/Fv2koKyfMrpV9iUjdMi4aGvtWfvE0AiE+MD7G2VF5nuGtoV1Q5YlFI9DABI93dHZUIlKXBTWA38RWX+e+aGjp+SM3RESknrqxJcSHVn4PbQCMBvhdJ2dH5Rpukey6WHFxMWlpafZkF8Df/vY3Zs6cSZcuXbj77ruZP38+ISEhtROA1cqmGf/i484T+LjTeL4bP0u9ukTqica+8H4/+EUlw13jQm3rmvo5Py5P4+cFf+sDA5tXfLNuEwh/7wPt68E3UiJyZe5tC893gSBvx3J/EzzaAR6/RDJMRETEnXkb4a1eMLSVLbF1odYB8Nc+1Jtpe+r8nF2V2bZtG+Xl5Q7JrjZt2pCUlOS6oMQpyvJzyPjjEM4cTiNhYYHDuuzFr5P939e4bugjNB89pcoykZpq7g9/6wtZ+bA1x1bWpRG0vfQUgXIFghrAn66HY8Ww4QSctUC7YOgUAobqxpKKSL12Z5RtyPm64/D0BlvZspvA1y3vekVERK6Mvxe89At4oiP8cBxKLNA20PbFfH26h3bLt/2ePXti1QTx9ZLJL5CYF5ez70+jK6wLHTAWv6h4Cvesq7ZM5FqJCrT9SO1q5ge3aY4dEbkCDUxgbn5+WYkuERGpbxr7wi/r8T20Ww5jlPrL4OWNV2Bopeu8Q5pgMBgvWSYiIiIiIiIinktZABERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGpusUt5M+NZGirC2kT02kxT3TKNiTTLM7nuHUdx9y/Mv/o7zwNOVFebR64E+VlomIiIiIiIiI51KyS9xOu5dXOCwHdOwHQNig+wkbdL/DusrKRERERERERMRzaRijiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkNzdkmdEx0E7/V13b5FRERERERExH0p2SV1ToA3xIe5OgoRERERERERcUcaxigiIiKXJSkpiaioKMxmM+PGjauwfsaMGWRkZFS7jccff5z+/fszc+bMCutSUlLo27cvffr0YcqUKeTk5NCtWzcCAgKqrAOwe/duZs2aVcOjqztq2s6VtdvFLvw71Ic2rUptntNff/01ZrMZs9lMWFgYqampnD17ltGjR2M2m5k9ezYAxcXF3HLLLQwYMIDx48cD9af9RUREaouSXSIiInLZJkyYQFJSEsHBwSQnJ9vLLRYL27ZtIyYmpsrXbty4ES8vL1avXs3mzZvJzs52WJ+QkMDatWtZt24dycnJmEwmli9fTq9evaqsk5eXR2xsLJs3b8ZqtV77A3aRmrRzYGBghXa70MV/h4iIiHrRplWprXP65ptvJikpiZUrV9KmTRvi4uL47LPP6NOnD0lJSWzatIkTJ06wbNky+vXrx/fff4+3tzc7duyoV+0vIiJSG5TsEhERkSvWuXNnDh8+bF/eunUr7dq1q/Y169evZ9CgQQAMGDCATZs2Oaz39vYGoLy8nBYtWtCwYUNCQ0OrrePv7w9AmzZt2LlzZ80Oqg66mnb29vau0G4XqurvUF/atCq1cU4DbNiwge7du2MwGMjKyqJLly4AxMbGsmHDBqKioigsLASgoKCA4OBgoP61v4iIyLWkZJeIiIhcseTkZKKjo+3LGRkZREZGVvua3NxcgoJsTwIJDAwkNze3Qp0FCxYQGxtLSEgIXl6VTy1aWZ2IiAjS09Ov7mDqsKtp50up7O9Qn9q0KrV1Ti9evJjhw4cD0L59e77//nusViurV6/m9OnTREdHs3r1amJjYzEYDISHhwP1r/1FRESuJSW7RERE5LLNnTsXs9lMy5YtiY+Pr7TOrl277HMVnft59dVXCQkJIS8vD4D8/HxCQkIqvHbMmDHs2bOHI0eOsH379kq3fzl13F1N2vlSKvs71Ic2rUptn9MrV6609/4aNmwYJ06cYMiQIVx33XU0adKEefPmcdddd7F7924aN27MunXrautQRURE6g09jVFEREQu24QJE+yTmF8oJiaGzz77DICOHTuSlJRUoc6GDRv46KOPuO2221i1ahWjR492WF9SUoKPjw9Go5HAwEB8fX0rbKOqOgcOHKBv377X4Ajrhpq086X06NGj0r+Dp7dpVWrznN63bx+tWrWiQYMGAJhMJubMmYPVamXcuHH07t2bPXv22IedhoaG2nuH1Zf2FxERqQ3q2SUiIiI1FhcXR1paWrV1rr/+ekpKSujfvz9xcXE0bdqUY8eO2Z9Kt2TJEsxmMzfccAOtWrUiJiaGxMREtmzZQmJiIjt27Ki0DkBmZiadO3eu9eN0tctpZ6BCu13Yzhf/HVatWlWv27Qq1+KcvnAII8DBgwcxm80MHjyYO++8E39/f8aMGcMHH3yA2WwmNTWVIUOGAGp/ERGRmjBY9ZiXKmWn7OGr4RW/6ZOrM3TxdJr26ODqMEREpArdl9j+3Tjs6l4/ffp07rrrrmqfXlcbdu/ezeLFi3n++eedut+r5Q7t7G5tWhV3aOvKeEr7i4iI1MTatWvp168fa9asueLezhrGKCIiItdEZUPBnCE2NpbY2FiX7NsVnNHO9a1Nq6JzWkRExD1pGKOIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ3N2SZ1TcBYy81yz7+ggCPB2zb5FREREREREpOaU7JI6JzMPJq51zb7f6wvxYa7Zt4iIiIiIiIjUnIYxioiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hCerFI6S9YKZwTzIGL28MJi98W3agxdgZBMUNdnVoIiIiIiIiIuJE6tklHqPF2BkkLCyg67xsGrbvzd6Zt1NeeNrVYYmIiIiIiIiIEynZJR7H6O1D4yETsJwp4MzRTFeHIyIiIiIiIiJOpGSXeBxLSTEnl7+H0T8I3xYxrg5HRERERERERJzIbZJdpaWlTJ06lfDwcPz8/Bg0aBApKSkYDAYWL17stDjuzZzv8HP/wY8Z9u1rTtu/VO3Igqmkjglh+0ORFGVtJXrKl5j8g1wdlohInXemDP574PzyjK2w8yfXxeOpyiyw4sj55ambIeUEWK2ui8kTWayQfBxe2HS+bOVRW/uLiIhI/eAWE9RbrVZGjRpFSkoK06ZNIzo6mgULFjBixAgAEhISnBbLv6Pvc1ge9u1rZC1e67T9S9VajHmZZiOednUYIiJuJTMPfpMMp0rOly0+AJ8fgGHh8EI8mAwuC89jHC+2tXNWwfmybw7DVz9Cr+tg9vXg5xZ3ZXVbwVl4cj1syQHjBeftMxsgJgje7gVhvq6LT0RERJzDLW6r3n33XZYuXUpqaiqdOnUCwGw2ExUVRWhoKK1bt3ZJXI3jowlp14rMhStdsn8REZGayD8Lj66D3FLH8nMdYJYcsiUGfhPr9NA8SrkVHvsBDhQ4llt+7tG1/gS8lAqvdHd6aB5nymZIzbH9brmox9zePHgyBeb1B4MSuCIiIh7NLZJds2bNYuzYsfZEF4DJZCIqKgpvb2/279/P7bffbl+Xm5tLXl4eOTk5tRpXzJhBHP5uC8XZGushIiLu58tDkFNafZ2P9sEDMdDQLe4Y6qa12bAvv+r1VmzDG39TCK0aOi0sj5OZB2uyq15vAXblwsaTcP11zopKREREXKHO37pmZGSQlZXFW2+9VWHdoUOHGDlyJJGRkaSmptrLJ02aRFlZ2WXvIzAwkNLSinf7bb0a8WxQv0pf4+XnQ9Twvqx+4u3L3k99N3Cgmb1ll04M+rfvTdvpSbUdTqUGDjRTlJbskn2LiDhbmxnf4x/dA4Ox6ik8z5RD5OC7yfvhcydG5llaPf4+IX3vwmCq+rbLYrXS84EXOLlE84BerSajp9Jk5ORqz2dreRmjX/yAI/94zImRiYiIyNWwWK5+ws06n+w6fPgwAE2aNHEo37NnDwcOHKgwX1dpaSn//ve/+eabb2o1rsjbelNWXMqPKzZdurLUuvYzklwdgoiI2zE1bFRtYsBezz/YCdF4LpN/8KXHzVnKMTXUQ1VqwuQfDNZyqn/+klUPrxEREakH6nyyKywsDIDMzEx69OgB2Casf+6557BYLBWSXUuWLKFly5b84he/uOx95OdXPrYgO2UPXw2fUum6mHsHs/eTJKzlerTP5Vq5MommPTpcsl7qKZjoojn/V65MIj7MNfsWEXG2J36AH46fn6OrKos//Ds9r/u7U2LyRH/aDouyqm9ng8mLN6c9zx3/fN5pcXmaf++FN3ZWX8do8ua3D9zF43+6yzlBiYiIyFXLy8tj+/btdOnS5Ypfe+mvc10sNjaW6OhoJk+ezKeffspXX33F8OHD2bx5M/7+/rRv396h/vvvv8+DDz5YqzEFtW1Bk+7tSf/o21rdj4iISG26vfUlEjBAU1/o3thZEXmm4ZdoZ4AGRrixpVPC8VhDW4HXJTrQWYHbXPNcIxEREblCQUFB9O3bl6CgK++VXeeTXV5eXixatIjmzZszbtw4Jk2axNChQxkwYABdu3bFeMHwi8OHD/P9999z77331mpMMfcMInv9bvKzjtXqfkRERGrTDc0gIdSW1LqYAVti4MnOYNKT62qkfTDc2qr6Or/uAAHezonHU4X6wIPtqq8zMgIiA5wTj4iIiLhOnR/GCBAXF0dysuOk4W+//TYDBgxwKJs3bx633nqrfehjbdk0/V+1un0RERFn8DLCm73g5VT49ogtuXVOkDc80wUSW7gqOs8yNd6WzPrPfii7oKH9TPCrDnBvG1dF5lkeamfr3fV+hu3hCud4GeCeNvBYR9fFJiIiIs7jFsmuixUXF5OWlsakSZMcyv/5z39W+tRG8SwH332c4qxUgn4xlOajJtvL014wA1B2+gRB8UMIn/gmRxe+TF7qcho0jSLy8bnVPglLRKQ+augFr3aHI0Ww6pgtQRDe0Nbry7vO9/92H15GW/JwQjtYeRTyzkITXxjYHPz11nTNGAy23l2jo2ztfLIEQhrY2jmkgaujExEREWdxy9urbdu2UV5eXmFy+vT0dBdFJM5SmLERg9GL9q+sZu+rd3I2NxvvkKbA+ScyHv7w9wR2GcjZnKMU7dtC+1dWcfx/b5Ob8gWNeo9wYfQiInVXC3+4W72Lal2oD4yMdHUUni/AW3NziYiI1Gdu+Z1tz549sVqtdO/e3dWhiJMVpq8nsOsgAAI7D6Aoc1OFOvk7kgjobKbkxAF8W3cCwC+iC4VpyRXqioiIiIiIiIhncctkl9Rf5YW5mPxtT2Iw+gVSXpjrsP7M0UwaXBeB0bsBPk3bUJj2A1aLhYKdqygvOu2CiEVERERERETEmZTsErdiahhCeVEeAJbifEwNQxzWn16/mJCewwHwDmlCSK8RpE8dxNncbLyCmzg7XBERERERERFxMiW7xK00bNeD/O0rAcjfuQr/6G4O609vWkpwt1vsy01ueZT2M5JocF2EQ7mIiIiIiIiIeCYlu8StNIy5HuvZEtJ+3x//qDjO5hzl1Mr5AJTlncRg8sbUMNhef+8rd5A+NRFLaREBHXq7KmwRERERERERcRK3fBqj1G+tf/2Ow7J/m3gAvIIaEzPta4d1bX//mbPCEhEREREREZE6QD27RERERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8RgGq9VqdXUQdVVpfhE/7T7o6jA8RqPY1jQI9L9kvYKzkJnnhIAqER0EAd6u2beIiIiIiIiI1JySXSIiIiIiIiIi4jE0jFFERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIi8v/t3Xl8VPW9//HXZGGTNSCrAQIRjCAQsSACMiy1LhW1ihsobtelVS+tW69Kr7UupVarXi2VSmulgj9LtWiLoiipoEhEiCCyBAQEZBEQCRCBJPP7Y0owBkKAMJM5vJ6PRx7kfM93Tj5nPJ45857v+Y4kKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFRkq8C5AkSZIkSUevXQU7+Grh5/EuIzAaZbWmRr068S4jrgy7JEmSJElS3Hy18HNeP+/eeJcRGGdNeoBmPU6Idxlx5W2MkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBgJE3bt2rWLkSNHkp6eTu3atRkwYAC5ubmEQiEmTZoU7/IUUF/vgvHL4Fd5MGoezFgPxZF4VyVJikTg483w6Cdwfx48uxjWFca7KkmSVJVCyUn0+NXVXPbpn7l80V847dGbSK6ZGu+ylABS4l1AZUQiEYYMGUJubi733XcfmZmZjB8/ngsuuACA7OzsOFeoIHp5BTzyCewugeQQRIC/rYD0Y+B3PaFt3TgXKElHqS074fYPIW9z9FO7UAhKIvDMYrgiE27OgqRQvKuUJEmHq8utP6L5aZ2ZNOA2incXMfC5u+h+7xXkjvxTvEtTNZcQI7vGjBnD5MmTmTp1KjfccAMDBw5kzJgxJCcnk5aWRuvWreNdogLmrTXw0Lxo0AXR0Vwl/xnRtWYH3Phe9M2WJCm2ikrg5g9g3ubocgnRc3SE6M/zS+HZJXEsUJIkVZnjhw5k/pMvs2PdZnZu2kreoy+ReUmYUFJCRBmKo4Q4QkaNGsWwYcPo1KlTaVtycjIZGRmlo7qWLFlCr1696NChA7169SI/Pz9e5SrBRSLw+0Wwv0EBJRHYuBNe+TymZUmSiN5OvujraMi1P3/Jh227Y1aSJEk6AmrUr0PdVseyecHy0rZN85dTo14d6qYfG8fKlAiq/W2M+fn5LF++nCeffLLculWrVnHhhRcCcOONN/KTn/yEYcOG8de//pUbbriBd95554Db37p1K82bN6eoqIhQyHseBLXbdyfz1+9X2CcSKeGxt5dxY+fOMapKkgTQ+rYXqf+9cwkl7/8SZmcJtD/nWrb8+68xrEySJB2q9imNuLN+nzJtKXVrA7Dr6x2lbbu+3g5A6n/Wad/69w+zrOireJdRJWrUqEFBQcFBP67aj+xas2YNAE2bNi3TvmjRIlauXEl2djYbNmxgzpw5XHbZZQBcdtllzJkzhy+//PKA258/fz6FhYVEIs46rqiUBk0P2CcUSqpUP0lS1Upp2KzCoKu0n+doSZISWtG26DfPpNavU9pWo8ExAOze5rfSqGLVfmRX48aNAVi6dCk9evQAohPW33XXXZSUlJCdnc2qVato1aoVycnJQPQWx5YtW7Jq1SqOPbZywxtzcnLo3bv3kdkJJZQFX8Hw6Qful9G0AXN3OnGXJMXSHR/Cv9dWfBsjwDOPPcwP//ZwTGqSJEmHZ33uIl4/794ybbu27mDbmi9J69SWrcu+AKBx5wx2Fexg26oDD2w5mk2blkOzHifEu4y4qvZhV1ZWFpmZmdx9992kpqZSt25dRo8ezdy5c6lTpw4dO3Zk7ty58S5TAXJiQ2h9DKzaHp3seH8G+70IkhRz5xwH09ZW3KdWMoSbx6YeSZJ05OS/8DZdbrmA9bMWUlJUTLfbLmbp/8shUnKgj710tKv2YVdKSgoTJ07kxhtvZPjw4aSnpzNixAjq16/PsmXLSEpKIj09nTVr1lBcXExycjLFxcV88cUXpKenx7t8JaBQCH6cBT+fve/1SUDjWnB+m5iWJUkC+jSLfiixaMv+R3ddlQl1U2NYlCRJOiLmPfkyNdPqc37O7wglhVjxzw/46EHn5NSBVfuwC6Br167MnDmzTNtTTz1Fv379gOh8Xt26dWPChAkMGzaMCRMmkJ2dXelbGKXvGtQS7u0Kv5kPu77zbuq4Y+DxntCwRnxqk6SjWUoSPHkq3JELczfvbQ/95+fKTLi2Q7yqkyRJVSlSXELuyD+RO/JP8S5FCSYhwq7vKiwsZPHixYwYMaK07Q9/+APDhw/n/vvvp1GjRjz//PPxK1CBcH4bGNACJq+G334SbXvyVDj1WEjyizslKW4a1oAxvWHBFrjqP3Ms3nQC/DAdmvrlTJIkSUe9hAy75s2bR3FxMdnZ2aVtJ5xwArNmzYpjVQqi+jXg0nZ7w67T/HIvSaoWQiHo3Gjv8jWO5pIkSdJ/JGTY1bNnTyKRiqYOlyRJkiRJ0tEoKd4FSJIkSZIkSVXFsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAVGwoRdu3btYuTIkaSnp1O7dm0GDBhAbm4uoVCISZMmxbs8Sar2SiLwwQZ46lN4YgG8tQZ2l8S7KkkSwFc7YcJn8PgCeHYJrNwW74okKf7antuLsyb9iqFLx3FR7u/jXY4SSEq8C6iMSCTCkCFDyM3N5b777iMzM5Px48dzwQUXAJCdnR3nCiWpelu2Fe74ED7fvvdTjhKgUQ14oDv0PDae1UnS0SsSgTGL4c/5UBSB5FD0w4k/LIKBLeC+bKidEFfsklT1dn69nUV/eoNaxzag0/U/jHc5SiAJ8dI5ZswYJk+eTF5eHp06dQIgHA6TkZFBWloarVu3jnOFklR9rSuE69+Dgt3R5W8P5vp6F/z3B/BsH+jcKC7lSdJRbewS+OOSvcvFkb2/v7MWdhTBk6dCKBT72iQp3ta+Ow+A1md+L86VKNEkxG2Mo0aNYtiwYaVBF0BycjIZGRmlo7puv/12MjIyCIVCfPLJJ/EqVZKqnQnLYOvusiHXHiVERxA8syjWVUmSCnbDn/L3vz4CzPwS5m6OWUmSJAVCtQ+78vPzWb58ORdeeGG5datWrSoNu84//3zeffdd2rRpE+sSJanaikRg0ufRN0z7UwJ88CVs/CZWVUmSAKZ+AbsOMHdiUghe+zw29UiSFBTV/jbGNWvWANC0adMy7YsWLWLlypWlYVefPn0O6++Ew2GSkqp99qc46fxSNAWoWbNWnCuRDk4opQadJxQcsF8EaN+1B9+s+PjIFyVVIc/PSmRNL7qHpkPuJVTBNWhxSYTxr03loVOdq0ZScLVPacSd9Q/vPb326t8/zLKir+JdRpWoUaMGBQUHfj/zXdU+3WncuDEAS5cuLW2LRCLcddddlJSUODm9JFUgUrSLkp07KtW3eJv3yUhSLBVv21xh0AVASTHF2zbFpiBJkgKi2o/sysrKIjMzk7vvvpvU1FTq1q3L6NGjmTt3LnXq1KFjx45V8ndycnLo3bt3lWxLwXPKq9F/d+7cGd9CpEPw4McwaeW+5+yC6KcenRvB7DVL99NDqr48PyuRbfwGzn4rOnfi/oSSU3jutkvp85tLY1eYJMXY+txFvH7eveXaQ0lJJKUmE0pJgVCI5JqpRCIRSnYVxaHKxDFtWg7NepwQ7zLiqtqHXSkpKUycOJEbb7yR4cOHk56ezogRI6hfvz7Lli3z1kNJOoCh7WDyKthdsu/AKwL8V9V8biBJOghNasFFbeGl5ftenwQc3wB6Nd33ekkKuvYXnU6fJ24uXb5ixQS2rdrAxB4/jmNVSgTVPuwC6Nq1KzNnzizT9tRTT9GvX784VSRJiaNtvejX1t+WC9u+8yFYSgju7eYbKUmKl591gu274V+ro+HWtz+UOKEhPN4TkkNxKk6S4mzpSzksfSkn3mUoASXksKjCwkIWL15cZr6uW2+9leOOO47Vq1czaNAgOnXqFMcKJal66d4EXj8D7u26t+3WE+GNM+CH6fGrS5KOdilJ8MuT4cUwXNpub/vTveC5vpBWM26lSZKUsBIy7Jo3bx7FxcVlwq4nn3yS1atXU1RUxLp161iwYEEcK5Sk6qd2CpzfZu/ylZnQ0DdRklQtZNaHn3Xeu9zzWEhyRJckSYckIW5j/K6ePXsSiVQwk6ckSZIkSZKOSgk5skuSJEmSJEnaF8MuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGAkTdu3atYuRI0eSnp5O7dq1GTBgALm5uYRCISZNmhTv8iQdhkgEPvwSnsuHv+TDJ19F26REtWIb/HUZ/GkJ5KyFopJ4VyRJUuwUR+C99fDnfBi3FBZ/He+KlIiSaqRw2m9v5MIPnmZo/jgumPEkJ1xzVrzLUoJIiXcBlRGJRBgyZAi5ubncd999ZGZmMn78eC644AIAsrOz41yhpEO1cAvc8xF8vr1se8cG8HB3aF03LmVJh2TLLvjFHHh/Q9n2tBpwTzfo1zwuZUmSFDNzNkVfC9cVlm3vlgYPdodmteNTlxJPUnIyhRu28Oalv6Jg5XrSTmzD9yfcyzdfbmHFazPjXZ6quYQY2TVmzBgmT57M1KlTueGGGxg4cCBjxowhOTmZtLQ0WrduHe8SJR2Czwrg+vdg9fby6/K3wnUzYENh+XVSdfRNMfz4ffhgQ/l1X+2C23PLh2CSJAXJJ1/BT2bu+/pt3ubotd3Xu2JflxJTUeFO5v7mRQpWrINIhM0LVrDqzdk07ZEV79KUABIi7Bo1ahTDhg2jU6dOpW3JyclkZGSQnZ3Npk2bOPvss+nYsSMnnXQSP/rRj/jyyy/jWLGkyvjjYthZDPu6w6skEg0IXlgW87KkQ/LGaliydd/H8567ch9f4C26kqTg+v1CKC7Zz7UdsLYQJq6IcVEKjFBKMs16ZvHVwpXxLkUJoNqHXfn5+SxfvpwLL7yw3LpVq1aRnZ1NKBTizjvvZPHixcyfP5/27dvz85//PA7VSqqsrbvg7bX7vhjaIwL84/No8CVVd6+shFAF6yNERzMudN4SSVIArdsBuRsrvraD6OuldChOfehadm8rZNnf/h3vUpQAqv2cXWvWrAGgadOmZdoXLVrEypUryc7OJi0tjXA4XLru1FNPZfTo0Qf1d8LhMElJ1T77U5x0fukbAGrWrBXnSoKjZqsT6PD4xwfst70Ijkk7lpIdW2NQ1dHB4/nIyPrjKlIaNj1gv36DL2HrrH8c+YKOEh7PChqPaSWqOh170f6BnAP2W7u9mJo16xz5gpRQ2qc04s76ffa7/nv3DefY7h2ZMuQ+SnYXxbCyxNS/f5hlRV/Fu4wqUaNGDQoKCg76cdU+3WncuDEAS5cuLW2LRCLcddddlJSUlJucvqSkhNGjRzN48OCY1inp4BTvqNzwlkhxESU7dxzhaqTDV7xjC5FK3KNYvN2hXZKk4KnstV1J4cG/adXRrcf9V9Hy9C5MufiX7Nzs8aPKqfYju7KyssjMzOTuu+8mNTWVunXrMnr0aObOnUudOnXo2LFjmf633HILdevW5eabbz6ov5OTk0Pv3r2rsnQFyCmvRv/duXNnfAsJmGumRycy3d9w9yRgYHoKH+3Yxwz2OmQez0fGmMXRn4o0qgHrP3yD1Gr/UVPi8HhW0HhMK1FFInDRNPh82965Kr8rCbioU0N+7vGt71ifu4jXz7u3XHuPX11Diz6deeOi+9i5yTs9KmvatBya9Tgh3mXEVbUPu1JSUpg4cSI33ngjw4cPJz09nREjRlC/fn2WLVtW5tbD22+/nfz8fF577TVvSZQSwDUdYMSsfa8LAaEQDGsf05KkQ/ajNjDhM9i+e/8B7vDjMeiSJAVSKATXdYCRc/azHkhJgkszYlqWEtgxxzXhxOvOpvibXVw06+nS9vWzFjF16INxrEyJoNqHXQBdu3Zl5syZZdqeeuop+vXrV7p8991389FHH/Gvf/2LmjVrxrpESYegTzP4ny4wal70E8BvfwqYkgQPngydGsWrOungNKkFT50Kt34AX+/e255ENPwa1h6GtotXdZIkHXlnHQfrC+GphdFw69vXdrWS4ZHvQdt68apOiWb76o081+KieJehBJWQny8XFhayePHi0vm6FixYwMMPP8wXX3zBaaedRrdu3bjgggviXKWkyriwLbw6KDrKa4+bs+Bf34cBLeNWlnRIOjWCV78fDXH3GJIBL4ZhRKfop96SJAXZVcfDKwPKjs7/Wafotd2pB/4eF0mqEgkxsuu75s2bR3FxcWnY1alTp0pNCiypempeB246AcYuiS5fdXx865EOxzEp0RD34XnR5TtOims5kiTFXHpd+O9OMG5ZdPlyp6WQFGMJGXb17NnTcEuSJEmSJEnlJORtjJIkSZIkSdK+GHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTASJiwa9euXYwcOZL09HRq167NgAEDyM3NJRQKMWnSpHiXF3PFEXh/A/xtOfxrFWzZFe+KJElSEH1TBFO/iF5zvPMF7CyOd0XSoSuJQO6X0eP5n5/Dpm/iXZF0eJZthZdXRH+Wbo13NVXv1IevY8jsP3D5kucZMucZetx/FUmpKfEuSwkgIY6SSCTCkCFDyM3N5b777iMzM5Px48dzwQUXAJCdnR3nCmPrnS/gkU/gy2+9OKeE4Edt4aedIDVhIkxJklRdRSLwl6Xw53zYXrS3vW4KXN8RLmsHoVD86pMO1vsb4OGPYW3h3rbkEJxzHNx5EtRKiHdGUtSa7XDfXJi7uWx7tzS4LxuOOyY+dVW1hX9+g9n3j6OocCc10+oRHnMbXW79EXmPvhTv0lTNJcQpfcyYMUyePJm8vDw6deoEQDgcJiMjg7S0NFq3bh3nCmPn7S/g57PLtxdF4KXlsKEQHvmeF5+SJOnwjF4Ef8ov376tCB5bAN8UwzUdYl+XdCg+2AAjZkVD3G8rjsBrq6IB2P+dCil+aKwE8OU3cO0M2Lyz/Lp5m+Hq6TCuHzSvHfvaqtrXS1bvXQiFiJREqNeuRfwKUsJIiNP5qFGjGDZsWGnQBZCcnExGRkbpqK7zzz+frl27kp2dTd++fcnLy4tTtUdOUQn8dn7098h++uSsg9kbY1aSJEkKoHWF0RFdFRmzeN9vtKTqJhKJ3hURiez7GjoCfLgR3l0X68qkQ/OX/Oj5t2Qf60qAr3fBcwc4hyeSk24+n6FLx3HZJ38irVMbPh3zz3iXpARQ7cOu/Px8li9fzoUXXlhu3apVq0rDrr/85S98/PHHzJ07l9tvv51rrrkm1qUecR98CV/u3H/QBZAUgldWxqwkSZIUQK99fuA+RRGYvOrI1yIdrnlfwcptB7iGBl72GloJYHcJvPr5voOuPUqAf66KjsANgvlP/YMXMq/gldP/m8XPv0nhhq/iXZISQLW/jXHNmjUANG3atEz7okWLWLlyZWnY1aBBg9J1X3/9NUlJB5fjhcPhg35MrDU+88e0vPZ3FfYpicA/ps/h0d69YlTV0aHzS9EJ0mrWrBXnSoLN5zk2fJ5jw+c5Nnyej4zjfvIsDfteSig5db99IkW7Gfm7P3Hts7fGsLLg85iueg1Pv5z0W/5cYZ8S4N1PllMzfEJsijpKeDxXvZSGzcn644GT2W+KoUnrTHZvTIxPJdqnNOLO+n0q7PN1/ho2L1hJ3/+7lSkX3RebwhJU//5hlhUFIxSsUaMGBQUFB/24ah92NW7cGIClS5fSo0cPIDph/V133UVJSUmZyemvu+463nzzTSKRCG+88UZc6j2Sir858H/gSEkxJYUHfyBIkiTtUfLNNuAAE4AmJf2nn1S9lRQe+DiNREoo9hpaCaBk5/bK9/2m8n0TRVJqMvWds0uVUO3DrqysLDIzM7n77rtJTU2lbt26jB49mrlz51KnTh06duxY2vfZZ58FYNy4cdxxxx1Mnjy50n8nJyeH3r17V3n9VWnzTjj7zehtA/sTSkrm/sv6cfHdTqJRlU55Nfrvzp0+r0eSz3Ns+DzHhs9zbPg8Hxkffgk3zay4TygpmX/99jY6j70tNkUdJTymq972IvjBlIpv6QqFkvjZmV249laf96rk8Xxk/Pj96DzN+7uVMSkEXRvB7E1rY1rX4Vifu4jXz7u3TFtqvTq0OasHn7+Ry66tO2iU1YauIy7ki5yP41Rl4pg2LYdmPY7ukarV+749ICUlhYkTJ9KiRQuGDx/OiBEjOOuss+jXrx9dunTZ562HV1xxBdOmTWPTpk1xqPjISasJgyv44smkEDSqAWcfF7uaJElS8JzSBDo22P+FYhLRr7fv1DCGRUmH6JgUuCRj/+uT/tPn/KPnC96V4K7MPMCcXREYfnzMyjlyIhHaXXg6F37wNEOXjmPAn+9k9dtzmXXP2HhXpgRQ7Ud2AXTt2pWZM8t+vPjUU0/Rr18/ALZt28ZXX31Feno6AK+99hppaWmkpaXFvNYj7bbOsOEbmLE+Gm6VfGuUV/1UeKoX1N3/9BqSJEkHFArB4z3hpvdhxbfuAEsi+garfX34zfei/aREcNMJsLYQ3lxT/hq6dgo8eSo0dlopJYhTm8LPu8CoedHlPYfznlPybZ2hT7N4VFa1dm8r5M1L7o93GUpQCRF2fVdhYSGLFy9mxIgRAGzfvp0hQ4awfft2kpOTSUtL47XXXiMUwCuwmsnwWA/I/TL6jTHv/Gdk6u2d4Zx0qGfQJUmSqsCxteCFfvD2F/CLudG2nsfCD1vDgBaQWu3vD5D2SkmCB0+GH7WJfnP5lOh3YPHfJ8K5raFhjfjWJx2si9rC95rA31fA+M+ibZe2gwvbQNt68axMqh4SMuyaN28excXFpZPTN2vWjA8++CDOVcVOUiia5p/adO998Je2i29NkiQpeGomw9npe8Ou//PLnpXAQqHoLbqnNNkbdl2RGd+apMPRpi78rPPesOu2zvGtR6pOEjLs6tmzJ5FIBbO0S5IkSZIk6ajkAHRJkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJOqr0efwn9Hzw2niXsU9Dl44jrXNGvMtIaCnxLkCSJEmSJOlQNT+tE91uu5jGXdoBsGneZ+T99iXWzVwQ58qiut12MY27tuftKx+uVP8XMq84whUFnyO7JCWMnJwcMjIyCIfDDB8+vNz6Bx98kPz8/P0+fvPmzXTv3p26detW+Hcef/xxBg0axIoVK2jRogXhcJgrr7wSgIULFzJq1KjD2xFJCqDDPUcD3HLLLfTt25eHHnqoTPuMGTM49dRTOe2003j00UcByM3NpXfv3px22mnce++9pX2feeYZBg4cSDgcZvfu3Z63JSngjhvUne+Pv5dVUz/ipZNv4KWTb2DV1I/4/oR7OW7gyft8TCi56qKQUEpylW1LVcewS1JCufbaa8nJyaFBgwbMnDmztL2kpIR58+Zx/PHH7/ex9erV46233uLUU0/db5/du3eTl5dXunzOOeeQk5PD888/D0BWVhZz5swhEokc/s5IUsAczjl69uzZpKSkMH36dObMmcP69etL17Vr1453332X999/n3/+85/s2LGD7Oxs3nvvPd5//31mzpzJ1q1b+fzzz5k/fz5vv/02OTk5pKamet6WpIDr+cA1LP1bDgtGv8rugh3sLtjBgtGvsmziv+nxwDUAXJT7e7qMuJCzX32QYZ+9QJOu7QFIPaYW4TG3MTR/HOf/+3e0DHc94N9r3qsTQ5eOo8OwQVz04WgGT/0tAC1O78IPp4zi8sV/YfDbj9L6zO8B0PrM73HSrRfQqn83hi4dx9Cl40iqUfFNdletnUjjru0JJSdx+ZLnadgxPfq3T+vEVWsn0uaHvQCo3bQhV37+Iql1ax/akxdghl2SElLnzp1Zs2ZN6fLHH39Mhw4dKnxMamoqaWlpFfYZN24cl112WenylClT6Nu3Ly+88EJpW7t27ViwoHoMiZak6uhQztGzZs1iwIABAPTr14+PPvqodF3Lli2pUaMGAMnJySQlJZGamgpAcXExLVu2pE6dOrz55pts376dAQMGcN9995U+3vO2JAVT/fYtqdemGcv/8V65dZ+9MoP6bZtTv10LADKHhHnvtt/zQuYVbPpkOQAZ5/fhs1emM/6E4cz7v1cY8Kc7qdO84vcLACm1a9KkWyb/OH0E/zzrLuq1bc6gv/ycT576BxNOvJqPHvwr/Ub/lLRObfn8jQ+Z/+QrrJmWxwuZV/BC5hWU7Cqq1P5FiktYP2shLfqcBECLviexdflaWvTpHF3ucxKb5n3G7m2Fldre0cSwS1JCmjlzJpmZmaXL+fn5tG3b9rC2WVJSwpQpU/jBD34AQIsWLVi8eDFvvvkmzzzzDJs2bQKgTZs2LFmy5LD+liQF2aGco7ds2UL9+vWB6EjcLVu2lOvz1ltv0b59e2rVqgXA+PHjycrKomHDhqSkpLBhwwZCoRDvvPMOy5cvLx2p63lbkoKpVlo9AArXby63rnDDV9E+jaOvLYvHvcXX+WuIlJSUhk3rPviUz1/PJVJcwmcT3+WrT1fS9txeB/y7oaQkPnroBYoKd1JcuIuM805j/ayFrHhtJpHiEta8M5fP35xN+yH9Dnsf1834pEy4lffbl0rDr+a9O7P2vU8O+28EkWGXpIQyduxYwuEwrVq1olu3bvvs8+mnnxIOh8v8/PrXvz7gtl9++WUGDx5culyzZk3q1KlD7dq16du3L8uWLauq3ZCkQDqcc3TDhg3ZunUrAAUFBTRs2LDM41avXs3DDz9cOmcXwOWXX86iRYv44osvmD9/Pg0aNKBfv+gbi9NPP53Fixcfkf2UJFUP32wuAKB2s/KjsWo3bRTtsyn62rJ9zZfl+mxfXbZt26ovKzWyq6hwJzv/87cB6rRozLbvbmvleuq0aHzAbR3I2hnzaXbqidSoX4f67Vqy/B/vkVwjhTot0mjRpzNrp88/7L8RRH4bo6SEcu2115aZiHiP448/npdffhmAE088kZycnIPe9uLFi8nJyWHcuHHk5eXx1FNPcfPNNxOJRJg9ezY333wzACtXrqR3796HtR+SFESHc47+8MMPmTBhAueeey7vvvsuF198cem6nTt3ctVVVzF69OjSLxnZuXMnNWvWJCkpiXr16lGrVi169erF+PHjAZg/f37pbemetyUpmLYu+4KCz9eTMfg01n1nhFPGeadR8Pl6tn62FoBISfm5G4857tgyy3XTj+XLOQceCRwpKSmzvGPtJpr36vSdbTVlx9pN++x/MDYvWEGkpIQT/+uHbPhwEZGSEtbO+IQOlw+iTtNGbPhw0SFvO8gc2SUpELp27VqpT/AHDRrE3LlzGTRoEJ988gnr1q3jkUceAeCee+7hrbfe4o033qBbt2506NCBU045hdNOO40zzjiDFi2i9/svXbqUzp07H9H9kaQgqcw5+nvf+x47d+6kb9++dO3alWbNmpWeo8ePH8+nn37KDTfcQDgcZs2aNbz66quEw2FOP/10jjvuOI4//nhOPvlkioqKCIfD7Nixg549ewKetyUpyHJ/8RyZl/Sn0w3nklq3Nqn16nDiDT8k8+L+5I78c4WPbX7qiaSfcQqh5CTa/agvjU5sw4p/fXDQNSyf9D7NembR5pyehJKSaNW/G+k/OIVlE98FoHDj1xzTqskhfwvkuvcXcOL157B2RnQU19r35nPi9eew4aMlFO/cfUjbDDpHdklKGHtud9mXpKQkunTpQn5+foXf9jV16tRybXfcccd++51xxhll2hcuXEj37t0JhUIHUbkkBV9VnKOffvrpMsvNmzcvPUdfffXVZdYNGTKEIUOGlNvG448/XmbZ87YkBduqKR8yddhDdP3ZRXS7IzoqeNO8z5g67KHScGh/lv9jBu2H9OP0p/+b7Ws3Me2637Lji00HXUPBinW8c81vOPl/htL7dz9h++oveffmJ9n8n4nwV7w2k3bn9+HST/5EKBTixS7XVnqSeoC10+fT9oe9WDsjOnpt7YxPqFH/GOfrqoBhl6TA2NetM1UtKyuLrKysI/53JCloYnGO3hfP25IUfGtnzK8w2JrY48fl2maMeHofPQ9s3cwFvJB5Rbn2NdPyWDMtb5+P2bVlG29c+L+V2n4oKTr669th2OLn32Tx82+WLheu/4rnWlx0EFUffbyNUZIkSZIkqRpo1KkNJbuL9jmhvirPkV2SJEmSJEn/cV7O76h7XJNy7ave/Ih3f/z4YW9/0Av30KznCeXad2/7hqTUZD56aDy7tu447L9zNDPskiRJkiRJ+o9J4Z8e0e1PHfrgEd2+vI1RkiRJkiRJAWLYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYGREGHXrl27GDlyJOnp6dSuXZsBAwaQm5tLKBRi0qRJ8S5PUhVYvX3v719+E786JEllFZXs/X32RiiOxK8WSdLRKblWDX70/v8xdOm4eJeiBFHtw65IJMKQIUN49tlnuffee/nnP/9JRkYGF1xwAQDZ2dlxrlDS4Vi7A26ZCRe8vbftnDfh57Nhy8741SVJgpdXwDlv7V2+8X344Vvwz8/jVpIk6SiUfcclbFu9Md5lKIGkxLuAAxkzZgyTJ08mLy+PTp06ARAOh8nIyCAtLY3WrVvHuUJJh2pDIVw9HTbvhG8PFCgB3vkClm6FP/eFeqnxqlCSjl5/yYf/W1i+/ctv4L482F4Ml2TEvCxJ0lGmcZd2tOrfjQ9/+Tz9x94e73KUIKr9yK5Ro0YxbNiw0qALIDk5mYyMjHKjun75y18SCoX45JNPYl2mpEPwxyXRoKtkH+tKgBXbYMJnsa5KkrTxG3h6UcV9Hl8AW3fFph5J0tEplJzEab+9kQ/ufpaSXUXxLkcJpFqHXfn5+SxfvpwLL7yw3LpVq1aVCbvmzJnDBx98QJs2bWJZoqRDtKMI/rVq30HXt01cARHnh5GkmHptFZQc4Ny7uwQmr45NPZKko1PnH5/HpvnLWf/BPoYaSxWo1rcxrlmzBoCmTZuWaV+0aBErV64sDbt27tzJT37yEyZMmEA4HD6kvxUOh0lKqtbZ3z51fik6k3fNmrXiXEmw+TxXvZotO9LhiXkH7Ld5J9Rp1ISSwoIYVHV08HiODZ/n2PB5PjKO+8kfadjnMkIp+7+PPFK0m/959E8Mf/bWGFYWfB7TseHzHBs+z7ERhOe5fUoj7qzfp0xbvbbN6XjlGbz6/TviVFXi6t8/zLKir+JdRpWoUaMGBQUH/16wWoddjRs3BmDp0qX06NEDiE5Yf9ddd1FSUlIadv3iF79g2LBhtG3bNl6lSjpIJbsKK9UvEikhstuvZ5SkWCrZ9Q2EQhV3CoUo2bkjNgVJko46zXqcQO0mDfjRe08CkJSSTOoxtbl0wZ+Ydu0jjvZShap12JWVlUVmZiZ33303qamp1K1bl9GjRzN37lzq1KlDx44dmTlzJrNnz+bXv/71Yf2tnJwcevfuXUWVx84pr0b/3bnTr607knyeq14kApfkwPKCspPTf1sS0LNpEh9t3xbDyoLP4zk2fJ5jw+f5yHhvPfz3rIr7hJJTeGXUTzn52Z/GpqijhMd0bPg8x4bPc2wE4Xlen7uI18+7t0zb8tfe54vpe+8EObZ7R/o88RNeHXQ732zaGusSE8q0aTk063FCvMuIq2p9315KSgoTJ06kRYsWDB8+nBEjRnDWWWfRr18/unTpQlJSEv/+979ZuHAhGRkZtG3bltWrV/ODH/yAN998M97lS6pAKARXZu4/6ILofF5D28eqIknSHr2aQtu6+79QTAI6NoDstFhWJUk6mhQX7mLH2s2lPzs3bYVIhB1rNztZvQ6oWoddAF27dmXmzJns2LGDxYsXc9NNNzF37tzSWxh//vOf88UXX7BixQpWrFjBcccdx5QpUzjjjDPiXLmkAznnOLj6+Ojv3z4Z7fn99s5watPvPkqSdKQlheCJntC0dnR5zw2Ne/5tdQw81uPAdzpKklRV1s1cwAuZV8S7DCWIan0b474UFhayePFiRowYEe9SJB2mUAh+kgW9m8LfVsC8zdG2nsfCRW2jowYkSfHR6hh4MQz/XBX99txNO+HYWnBuOpyVDsck3FWkJEk6WiTcZcq8efMoLi4uHdn1XStWrIhtQZIOW7fG0R9JUvVSNxUubRf9kSRJShQJF3b17NmTSKSiWX4kSZIkSZJ0tKr2c3ZJkiRJkiRJlWXYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJUhzk5OSQkZFBOBxm+PDh5daPGzeOqVOnAvDQQw/Rt29fbrnllnL9Lr30UsLhMN27d+f8888HIBwOEw6H6dSpEyNGjCjtm5eXR2pqKgBFRUVcd911Vb9jkpTgKnt+Xrx4Mb1796Zv37789Kc/Ldfvscceo1WrVjzwwAOlbVdddRW9evUiHA7zzjvvAHD11VcTiUSO3A5J0lHIsEuSpDi59tprycnJoUGDBsycObPMutdee42BAweyfv165syZw/Tp00lJSWH27Nll+r344ovk5ORw/fXXc/bZZwPRN2o5OTkMHjy4tA1g9OjRnHzyyQCkpKRw7LHHsmzZsiO8l5KUeCpzfm7SpAlTpkxh+vTpbNy4kSVLlpTpN2zYMMaNG1du23/729/IyclhwIABAPTs2ZNp06YduZ2RpKOQYZckSXHWuXNn1qxZU7q8efNmatWqRSgUYvbs2fTr1w+AAQMGkJubu89tvPbaa5x77rll2nJycgiHwwDk5+dz7LHHUq9evdL14XCY119/vYr3RpKCo6Lzc+PGjalbty4AycnJhEKhMo9t2rQpSUll326FQiEuueQSLr74YjZv3gxA//79mTx58hHeE0k6uhh2SZIUZzNnziQzM7N0eenSpbRp0waALVu2UL9+fQDq1avHli1byj1+27ZtFBQU0KJFi3LbqFGjBgBPPPEEN998c5nHtWnTptxIBEnSXhWdn/dYsGABGzdu5Pjjjz/g9h577DHee+89LrnkEh5++GHAc7EkHQmGXZIkxcnYsWMJh8O0atWKbt267bNPw4YN2bp1KwAFBQU0bNiwXJ8pU6Zw5plnlmmbNGkS5513HgBffPEFAM2bN6+64iUpwCpzfgbYunUrN998M2PGjKnUdhs1agTA4MGDWbBgQVWUKknaB8MuSZLiZM+cMN+evBggMzOTlStXAtC9e3feffddAKZNm0aPHj3KbefbwdYekydPLp2v69NPPyUvL48zzzyTvLw8br31VgBWrlxZqZEIknS0qcz5ORKJcM0113D//ffTsmXLSm23oKAAiI4Yy8jIADwXS9KRkBLvAiRJUllpaWns2LEDiI7G6tKlC3379qVLly6ccsoprFu3jnHjxnHHHXdQXFzMkiVLOPHEE0sfv3HjRlJTU2nQoAEAgwYNYtCgQaW/P/nkk0B0Tq9rr702xnsnSYnr2+fnnJwc3nnnHTZu3AjAo48+SqtWrUrPz88//zxPPPEEX3/9NVu3buU3v/kNV155JV9++SU1a9bkueeeA6IfZJx11lnx2iVJCiTDLkmS4iAcDpdOHr8vgwcPZurUqQwaNIiRI0cycuTI0nXNmzfnjjvuAKKTIn/wwQdlHtukSRPeeOONfW536tSpABQVFbFhw4Yyc9FIkg7u/Lxnkvlv23N+vvLKK7nyyivLrHvllVfK9Z81axbXX3/94RUtSSrDsEuSpGrou2+QqlpKSgpjx449on9DkoKoqs/Pf/7zn6t0e5Ik5+ySJEmSJElSgBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICI2HCrl27djFy5EjS09OpXbs2AwYMIDc3l1AoxKRJk+JdniRJpXYW7/197Y741SFJKm/19r2/7y6JXx2SKtbn8Z9wxcoJDF06rvSnVf9u8S5LCSIl3gVURiQSYciQIeTm5nLfffeRmZnJ+PHjueCCCwDIzs6Oc4WSJEFRCYxdAi8u39s2eCr0PBZ+1hna1YtfbZJ0tFvyNfxuAXy4cW/bmVPg8vZw1fGQHIpfbZL2bclfpzLrnrHxLkMJKCHCrjFjxjB58mTy8vLo1KkTAOFwmIyMDNLS0mjdunWcK5QkHe1KInDvHJj6Rdn2CJD7JVw9Hf7UB9rXj0t5knRUW/Q1XDcDdhWXbf96N4xeBJ9vg/uyIWTgJUmBkBC3MY4aNYphw4aVBl0AycnJZGRklI7qatu2LSeccALdunWjW7duTJkyJV7lSpKOQu+uKx907VECFBbDI/NjWpIk6T8e/jgadO3vrsV/rYbcjftZKSlu2v2oL5d9+mfOf/dxuvz3jwglJ0SEoWqg2o/sys/PZ/ny5Tz55JPl1q1atYoLL7ywdHnixIl07tw5luVJkgTAxBWQFIqO8NqXkgjM3gQrt0GbujEtTZKOaku+hgVbKu6TFIKJy6O3nUuqHj4dO5nZvxrHN5sLaNylHf1+P4LkmjWY+5sX412aEkC1D7vWrFkDQNOmTcu0L1q0iJUrV1bZfF3hcJikpMRLiTu/9A0ANWvWinMlwebzrCDxeD4yTvjj56Q2bHbAfqecNYStua/GoKKjg8ezgsZjuuo17HsZ6bc+V2Gfkgi8kfcZT/bNik1RRwmP59gIwvPcPqURd9bvU6Zt8/y9k6Bu+ngZc3/7/8i+/RLDrkro3z/MsqKv4l1GlahRowYFBQUH/bhqn+40btwYgKVLl5a2RSIR7rrrLkpKSsqEXUOHDqVLly78+Mc/ZsuWLbEuVZJ0FIvs3lm5fkW7j3AlkqRvK6n0+bly/STFSUkEnFdPlVTtR3ZlZWWRmZnJ3XffTWpqKnXr1mX06NHMnTuXOnXq0LFjRwCmT59Oeno6O3fuZMSIEdx888389a9/rfTfycnJoXfv3kdqN46YU/4zOGDnTl+cjySfZwWJx/ORMWoe/H3F/ueDAaiZBCve/Qd1U2NVVfB5PCtoPKar3padcOabULSf28wh+v75+nAWt/q8VymP59gIwvO8PncRr593b5m2toNPY820PHYX7KBRVhu63jaEFf+cGacKE8u0aTk063FCvMuIq2ofdqWkpDBx4kRuvPFGhg8fTnp6OiNGjKB+/fosW7as9NbD9PR0AGrWrMmPf/xjBg8eHM+yJUlHmSEZ8PeVRL9+cR9CwAVtMOiSpBhrWBPOSYdXP9/3KToEJIfgR21iXZmkipxw1Q/oNep6klKTKVy/hWUT/828/3sl3mUpQVT7sAuga9euzJxZNsF96qmn6NevHwDbt2+nqKiIBg0aEIlEePHFF+nWrVscKpUkHa3a1YP7s+EXc4HI3hFeSUR//14TuOXE+NUnSUez2ztHvyAkb/Pe8zJEf08KwcOnwHHHxLFASeW88aP/jXcJSmAJEXZ9V2FhIYsXL2bEiBEArF+/ngsvvJDi4mKKi4s58cQT+f3vfx/fIiVJR50zj4P29eClFTBtLewqiYZgF7WFM1tBSrWfKVOSgql2Cvy+F7y+JnrL+YptUCsJBrSEizOi52pJUnAkZNg1b948iouLSyenb9euHXPnzo1zVZIkwfEN4J6u0R9JUvVRIxnOax39kSQFW0KGXT179iQSqWCGSUmSJEmSJB2VvKFCkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJKiMnJ4eMjAzC4TDDhw8vt37cuHFMnToVgIceeoi+fftyyy23lOt36aWXEg6H6d69O+effz4A4XCYcDhMp06dGDFiRGnfvLw8UlNTASgqKuK6666r+h2TJEk6ClXVtd0bb7xBr169OOOMM/jiiy+AfV/bzZo1i4EDB9K/f39yc3PZvHkzP/vZz47cDkr7YNglSSrn2muvJScnhwYNGjBz5swy61577TUGDhzI+vXrmTNnDtOnTyclJYXZs2eX6ffiiy+Sk5PD9ddfz9lnnw1EL7ZycnIYPHhwaRvA6NGjOfnkkwFISUnh2GOPZdmyZUd4LyVJko4OVXFtN2rUKKZNm8Zjjz3GqFGjgPLXdpFIhEcffZTJkyczbdo0evToQVpaGlu2bGHbtm0x21/JsEuqAgf6tOTBBx8kPz9/v4/fvHkz3bt3p27duhX+nccff5xBgwaxYsUKWrRoQTgc5sorrwRg4cKFpS86UlXp3Lkza9asKV3evHkztWrVIhQKMXv2bPr16wfAgAEDyM3N3ec2XnvtNc4999wybTk5OYTDYQDy8/M59thjqVevXun6cDjM66+/XsV7I0mSdHQ7nGu7lJQUatWqRadOncqt23Ntt2zZMgoLCxk8eDBDhw5l+/btAPTs2ZOcnJwju3PStxh2SVVkf5+WlJSUMG/ePI4//vj9PrZevXq89dZbnHrqqfvts3v3bvLy8kqXzznnHHJycnj++ecByMrKYs6cOUQikcPfGek/Zs6cSWZmZuny0qVLadOmDQBbtmyhfv36QPQY3rJlS7nHb9u2jYKCAlq0aFFuGzVq1ADgiSee4Oabby7zuDZt2rBkyZKq3h1JkqSj2uFc2+3evZtNmzYxY8YMNm/eXG4bNWrUYMOGDSxbtoxXX32VQYMG8cc//hHw2k6xZ9glVbHvflry8ccf06FDhwofk5qaSlpaWoV9xo0bx2WXXVa6PGXKFPr27csLL7xQ2tauXTsWLFhwiJVLe40dO5ZwOEyrVq3o1q3bPvs0bNiQrVu3AlBQUEDDhg3L9ZkyZQpnnnlmmbZJkyZx3nnnAZTO99C8efOqK16SJEllVMW13QMPPMBFF13EhAkTOPHEE0vbv31t16BBA3r27EnNmjU5/fTTWbx48RHZH+lADLukKvbdT0vy8/Np27btYW2zpKSEKVOm8IMf/ACAFi1asHjxYt58802eeeYZNm3aBPiJiarOnpGKDzzwQJn2zMxMVq5cCUD37t159913AUrnZPiub1/87DF58uTS+bo+/fRT8vLyOPPMM8nLy+PWW28FYOXKlRWOhpQkSVLlVcW1XZ8+fZg2bRpXXXUVPXv2LG3/9rVdhw4dWLt2LZFIhPnz55e+D/LaTrFm2CVVkcp8WvLpp5+WfmPJnp9f//rXB9z2yy+/zODBg0uXa9asSZ06dahduzZ9+/Z1Im/FTFpaGjt27ACio7G6dOlC37592blzJ6eccgrr1q3jkUceAaC4uJglS5aU+eRv48aNpKam0qBBAwAGDRrEjBkzeOONN+jWrRtPPvkkEJ334ayzzorx3kmSJB1dDuba7v7772fAgAH83//9X+kHlN+9tktNTWXo0KGcfvrpjB49mv/6r/8C4IMPPiidr1WKhZR4FyAFxbXXXsu9995brv3444/n5ZdfBuDEE088pIkZFy9eTE5ODuPGjSMvL4+nnnqKm2++mUgkwuzZs0vnO1q5ciW9e/c+rP2Q9gSx+zN48GCmTp3KoEGDGDlyJCNHjixd17x5c+644w4AkpOT+eCDD8o8tkmTJrzxxhv73O6er7wuKipiw4YNZUZISpIk6dBU1bXdL37xC37xi1+Ueey+ru2uuOIKrrjiitLlzZs307BhwzJfRiQdaY7sko6wrl27Vupe9UGDBjF37lwGDRrEJ598UuZTlHvuuYe33nqrdPRLhw4dOOWUUzjttNM444wzSif/Xrp0KZ07dz6i+yNdeeWVDBo06IhtPyUlhbFjxx6x7UuSJGmvI31tl5aWxu9+97sjtn1pXxzZJVWBij4tSUpKokuXLuTn51d4n/qeUS3ftudTlH31O+OMM8q0L1y4kO7duxMKhQ6ickmSJEmSgsWwS4qBfd3eWNWysrLIyso64n9HkiRJkqTqzNsYJUmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgIjYcKuXbt2MXLkSNLT06lduzYDBgwgNzeXUCjEpEmT4l2eAuzrXXt/LyqJXx1SVdhVvPf37UXxq0OSJEmH75tvXdt947WdVCol3gVURiQSYciQIeTm5nLfffeRmZnJ+PHjueCCCwDIzs6Oc4UKonWF8PuF8OaavW3nvgWXtYdh7SEpFL/apIO1qxjG5sPflu9tO+MN+GE6/DgLGtSIX22SJEk6OIVF8MxieGXl3rYzpsB5beCmE6BOQrzTr5zjBp5M9l2XUr99S4q2FfLJH15jwehX412WqrmE+F9gzJgxTJ48mby8PDp16gRAOBwmIyODtLQ0WrduHecKFTTrdsDw6fDVTvj2YK4vd8KTn8LSrfDLbAgZeCkBFJXAT3Nh1pdl23eWwMsrYfYm+FMfAy9JkqRE8E0R3PQ+LNgCkW+17yiGFz+DvE3wTO9gBF4t+3Wl1yM3MOPWp1g3cwEptWtyTKsm8S5LCSAhbmMcNWoUw4YNKw26AJKTk8nIyCgd1fXNN99w0003cfzxx3PSSSdx/fXXx6tcBcBvPykfdH3b5NXw73UxLUk6ZK+sLB907REBPt8Gf1gU05IkSZJ0iP76GXyypWzQtUcEWPQ1PL80xkUdIdl3Xsq8x//O2hnziRSXsHtbIVsWr4p3WUoA1T7sys/PZ/ny5Vx44YXl1q1atao07LrzzjupVasWS5YsYf78+fzqV7+KdakKiA2F0SCroum5kkLwtxWxqkg6PC8th4oGIUaA11ZFh8NLkiSp+iqOwMTlFfeJAH9fkfjzDafUrkmTbu2pfWxDLpj+BJfMe5YBz91F3fSm8S5NCaDaD2xcsyY6YVLTpmUP6EWLFrFy5Uqys7PZtm0bzz//PKtXryb0n/vKmjVrdlB/JxwOk5RU7bO/cjq/9A0ANWvWinMlwVG32w/IuKfie8BLIvDeZ5upGW4Ro6qkQ5Scwkkvbj9gt2+KoXlWd775/JMYFCVVHV8HFTQe0woSj+eql9KgKVnPHnhk01e7oEGrdhRtXnPAvtVB+5RG3Fm/T5m2Gg2PIZSURJtzevLWZQ9QuOlretx/Nf3H3sFrZ9wRp0oTQ//+YZYVfRXvMqpEjRo1KCgoOOjHVft0p3HjxgAsXbp3HGYkEuGuu+6ipKSE7Oxsli1bRuPGjfnlL3/JKaecQjgcZsaMGfEqWYmupJLDW0qKD9xHirdICZFI5T7Wi3hMS5IkVWuR4oMYip/g13a7t0XD0k+fncy21V9SXLiLOQ+Pp/FJGc7bpQOq9iO7srKyyMzM5O677yY1NZW6desyevRo5s6dS506dejYsSN5eXl89tlnZGdn88gjjzBr1izOPfdcli5dSv369Sv1d3Jycujdu/cR3puqd8p/BiDt3LkzvoUEyLbd8IMp0cm79ycJGNzpWPJ83pUAbngP5m6q+NbcJjXhg/w8Uqr9RyBSWb4OKmg8phUkHs9VLxKBy3JgWcG+5+yC6PQVberCh+tWJswXaq3PXcTr591bpm13wQ62rdoQ3WkdlGnTcmjW44R4lxFX1f5tTUpKChMnTqRFixYMHz6cESNGcNZZZ9GvXz+6dOlCUlISrVu3JiUlhcsuuwyAnj170qRJE5YsWRLn6pWI6qZGv7K3oteFEuDijFhVJB2ey9pVHHQBXNIOgy5JkqRqLhSCy9vvP+iC6LrL2gXjm+MXP/8mWdedQ52WjUmumUr2nZey8eNlbF+zMd6lqZqr9iO7ALp27crMmTPLtD311FP069cPgCZNmtC/f3/eeustzjjjDJYsWcKGDRvIzMyMR7kKgFuzYMnXkLc5GnrteTFJCkXn67q9M3RuFM8KpcoLt4CrMuG5pdFPOPYEX3t+DzeHK9rHrz5JkiRV3rnpMP+r6Ddu7+va7tx0uKBN/OqrSvOfnkSNBnUZ/OZvIJTEhtxFTLv2kXiXpQSQEGHXdxUWFrJ48WJGjBhR2vaHP/yBa665httuu43U1FTGjRtHw4YN41ajElutFHi6F0z6PPpNdiu3QXII+jSDS9vBKd4irgRz84nQJQ3+33KYvTEa2nZoEB2heE569PiWJElS9RcKwd1doEeT6LXdvM3R9s6NoqP1z2gZjFFdAEQifPTgX/nowb/GuxIlmIQMu+bNm0dxcTHZ2dmlbe3atSMnJyd+RSlwaiZHg4CLM6LBQIgAvWjoqHR68+hPJBIdrZjk8SxJkpSQQiH4fqvoz54prXyvIu2VkGFXz549iThJnWLIUEBBEgpVPCedJEmSEochl1Se0xFLkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuwIsJyeHjIwMwuEww4cPL7d+3LhxTJ06lVWrVnHaaadx+umnc/XVVxOJRMr0Gz58OH369GHgwIGsWbMGgCeeeIJTTz2VPn36sHTpUoqKirjuuutisl+SJElHo8pe2y1evJjevXvTt29ffvrTn5br99hjj9GqVSseeOCB0rarrrqKXr16EQ6HeeeddwD2eV0oVZXKHs8ADz30EH379uWWW24p1++NN96gV69enHHGGXzxxRcAhMNhwuEwnTp1YsSIEQDMmjWLgQMH0r9/f3Jzc9m8eTM/+9nPjtwOSoorw66Au/baa8nJyaFBgwbMnDmzzLrXXnuNgQMH0rJlS9577z3effddkpKSmD9/fpl+v/zlL5kxYwZ33303Tz/9NAATJkxg5syZ/OY3v+EPf/gDKSkpHHvssSxbtixm+yZJknS0qcy1XZMmTZgyZQrTp09n48aNLFmypEy/YcOGMW7cuHLb/tvf/kZOTg4DBgwAoGfPnkybNu3I7YyOepU5ntevX8+cOXOYPn06KSkpzJ49u0y/UaNGMW3aNB577DFGjRoFRIO0nJwcBg8ezNlnn00kEuHRRx9l8uTJTJs2jR49epCWlsaWLVvYtm1bzPZXUuwYdh0lOnfuXDoqC2Dz5s3UqlWLUChEcnIyoVAIgJo1a9KyZcsyj23bti1AmX7p6ens3LmTr7/+mrS0NCD6Ccrrr78eg72RJKlyDjRy4MEHHyQ/P7/Cbdxyyy307duXhx56qEz7jBkzOPXUUznttNN49NFHAcjNzaV3796cdtpp3HvvvaV9n3nmGQYOHEg4HGb37t0sXLiw9E2ZdCgqurZr3LgxdevWBcpev+3RtGlTkpLKvg0IhUJccsklXHzxxWzevBmA/v37M3ny5CO8J1LFx/Ps2bPp168fAAMGDCA3N7fMY1NSUqhVqxadOnUqty4nJ4dwOMyyZcsoLCxk8ODBDB06lO3btwPRQDcnJ+fI7pykuDDsOkrMnDmTzMzM0uWlS5fSpk2b0uV33nmHLl26sG7dOho0aFDu8SUlJTz00ENce+21APTp04esrCxuuukmrrrqKgDatGlT7pNDSZLibX8jB0pKSpg3bx7HH3/8fh87e/ZsUlJSmD59OnPmzGH9+vWl69q1a8e7777L+++/zz//+U927NhBdnY27733Hu+//z4zZ85k69atfP7558yfP5+3336bnJwcUlNTycrKYs6cOd4ipkN2oGs7gAULFrBx48YKj/E9HnvsMd577z0uueQSHn74YcBrO8VORcfzli1bqF+/PgD16tVjy5YtZR67e/duNm3axIwZM0qD2m9vo0aNGmzYsIFly5bx6quvMmjQIP74xz8CHuNSkBl2BdzYsWMJh8O0atWKbt267bffgAEDmDdvHm3atOGNN94ot37kyJFceumltGvXjq1bt/L3v/+d/Px8XnnlFe67774jtwOSJFWR744c+Pjjj+nQoUOFj5k1a1bpLV39+vXjo48+Kl3XsmVLatSoAURHzyQlJZGamgpAcXExLVu2pE6dOrz55pts376dAQMGlHnNbNeuHQsWLKiq3dNRorLXdlu3buXmm29mzJgxldpuo0aNABg8eLDHpWKmMsdzw4YN2bp1KwAFBQU0bNiwzPoHHniAiy66iAkTJnDiiSeWtk+aNInzzjsPgAYNGtCzZ09q1qzJ6aefzuLFi4/I/kiqPgy7Am7Pp9nfnoAUIDMzk5UrVwKwa9eu0vYGDRpQq1atMn3//ve/s3nzZq655hogOsz9mGOOISUlpfRed4CVK1dW6pNDSZLi4bsjB/Lz80tv1d+fA40oAHjrrbdo37596evn+PHjycrKomHDhqSkpLBhwwZCoRDvvPMOy5cvJy8vD3BEgQ5NZa7tIpEI11xzDffff3+56Sn2p6CgAIj+f5KRkQF4bacjrzLHc/fu3Xn33XcBSufb+rY+ffowbdo0rrrqKnr27FnaPnnyZM4++2wAOnTowNq1a4lEIsyfP7/03O8xLgVXSrwLUHykpaWxY8cOIDq/yN13301SUhKZmZkMHDiQdevWMW7cOO644w5+9rOf0apVK8LhMN///ve555576NWrF71796a4uJgnn3wSiN4Tv+c2R0mSqouxY8cydepU+vTps9+RA59++ik//vGPy7SdeeaZ5UYUtG/fvkyf1atX8/DDD/Pqq6+Wtl1++eVceumlDBkyhPnz59OgQYPS+Wb2jCioaESOdCi+fW2Xk5PDO++8w8aNGwF49NFHadWqVem13fPPP88TTzzB119/zdatW/nNb37DlVdeyZdffknNmjV57rnngGiwcNZZZ8Vrl3QU+/bx3Lx5c7p06ULfvn3p0qULp5xySpn3Kvfffz85OTm0atWKZ555BoCNGzeSmppaOj1LamoqQ4cO5fTTT6dOnTpMmDABgA8++KD0vYykYAlFjvLJIt577z369OnDjBkz6N27d7zLOWin/Ofaevbgg3/s888/T8uWLRk0aNBh11FUVMQNN9zA2LFjD3tbkiRV1oFeB3NycpgxY0aZyeL3mDt3Li+//DK/+tWv9rv9Dz/8kAkTJvDYY48xZMgQnnrqKZo1awbAzp07Oeecc3j66afp2LFjaVvNmjUBuOqqq7jnnnsoKChg/Pjx/Pa3v2XEiBFcdtll9OzZk//5n//h8ssv56STTjqMZ0BBU12u7QCuvvpqxo4dW24ye6myqtPx/F2bN2/mV7/6Fb/73e+OyPZ1cNbnLuL188q/VuvQnDXpAZr1OCHeZcSVI7uOYldeeWWVbSslJcWgS5KUULp27Vo6Eff+fO973+O5556jb9++/OAHP6BZs2alIwqaNGnCp59+yg033ADACy+8wPvvv8/TTz9NSUkJp59+euntMc8//zzhcJgOHTqU3mazdOlSOnfufGR3UkeVqry2A/jzn/9cpduTDkZVH8/flZaWZtAlBZhhlyRJCqxwOEw4HN7nuqSkJLp06UJ+fn6Fc7Y8/fTTZZabN2/OHXfcAURHvnzbkCFDGDJkSLltPP7442WWFy5cSPfu3QmFQpXYC0mSJB0Mwy5JknTU2tftjbGQlZVFVlZWXP62JElS0HkDviRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgJEzYtWvXLkaOHEl6ejq1a9dmwIAB5ObmEgqFmDRpUrzLi4vtRfGuQJKk6mHb7nhXIB0+j2MFya7ivb+XROJXh6SjU0q8C6iMSCTCkCFDyM3N5b777iMzM5Px48dzwQUXAJCdnR3nCmNr9XYYuwTeWLO37ap34arjIdwifnVJkhQr09fBn/P3Lg96A77fCv6rA7SuG7+6pEPxWQE8uxjeXru37foZcE0HOLVp/OqSDsW23dH3Kq+s3Nt2wdtweXsY0haSQnErTQlm6NJxZZaTa6SyJX8Nrw68LU4VKZEkRNg1ZswYJk+eTF5eHp06dQIgHA6TkZFBWloarVu3jnOFsbO8AK6dEX0RKflW+6db4PYP4aedYGj7eFUnSdKR97flMGp+2eHpRRGYsiYagj3bBzLrx6086aB8ugVueA92Fpe9tsvbDLd8AL/oBucePZe6SnAFu6PvVZYXwLcHc32xAx6ZD59+Bf+bbeClynkh84oyy4PffpTlk96LUzVKNAlxG+OoUaMYNmxYadAFkJycTEZGBtnZ2axYsYJu3bqV/rRt25a0tLQ4Vnzk/O9c2FZU9mII9i7/bgGsKIh1VZIkxcbq7fCb+dHfy70WRmBHEdzzEUS8ZUYJoCQCd88uH3RBdDkC/Opj+PKbOBQnHYKnF5YPumDv8r9Ww1tfxLoqBUGTbpk07HAcS//ftHiXogRR7cOu/Px8li9fzoUXXlhu3apVq8jOzqZt27bk5eWV/px//vlcfvnlcaj2yFq4JfrpX0X3vIeAv6/c/3pJkhLZywd4jSsBlhXAvK9iUo50WHK/hNU7ygdd31YSgX94bacEsG03vPZ5+aDr25KAl5bHqiIFyfGXD2DNO3MpXO8LvCqn2t/GuGZNdGKqpk3LTliwaNEiVq5cWW6+rl27dvHCCy8wZcqUg/o74XCYpKTqnf2lnXEDrf7ryQr7RICxU3K5u3vf2BQlSVIMZdz3FnU7nX7Afmdddweb/lXxa6YUb8f+6Oc0u/R/CYX2fw0aKSnhkQlTuPnh82NXmHQIah/fg8yHplfYpwTI27CLmjXrxaYoJYz2KY24s36ffa5LqV2TjPN6M/3Wp2JcVeLq3z/MsqJgBIM1atSgoODgb1+r3ukO0LhxYwCWLl1a2haJRLjrrrsoKSkpF3a9+uqrtGrVipNPPjmmdcZEpKLP/b7dz3s3JEkBFSkhUpnXOV8LlQi8tlOQVPJ49nDWwWp7bi+KCnexeupH8S5FCSQUqdQVY/wUFRWRlZXF7t27eeSRR6hbty6jR49m7ty5bN68mYKCgjIjss4++2zOPPNMbr311kptf+vWrcyfP5+TTjqJ+vWr92y2y7bCJTkV9wkBwzPh5hNjUZEkSbH1zCJ4dknFt8kA/PV0OKFhLCqSDl3eJriuEnMt33oiXJl55OuRDsc3RfCDN2F70f77JIXge03g6V6xq0uJYX3uIl4/7959rjtr0q/YMGsRHz30QoyrSlxnTXqAZj1OiHcZcVXtR3alpKQwceJEWrRowfDhwxkxYgRnnXUW/fr1o0uXLmWCrjVr1vDvf/+boUOHVnr79evXp3fv3tU+6AJoXx9Oblzxf7QQcEGbWFUkSVJsXdCm4m/xSgI6NzToUmLomgbt6+3/mA4BNZJgcHpMy5IOSa2U6Dm6oi9aLInAxRkxK0kBUL99S5qe0pElE96OdylKMNU+7ALo2rUrM2fOZMeOHSxevJibbrqJuXPnlruF8S9/+QvnnHNO6a2PQXR/NjSpVf5FJIlo2y+6QatjYl+XJEmx0LQ2/DI7+rr33YAgBDSqCQ90j0dl0sELhWDUKVA/dR/XdqHoz0PdoWHNuJQnHbQbO8JJjcq373nTObQdnN4spiUpwR1/2QDWz1pIwfJ18S5FCabaT1C/L4WFhSxevJgRI0aUaX/uued48slgT0bbvA6MOx3+ugxeWQnbiqIXR72bwRWZ0ZFfkiQF2ZnHQYs6MG4p/Htd9JbGY1LgvNbR18Jja8W7Qqny2taL3nY7bhm8+jkUFkdDrgHNYVgmdN5HcCBVV7VS4Penwf/7DP62AtYVRttPbASXt4Pvt4yGvFJlffTAX+NdghJUtZ+za19mzZrFqaeeyocffsgpp5wS73LipjgC23dDzeTojyRJR5tdxfBNMRyTCsm+gVKCKyqJzndUOxlqeG2nBBeJRI/n5BDUTsghFoqliubs0sFzzq4EHdnVs2fPyn0TU8Alh6B+jXhXIUlS/NQwFFCApCRBA6/tFBChENRNjXcVko5WCTFnlyRJkiRJklQZhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGKFIJBKJdxGSJEmSJOnotKtgB18t/DzeZQRGo6zW1KhXJ95lxJVhlyRJkiRJkgLD2xglSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBcb/B0VGH732kVYdAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADWoElEQVR4nOzde1xUdf7H8dfMgCACInhDRS6ihhfANM1bjkZmFzU1u1pmuu12Xduy2pLW3VXLbWtbd83qp5VRltXamq1aapCXULyR5gXBC3nFK3IHYeb3x+QogeAFZpjh/Xw85hHne77nnM85Hc+c+Zzv93sMVqvVioiIiIiIiIiIiBswOjsAERERERERERGRmqJkl4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbHs4OoC4ryS3g9M6fnR2G22gS1ZYGfj7V1ss7Cxk5DgioEpH+4OvpnG2LiIiIiIiIyNVTsqsKp3f+zNLhk50dhtu4ZdFUWvS8ptp6GTkwYa0DAqrEnL4QG+ScbYuIiIiIiIjI1VM3RhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2NEC9uIW0l8zk70rG4OGJweSBd+traDVmGv4xNzo7NBERERERERFxILXsErfRasw0ui3II3peFo069mbP9Dsoyz/j7LBERERERERExIGU7BK3Y/T0oulN47EU5VF0JMPZ4YiIiIiIiIiIAynZJW7HUlzIieVzMPr4492qvbPDEREREREREREHcplkV0lJCfHx8YSEhNCwYUMGDRpESkoKBoOBRYsWOTs8qQMOz48n9b4Atv0mjIJ9PxI5+WtMPv7ODssp8s7CjmxIOwOlFmdH476KymBXtu1TVOrsaESujtUKe3Lgp9NwqtjZ0YhcvaMFtvP5YL6zIxERV1FQCjuzYdcZKClzdjQicjVcYoB6q9XK6NGjSUlJYcqUKURGRjJ//nxGjBgBQLdu3Rwaj8Fk5LopY2k36gYMRiP7/7eO9S/Ooaz4rEPjkPJa3fdXWo541tlhONXpYnhrF/zvAJT8kuRq0gDuDoeH2oOHy6S367aiUngnDRZmQv4vSa5GHjC8Lfz2GtvfIq7CaoX//gzz0uFgga3MCJiD4bEoCPN1angil23LSZi9CzafPF/WKQAe6Qj9WjgtLBGpw3LP2q4bX/1se5gJ4O8Jo8JgQgfwMjk1PBG5Ai7xk+zdd99lyZIlpKam0rlzZwDMZjPh4eEEBgbStm1bh8YT/dRIWvbpwqJBz1B2tpQbP3ie7pMfICX+PYfGIXKhU8UwbjUcKYALG3OdLoG302wtvV7rCSaDsyJ0D0Vl8GiyrbWA9YLy/FL4ZK/tx9W7fcHHJa6uIvCvnfBhBlx4abAASUdg/XF4rx+0q5+NZMUFrcmCZ1JsSdwL7cyGp9fDn2LhdsfeNopIHZd3Fiasgb255e/tcs7C++mw7RTMvB4aKOEl4lJcop3HjBkzGDNmjD3RBWAymQgPD7e36tq9eze9e/emQ4cO9O7dm/T09FqLp/39N7Jt5kIKjp6i+GQOqa9/RuTdZgxGlzic4qZm7ayY6LrQqixYcsChIbml+Xtg268SXedYsXUd/VDvRRAX8dPp8+frr89pC1BYCn9NdXBQIleouAxe3gwWa8XvQusvn6k/QnaJE4ITkTprzu6Kia4LbTwJX+x3ZEQiUhPqfHYmPT2dffv2MWrUqArzDhw4YE92/e53v+Pxxx9n9+7dPP744/z2t7+tlXga+Pvg27oZp7bvs5ed3LaPBn4++IY0q5VtilQn9ywsPXjxRBfY/rF/tq+KClKtMit8vr/qOlbgP/s1Vpq4hv/sr/pGwAL8lA27zzgmHpGr8d0RW0uMi/1gBSi1wtc/OywkEanjisvgy8yqrxsGbPfQv24xKiJ1W53vaHPo0CEAmjdvXq58165dZGZm0q1bN44dO8bmzZtZvnw5APfeey9PPPEEx48fp1mz6hNQfn5+lJRUfMzXzqMJz/n3K1fm4dsQgJIzBfaykjO2kU89f5knlRs40Mye0tPV1vPp2Jt2U5Mua90dp11e/YsZONBMQVpyjazLkRq270nk9NVV1rEAO06V4uXVyDFBuSGTfzM6zT1Ybb3TJRDQph1nT1ZfV8SZ2r+xBe+QTtXWu+Gu33A66UMHRCRy5YLH/o2gWx7HYLr47a217CxT3vmC8TMfclxgIlJnebXqSId/bq2yjhXbmJYNGzfBWlxQZV0RqVlWqxUPDw+OHj2Kv//ljatR51t2BQUFAZCRcb5fkNVq5fnnn8disdCtWzcOHDhA69atMZlsHalNJhOtWrXiwIGa77NVmlcIgKe/j72sQWNb8uDsL/NEHK7s0l4FaLXotTJXxXLpr1zUsRZXYNW1Q9yI7XyubmBKg85nEbGzXsa9Hbp2iDic1WqlsLCQbdu2Xfaydb5lV1RUFJGRkbz44ot4enri6+vL7Nmz2bJlCz4+PnTs2JEtW7Zc1TZyc3MrLc9K2cXS4ZPLlZXkFJB36DiBncPI2XMYgKAu4ZTkFpB34PhVxeHuEhOTaNHzmmrrpZ6ECWsdEFAlEhOTiA1yzravRkkZDPnW1n3jYowG6Nvai83FxY4LzM1YrXBvEuypYlwHA9DWFzYc2Y9BLwOQOu6f2+GjPdV33/jxq/do2VAvYZG6LfkYPLmu6joGkwf/nDiG218f45igRKROK7PCsOWQVXTxOkagcxPYmJfjsLhExGbt2rX069ev+oqVqPMtuzw8PPjiiy8IDg5m7NixTJw4kVtuuYUBAwYQHR2N0WgkJCSEQ4cOUVZmy7aXlZVx+PBhQkJCaiWm9I9XEv3kCBq2aIJXkD+xz9xFxoIkrBYN0iPO0cAEo8OrrmOxwj0RjonHXRkMcF+7qhMDVuDecJToEpcwKqzqc9UIDGgJLdVLX1xAr2YQ0ujiN7dGoLEn3NTKkVGJSF1mMsC91dwfW6i+jojUPXU+2QUQExNDcnIyBQUFpKWl8eijj7Jlyxb74PTNmzcnNjaWTz75BIBPPvmEbt26XdJ4XVdi68yFHF23kzuS/sGoH/5FdvpBNk37qFa2JXKpJnSA3r+c8hf+dj33j/w3HaB3818vJZdraAiMCLX9feEF9Nzft7WBkWEODkrkCrVpBH/pZjt/K7shCPOFyTGOjkrkyhgN8HpP8G9QsTOjEfAywT962f4rInLOve0g7pckeGX3dvdGKEku4orqfDfGyhQWFpKWlsbEiRPtZW+//TZjx47lL3/5C02aNOHDD2tvIF1rmYWU+PdIiVeXDmfK353CgblPg9WKX/QgWo+Zap+XMXUoZQU5GEweRExagId/UydG6hieRttN/Fc/294Yk/FL79xezWwtuvq2cG587sJggBejoWdT+HQf/HjKVt65CdwdDje3VqsucS1D2thaw8zfC9/Y3glDcENbq687w8DX05nRiVyeCD+YP8B2ff7qZ8j+5f1Dd4bDfRG2BK+IyIVMBpjWHfo1h8/2w45sW3m3INs9tLml7u1EXJFLJru2bt1KWVmZvWUXwDXXXMP69eudGJU4mk9EN66ZYRvca3f8jZQV5GDysb2hod0LCzF4eHIyMYFT38+n+dCnnBmqw3gYba2KRoZBj69sZf/q7cyI3JPBADe1tn3OHef3+zs3JpGr0bmJ7Ub/XLJr8U3OjUfkajRvCE91sn3OXaOf6+rcmESkbjMZ4Pa2ts+568Y7fZ0bk4hcHZdMdvXq1QurtapRc6Q+MHjYmhtYy8rwDGyF0cunwjzL2SK8Q6KcEp+IiIiIiIiIOJ5LjNklcjGnvp/P9ieiMDUKwGA6n7stzT3Fruf6cOzrmXi3UbJLREREREREpL5QsktcWuCA++g8axdnTx2mcP82e7mHXyDX/O0HWt8/layv/uHECEVERERERETEkZTsEpdlOVsMgMFoxNTQD0MDbwCsFgvWslIATD6NMXp6Oy1GEREREREREXEslxyzSwTgTMpXHFsyCywWfDvfgKUon5OJCQT0uoOMqbeDwYjR04uw33/g7FBFRERERERExEGU7BKX1aTvaJr0HV2uzCciFoCO0793QkQiIiIiIiIi4mzqxigiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchgaolzon0h/m9HXetkVERERERETEdSnZJXWOryfEBjk7ChERERERERFxRerGKFJPJSUlER4ejtlsZuzYsRXmT5s2jfT09CrX8eSTT9K/f3+mT59eYd7+/fsJDg7GbDbz4IMPsmzZMsxmM2azmaCgIFJTUyvUAdi5cyczZsyomZ0UERERERGRekfJLpF6bPz48SQlJdG4cWOSk5Pt5RaLha1bt9K+ffuLLrtx40Y8PDxYvXo1mzdvJisrq0Kd2267jaSkJD788EOGDBlCUlISiYmJREREEBMTU6EOQFRUFJs3b8Zqtdbw3oqIiIiIiEh9oGSXiNClSxcOHTpkn/7xxx/p0KFDlcusX7+eQYMGATBgwAA2bdpUoc4333xD//79+fjjj+1lGzZsoEePHhgMhovWiYiIYPv27Ve1TyIiIiIiIlI/KdklIiQnJxMZGWmfTk9PJywsrMplsrOz8fe3jejv5+dHdnZ2ufnBwcGkpaXx7bff8s4773Dy5EkAFi1axPDhw6usExoayu7du2to70RERERERKQ+0QD1IvXY3LlzWbFiBf369SM2NrbSOjt27OCxxx4rVzZkyBACAgLIyckBIDc3l3bt2pWr4+XlZf+7f//+7Nmzh6CgIBITE/nTn/5UZR0RERERERGRK6WWXSL12Lkxu6ZOnVquvH379uzfvx+ATp06kZSUVO7zwgsv0LNnTxITEwFYtWoV3bt3L7eOvLw8AKxWKxs3biQkJIS9e/fSpk0bGjRocNE6AJmZmVWOFyYiIiIiIiJyMUp2iUgFMTExpKWlVVnnuuuuo7i4mP79+xMTE0OLFi04evQor732GgA//PADPXr0oE+fPgwePJjg4OByXRgvVgcgIyODLl261N4OioiIiIiIiNtSN0aRespsNmM2myudZzQaiY6OJj09vcoWVrNmzSo33bJlSyZNmgTA4MGDGTx4cLn5Tz/9dLnpyurs3LmT7t272wewFxEREREREbkcSnaJSKUmT57slO1GRUURFRXllG2LiIiIiIiI61M3RhERERERERERcRtKdomIiIiIiIiIiNtQN0apc/LOQkaOc7Yd6Q++ns7ZtoiIiIiIiIhcPSW7pM7JyIEJa52z7Tl9ITbIOdsWERERERERkaunbowiIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbWiAenELaS+Zyd+VjMHDE4PJA+/W19BqzDT8Y250dmgiIiIiIiIi4kBq2SVuo9WYaXRbkEf0vCwadezNnul3UJZ/xtlhiYiIiIiIiIgDKdklbsfo6UXTm8ZjKcqj6EiGs8MREREREREREQdSskvcjqW4kBPL52D08ce7VXtnhyMiIiIiIiIiDuQyya6SkhLi4+MJCQmhYcOGDBo0iJSUFAwGA4sWLXJ2eFIHHJ4fT+p9AWz7TRgF+34kcvLXmHz8nR2WU5SUnf/banVeHCI1wWqFowVwMB+Ky6qvL1LXnS6Gn/Mg76yzIxERV1FUBgfy4Gih7u3E9VmscPiXe7uzFmdHI+7KJQaot1qtjB49mpSUFKZMmUJkZCTz589nxIgRAHTr1s1hsYQN7U3UhFsJ7BxG8alcvuj5mMO2LVVrdd9faTniWWeH4VR5Z+G9dPgy83zZiJVwbzsYHQZGg9NCE7lsViv8JxPm74Gf821ljTzgjrYwvgP4N3BufCKXa8Nx2zV6wwnbtNEAg4JhQgeIrJ/PZkSkGqeLYe5u+OpnKPjlgU+4L4yJhGEhYNC9nbiQMit8utf2OVJoK2vsCSPD4OH20NAlshPiKlzidHr33XdZsmQJqampdO7cGQCz2Ux4eDiBgYG0bdvWYbEUn8ln13vL8G7WmM6P3O6w7YpUJ/csTFgDe3Phwgd+hwrgtW2w4zT8qZsSXuIarFaY9iP892e48JTNL4X5e2HtMZjbDxor4SUuYtlBiN9c/ny2WOG7w7AmC2b3hq6BTgtPROqgk0Xw8BpbC5gL7+3258FfUyEjB/7QWQkvcQ1lVnhxI6w8Uv678MxZ+CAd1h2Dd/qCj0tkKMQVuEQ3xhkzZjBmzBh7ogvAZDIRHh5ub9X17LPPEh4ejsFg4Keffqq1WI6s2sq+RWvJP3i81rYhciXe2lkx0QXnp/93EJYfdnRUIlcm6agt0QWVn9M/58HMHY6OSuTKnC6GKVts5+6ve2tYsHU9/+Mm2w8BEZFzXv8JjhRc/N7uk72wXj9JxEUs/tmW6ILKz+ldZ+D/0hwdlbizOp/sSk9PZ9++fYwaNarCvAMHDtiTXXfccQerVq0iNDTU0SGKOF1+KSw+UPGL40JGYMFeR0UkcnU+21f1F5QFWHoQckocFZHIlVv0M5RWcYG2YBuHJ/mYw0ISkTruZJEtMVDVcEZGAyzY57CQRK7KZ/vKt+j6NSu2oVg0PqvUlDrfSPDQoUMANG/evFz5rl27yMzMtCe7+vXrd8Xb8PPzo6Sk4i+mdh5NeM7/ytcr5Q0caGZP6elq6/l07E27qUmXte6O0y6v/sUMHGimIC25RtblSA0jryPylTVV1rEAPx4/i5eXr2OCqie6fFYEgJeXt5MjcS+dPzqN0cunyjolFgjteSMFO6s+9+XS6XyuHW0nfYZ/99sxmEwXrWO1lHHvpFc5tuAvDozM/emcFlflG3sz4S99VWUdixUS00/gdUNrB0VVP+i6UQtMHnT9NL/aanml0KxjN4oPqPm+2FgsV/4GgzrfsisoKAiAjIwMe5nVauX555/HYrE4dHB6kTrLeqkXAfWREddgvdRzWq+kEldgsXBJ11+dzyJyju7txJ1czvebvgulhtT5ll1RUVFERkby4osv4unpia+vL7Nnz2bLli34+PjQsWPHq95Gbm5upeVZKbtYOnzyVa9fbBITk2jR85pq66WehAlrHRBQJRITk4gNcs62r0ZRKdz8ra0748UYge4tG7CpuNhhcdUHPX556Fqs41qjfr8Oko/bnlpfjLcJDm76jkZ1/pvMdeh8rh3z98Ab26uuYzCa+M8bk+mZoPuOmqRzWlxVdgkM+abqLtBGYMg1zUjV+V2jdN2oHQ+tgh3ZVXfNDWgAJ9NT8azzTXLEUdauXXvFvfjq/Gnk4eHBF198QXBwMGPHjmXixInccsstDBgwgOjoaIxGx+6CwWjE5OWJwcMDDAZMXp4YG+iXljiXtweMCK26H7wFuDvcURGJXJ27I6pOdBmAYW1Roktcwu0h4GW8+DXaCLRtBNc1dWRUIlKXBTSAW9pUf293l+7txEXcE1F1ogtgdBhKdEmNcYlTKSYmhuTkZAoKCkhLS+PRRx9ly5YtTunC2O7OG3hg/ycM/L9n8G3TjAf2f8LINTMdHofIr/2uI3RtUrH83D/yeyNgQEuHhiRyxfo0hwcjbX9X9kV1TWN4IsqhIYlcMf8G8GoPMBkqns9GoJEn/O06MFT1q1ZE6p0/dIF2fhUTXueuI490hGtdsEeC1E83t4Y72tr+vvC78Nz5fV1TGNfe0VGJO3PJZ+KFhYWkpaUxceJEe9lTTz3FwoULOXr0KHFxcQQFBbF9ezV9Bq5AxmdJZHyWVOPrler9/O6TFO5Lxf/aWwge/aK9/OD7z3Lyu3m0Gf8PgsxjAEh7yQxA6Znj+MfeRMiEN9n+eBQeAS0AaPfCQjz8Ah2+D7XJ2wPe6gOf7oXP90GWbWxNogJsia6bW+uHlLiWJ6OgUwB8vAe2/fJui2betqd+90ZAQ5f8BpP6qn9LeL8/fJgByw/byrxNtlZfD7SD1o2cG5+I1D1+njCnH3yyFz7fD6d+6VUXEwj3twNzsFPDE7ksBgO8FAOxgTB/L+zOsZUH+9haKN4drlZdUrNc8qfC1q1bKSsrK9eya+bMmcycqRZW7io/fSMGowcdX1nNnlfv5Gx2Fp6/JK5ajJiEd9su5eqfezvjoQ//iF/XgQB4Bramw19XODRuR/M2wUPtbS1i8kttrQh8XPJfuYjtpiiule1zbvyM/91ke9W6iCuKCoBXesDyX87npFvAQzf2IlIFX0/4TUcY3wF6LraV/Z9eFi8uymCA29vaPufu7RbdqAfyUjtc8harV69eWK1WevTo4exQxEHyd6/HL3oQAH5dBlCQsck+71zSqzK5PyXh28UMwNkzWaT98QYOfvAcVjd/y4fRYHsaqESXuBslusSdKNElIpdK33/irpToktqi2yxxCWX52Zh8/AEwNvSjLD+72mWKjmTQoFkoRs8GAHScvoqOr6zCUlJEzqYltRmuiIiIiIiIiDiJkl3iEkyNAigrsHXsthTmYmoUUO0yZ9YvIqDXcPu0h69t9PaAnkMp/Lnmx3MTEREREREREedTsktcQqMOPcndlghA7vZV+ER2r3aZM5uW0Lj7rQBYS89iOWsb1TNvVzJeLfSeZhERERERERF3pGSXuIRG7a/DeraYtD/2xyc8hrOnjnAyMQGAowtfI+vL1zj6n1fJWvQGAKU5JzCYPDE1agxAWcEZ0p7vQ9ofb6D4UBoB149w2r6IiIiIiIiISO3R8NXiMtr+bla5aZ+IWABajpxEy5GTys3z8G9K+ynLyk1HvbEJEREREREREXFvatklIiIiIiIiIiJuQ8kuERERERERERFxG0p2iYiIiIiIiIiI21CyS0RERERERERE3IYGqJc6J9If5vR13rZFakpSUhLjxo0jNDSU0NBQ5s2bV25+QkICwcHBxMXFMX36dJYuXUpsbCz/+te/ytU7fvw4jzzyCNnZ2dx777088sgjDB06lJycHDw8PFiwYAFGo5GRI0disVho06YNCQkJnDlzhqlTp/LGG284crdFREREREScSskuqXN8PSE2yNlRiNSM8ePHM3nyZJ566imSk5Pp3bu3fd7ixYtZsGABWVlZbN68mdWrV/P000+zceNGevToYa/3l7/8hTfffJPQ0FB72cKFC/H09CQhIYH58+czYcIEPv/8c5o1a0Z8fDwrV65k8ODBZGdnk5eXh6+vr0P3W0RERERExFnUjVFExAG6dOnCoUOH7NOnTp3C29sbg8HAxo0bGTBgAACDBg0iJSWl3LK7d+/mhRdeYPDgwaSlpQHg6ekJQFFREVFRUfj4+NCsWTMATCYTBoMBgF69epGUlFTbu+d0SUlJhIeHYzabGTt2bIX506ZNIz09vcp1PPnkk/Tv35/p06dftM6bb75JXFxcpfWXLVuG2WzGbDYTFBREamoqO3fuZMaMGVexZyIiIiIicrmU7BIRcYDk5GQiIyPt0xkZGfaWWtnZ2fj72/rQ+vn5kZ2dXW7ZNWvWMHXqVGbNmsVLL70E2JJlffr0YebMmURFRdnrZmVlsXLlSgYNGgRAaGgou3fvrs1dqzPGjx9PUlISjRs3Jjk52V5usVjYunUr7du3v+iyGzduxMPDg9WrV7N582aysrIq1Dl79iypqakXrT9kyBCSkpJITEwkIiKCmJgYoqKi2Lx5M1artcb3V0REREREKqdkl4hILZo7dy5ms5nWrVsTGxtbaZ2AgABycnIAyM3NJSAgoNz8zp07065dO9q3b8+ZM2cACAwM5IcffmDq1Kn84x//AKC0tJSHH36Yt956C5PJVGv7VNf9uhXdjz/+SIcOHapcZv369fYE4YABA9i0aVOFOgkJCdx7773V1t+wYQM9evSwt66LiIhg+/btV7dTIiIiIiJyyZTsEhGpRedaG02dOrVceWRkJJmZmQB0796dVatWAZCYmEjPnj3L1Q0LC+PEiRNkZWXh4+ODxWKhtLQUgMaNG+Pt7Q3AH/7wBx544AG6du1qXzYzM7PKFk3u6Net6NLT0wkLC6tymepa11ksFr755htuvvnmausvWrSI4cOH26frU+s6EREREZG6QAPUi4g4QWBgIAUFBQC0bNmS6Oho+vfvT3R0ND169ODo0aMkJCQwadIkJk+ezMiRIyktLWXmzJnk5+dz++23YzQa8fLy4oMPPmDv3r3MmTOHrVu38vbbbzNp0iRuu+021q1bx8yZM528t44xd+5cVqxYQb9+/S7aim7Hjh089thj5cqGDBlSoXVdu3btytVZuHAhw4YNs09XVT8xMZE//elPNbFLIiIiIiJyBZTsEhGpJecGK7+YYcOGsWLFCuLi4oiPjyc+Pt4+r2XLlkyaNAmA6Ohoe8uvc77//vsK6zuXPDvn1KlTBAQE4OfndxV74TrOvfny19q3b8/ChQsB6NSpU6UD9m/YsIFPPvmEoUOHsmrVKu66665y89PS0khKSiIhIYHU1FRuvvlmEhMTK9Tfu3cvbdq0oUGDBvZlMzMz6du3bw3uqYiIiIiIVEXdGEVEnOTBBx+0v9mvNgQGBtrH86rPYmJi7G+xvJjrrruO4uJi+vfvT0xMDC1atODo0aO89tprALz00kssX76cZcuWERsby6RJkyrUh4pdGMH2MoIuXbrUzs6JiIiIiEgFatklIiIur6pWdEajkejoaNLT06scv2zWrFnlpi9sXXehFStWVFof4Omnny43vXPnTrp3724frF5ERERERGqfkl0iIuL2Kuve6AhRUVFERUU5ZdsiIiIiIvWVujGKiIiIiIiIiIjbULJLRERERERERETchroxSp2TdxYycpyz7Uh/8PV0zrZFRERERERE5Oop2SV1TkYOTFjrnG3P6QuxQc7ZtoiIiIiIiIhcPXVjFBERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5DA9SLW0h7yUz+rmQMHp4YTB54t76GVmOm4R9zo7NDExEREREREREHUssucRutxkyj24I8oudl0ahjb/ZMv4Oy/DPODktEREREREREHEjJLnE7Rk8vmt40HktRHkVHMpwdjoiIiIiIiIg4kJJd4nYsxYWcWD4Ho48/3q3aOzscEREREREREXEgl0l2lZSUEB8fT0hICA0bNmTQoEGkpKRgMBhYtGiRs8OTOuDw/HhS7wtg22/CKNj3I5GTv8bk4+/ssMSNWa2V/y21x6LjLCJSp5RaILsYikqdHYmIiPxaQSlkl0BZPbyHdokB6q1WK6NHjyYlJYUpU6YQGRnJ/PnzGTFiBADdunVzWCzGBh5cP30Cwf264h3kT0HWaXa+t5Rd7y11WAxSuVb3/ZWWI551dhhSD5RZ4cv98Om+82WjvoO7I2BUKHi4zGOEus1qheWHYf6e82W3LYdRYXB/BDR0iW8wERH3dKIIPsyART9DfikYgD7N4YFI6NHU2dGJiNRv3x+FjzJgyynbdJMGtnvoMe3A19OpoTmMS/xUePfdd1myZAmpqal07twZALPZTHh4OIGBgbRt29ZhsRhNJgqPZfPtPX8lNzOLwE6h3PTJZIqOZ7N/cbLD4hAR5yizwosbYeUR2439OQfy4bVtsP4Y/O06JbxqwswdkLCnfBPk40Xw9i74/gi83RcaucS3mIiIezlcAOPX2BJe5xoLWIHk4/DDMYiPhWGOuz0XEZELvLcb3toFxgt+rJwugbm7YeVh+L9+ENDAefE5ikv8HJsxYwZjxoyxJ7oATCYT4eHhdOvWjZMnT3LrrbfSsWNHunbtysiRIzl+/HitxFJaWMyWv31K7v6jYLVyavt+Dny7keY9o2pleyJStyzcb0t0wfkb/Av/XpVVvsWXXJm1WbZEF4Clkvm7zsC/dzg0JBER+cXLm+FkUfnvQbB1NbcCU1PhUL4TAhMRqee2nrIluqDi8B9WIDMP/r7N4WE5RZ1PdqWnp7Nv3z5GjRpVYd6BAwfo1q0bBoOB5557jrS0NLZt20a7du144YUXHBKfwcNEi15RnN6Z6ZDtiYjzWK3wyd7yLbp+zQAs2Kuxpa7WZ/vKP436NSuw+ICt64yIiDhORg6knqr8QcQ5VmChbo1FRBzus31VJ3ks2IYJOVnkqIicp853ADl06BAAzZs3L1e+a9cuMjMz6datG4GBgZjNZvu866+/ntmzZ1/yNvz8/CgpKalQ3s6jCc/596ty2eunj+dsXiF7Pv/+krdXXw0caGZP6elq6/l07E27qUmXte6O0y6v/sUMHGimIE3dUaVyJr8gOr13uMo6VuBIIfi1Cqf0VNV15eI6J5zC6N2oyjpFZdCm+yAKdq11UFTur8tntjsfLy9vJ0fi3nScHUfHuuYFDv4trX8zs8o6VuCtJet4ttsAxwRVT+h8dgwdZ8fQca4d17yzH8/A4CrrlFmh46CR5G76n4OiunIWS1WPVqpW51t2BQUFAZCRkWEvs1qtPP/881gslgqD01ssFmbPns2wYcNqPbbrpoylWfeOLL9/Gpazal4g4vYMVbXpqlC51sKoFy71WF/W/xMREblql3jdNeh7UETE8XQPbVfnW3ZFRUURGRnJiy++iKenJ76+vsyePZstW7bg4+NDx44dy9V/8skn8fX15YknnrjkbeTm5lZanpWyi6XDJ1c6r+dfHiK4X1eWjf4zxacqX17KS0xMokXPa6qtl3oSJjipoUZiYhKxQc7ZttR9FisMXwFHCyuOU3KhZt6w/vBeTO7/HVJrHv0BNp2ouptMAyNkpqzEvx4MsOkoPb6y/be4uNi5gbg5HWfH0bGueTuz4YFVVdcxABOG9OIPz+q41ySdz46h4+wYOs6147kNkHS06iFVjMCOFf+heUOHhXXF1q5dS79+Vfe2u5g637LLw8ODL774guDgYMaOHcvEiRO55ZZbGDBgANHR0RiN53fh2WefJT09nQULFpQrr2k9//owwf2jbYmukzm1th0RqVuMBrg7oupEF8DoMJToukp3h1ed6DIAt7RBiS4REQeLCoBOAVWPqwi2V9yLiIhj3RVefaLLHIxLJLquVp1v2QUQExNDcnL5cZT+/e9/M2DA+XEAXnzxRTZt2sT//vc/vLy8ai2WRm2a0mnCrZQVlXDn+ln28qz1u1hx/7Ra266I1A33hMP6Y7bXq1emRxCMaefYmNzRgJYwIhS+zLQlti78zjYAob7wVCcnBSciUs/9pRs8vAbyzpZ/MGHENv1MF9t1WkREHKtHU3igne2t5pXdQ7doCM91dVJwDuYSya5fKywsJC0tjYkTJwKwfft2XnnlFTp06ECfPn0ACA8P58svv6zxbecfPMEHwXfW+Hqlej+/+ySF+1Lxv/YWgke/WG7e2dNH2fZIOF1mp9OgaRtOrHiPE9/OwSOgOeETEzD5+AFQsDeVnc9eR/eFZ52xC+IGPIzwRi/4eA8s2AfHf3mTSVMvuDMcHmwHDUzOjdEdGAzwYjRc0xjm77W9JhnA18OWBBvXXq26REScJcwPEm6Auemw9CCc/SXj1aUJPNQebmjp3PhEROqzpzpBpD8kZEDGLyMuNTTB8LbwcAcIrL22QXWKSya7tm7dSllZmX1w+s6dO2O1VtexSFxZfvpGDEYPOr6ymj2v3snZ7Cw8A1rY5x/7+l806tALAGtZKSe/m0fHV9dwZtMSTiyfQ4vhTwNwfNlsfCKudco+iPvwNNpu5h+IhGO/jN/V3NuWCJOaYzDYusGMDIVjRbYfU829lUwUEakLWjeCl2Ph2S5wwxJb2Xv9nRqSiIhgu4e+LQRubQPXLbaVLR8C3vXsHtolf5r16tULq9VKjx49nB2KOEj+7vX4RQ8CwK/LAAoyNtnnleZlU5p7Aq/mYbbpnBM0aNYWg9FIw9Cu5KfZusAWHU7Hw78ZpoZ+Do9f3JPJAME+0MpHia7aZDDYmly3aaREl4hIXePjko/ORUTc34UvXKxviS5w0WSX1D9l+dmYfPwBMDb0oyw/2z7v+JJZNBvyO/u0h38zio9kYCkpIm/7KsryzwBwbPE/aX7bpb+lU0RERERERERcj5Jd4hJMjQIoK7C9+dJSmIupUYDt7+JCig7swCeim72uwWSixYhJpP95CIX7f8QjoAUlJw8D4NlEg0iIiIiIiIiIuDMlu8QlNOrQk9xtiQDkbl+FT2R3AIqP7af46B7SpwwhJ3U5P7/zOABNeo+k47QkGnXoRePut1B0YAcF+1JJnzKEgn2p/PzuU07bFxERERERERGpPeplLy6hUfvrOLnyA9L+2B//bjdz9tQRcrZ8S9DAB7jmtXUA7P/nQ7S6fyoAP7/9GEWH0vAO6UTI+DcxmEz4x8YBsDs+jraPzHTavoiIiIiIiIhI7VGyS1xG29/NKjftExFbbjrs9x9cUPeti66nw19X1GRYIiIiIiIiIlKHqBujiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRsaoF7qnEh/mNPXedsWERFxpqSkJMaNG0doaCihoaHMmzev3PyEhASCg4OJi4tj+vTpLF26lNjYWP71r3+Vq3fPPfdw9OhRcnNzCQkJ4b///S9msxmA48ePc9NNN/Hyyy8zcuRILBYLbdq0ISEhgTNnzjB16lTeeOMNR+2yiIiISI1SskvqHF9PiA1ydhQiIiLOM378eCZPnsxTTz1FcnIyvXv3ts9bvHgxCxYsICsri82bN7N69WqefvppNm7cSI8ePez1Pv30UwDeeecdDAYDYEukAfzxj39k4MCBeHt78/nnn9OsWTPi4+NZuXIlgwcPJjs7m7y8PHx9fR230yIiIiI1RN0YRURE5JIkJSURHh6O2Wxm7NixFeZPmzaN9PT0iy6/Zs0arr/+evr06cPrr79ebt6yZcswm82YzWaCgoJITU2lsLCQW2+9lQEDBjBu3DgAdu7cyYwZM2p2x+qwLl26cOjQIfv0qVOn8Pb2xmAwsHHjRgYMGADAoEGDSElJqXQdixcvZujQoeXKkpKSMJvN+Pj40KxZMwBMJpM9KdarVy97YkzkatXmtaOyeadOnaJ79+7lkrX17dohIlLfKdklIiIil2z8+PEkJSXRuHFjkpOT7eUWi4WtW7fSvn37iy4bERHBqlWr+OGHH/j6668pKCiwzxsyZAhJSUkkJiYSERFBTEwM3377Lf369eP777/H09OTn376iaioKDZv3ozVaq3V/awrkpOTiYyMtE9nZGQQGhoKQHZ2Nv7+tv73fn5+ZGdnV1g+Ly+P3NxcgoODK6yjQYMG9rKsrCxWrlzJoEGDAAgNDWX37t21sUtST9XWtaOyeX5+fixfvpzrr7/eXq++XTtEROo7JbtERETksv26xdGPP/5Ihw4dqlymVatW9gSLyWTCaKx4G7JhwwZ69OiBwWAgPDyc/Px8wJa0ady4MWD7cbt9+/aa2pU6ae7cuZjNZlq3bk1sbGyldQICAsjJyQEgNzeXgICACnW++eYbhgwZUq5s0aJFDB8+3D5dWlrKww8/zFtvvYXJZKqxfRCpTE1fOyqb5+npSWBgYIX11Idrh4iI2CjZJSIiIpft1y2O0tPTCQsLu6Rlly9fTrt27fD29q4w78JETGRkJKtXryYqKgqDwUBISAhQP1odnWsFM3Xq1HLlkZGRZGZmAtC9e3dWrVoFQGJiIj179qywnl8ntgCWLFnCrbfeap/+wx/+wAMPPEDXrl3tZZmZmVW2tBG5UrV17ahq3jn14dohIiI2SnaJiIjIJbuUFkc7duywj7917vPqq68CcPDgQV555ZUK4+6ck5iYaO9KN2/ePO6++2527txJ06ZN+eGHH2pln1xJYGCgvQtXy5YtiY6Opn///hQXF9OjRw+OHj3Ka6+9BkBZWRm7d++mU6dO9uVPnDiBp6envZXc3r17mTNnDm+//TZms5n//e9/AKxbt87+5kaRmlCb147qrisiIlL/6G2MIiIicsnOvSXw19q3b8/ChQsB6NSpU6WDmxcXF/PQQw8xe/bsSt/yt3fvXtq0aWPvkmSxWOxdkQIDA+1jUmVmZtK3b98a2qO659yP/IsZNmwYK1asIC4ujvj4eOLj4+3zWrZsyaRJkwBbl65169aVW7Zp06YsW7bMPh0REVFu/COwDe4dEBCAn59fDeyNiE1tXTuqu65cyN2vHSIicp5adomIiMhVi4mJIS0trco68+fPZ8eOHfz2t7/FbDZz6NChci2Rft3l7r777uP999/HbDaTmprKTTfdBNgGWO/SpUvt7Uwd9+CDDxIXF1dr6w8MDOQf//hHra1f5EJXe+2obB5AXFwcW7ZsIS4ujp9++gnQtUNEpD5Ryy4RERG5JFW1ODIajURHR5Oenn7RsZ7GjRvHuHHjKpSfa4n09NNPlytv0qQJ3377bbmynTt30r17dwwGwxXsgYg4Q21fOyqbt2LFinLTunaIiNQvSnaJiIhIjaisi1JNi4qKIioqqta3IyKOo2uHiIjUNHVjFBERERERERERt6Fkl4iIiIiIiIiIuA11Y5Q6J+8sZOQ4Z9uR/uDr6Zxti4iIiIiIiMjVU7JL6pyMHJiw1jnbntMXYoOcs20RERERERERuXrqxigiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchgaoF7eQ9pKZ/F3JGDw8MZg88G59Da3GTMM/5kZnhyYiIiIiIiIiDqSWXeI2Wo2ZRrcFeUTPy6JRx97smX4HZflnnB2WiIiIiIiIiDiQkl3idoyeXjS9aTyWojyKjmQ4OxwRERERERERcSAlu8TtWIoLObF8DkYff7xbtXd2OCIiIiIiIiLiQC6T7CopKSE+Pp6QkBAaNmzIoEGDSElJwWAwsGjRImeHJ3XA4fnxpN4XwLbfhFGw70ciJ3+Nycff2WGJiIiIiIiIiAO5xAD1VquV0aNHk5KSwpQpU4iMjGT+/PmMGDECgG7dujk0nutfmUDITT3w9PfhbF4hmV8ns/GvH2E5W+rQOKS8Vvf9lZYjnnV2GCIiLuen0zB/z/np25fDqDAYHQa+ns6Kyv3sz4WP956fvmkZDG8L90RAU2/nxSVyJXJK4LN98J/M82Xxm+H+CLgmwGlhiYiIAC6S7Hr33XdZsmQJqampdO7cGQCz2Ux4eDiBgYG0bdvWofHsfH8ZG/+SQGlhMV6BfpjffYbop0aS+vpnDo1DRETkai05AFO2AIbzZUcLYdZO27z/6wsBXk4Lz21sPAFPrYNSy/my0yUwLwMW/3Kc2/o6Lz6Ry3GiCCasgYMF5cu/OQjfHoLp3eHGVs6JTUREBFykG+OMGTMYM2aMPdEFYDKZCA8Pt7fquuOOO4iJiaFbt27079+f1NTUWovnzO6DlBYW2yYMBqwWK34RwbW2PRERkdpwMB+mpIIFsFgrzs/Mg6k/Ojoq95NfCs+k2BJdll/Ns2JLej23AayV/D8QqYv+tAUOF1QsP3cteWkTHCt0eFgiIiJ2dT7ZlZ6ezr59+xg1alSFeQcOHLAnu+bNm8ePP/7Ili1bePbZZ3n44YdrNa6uT9zB/RkJ3PvTewR2DmXHu1/X6vZERERq2n/2V51gsQDfH4WjlfyolUu39IAt4fXrRNc5Fitk5MKPpxwalsgV2Z8H649f/Hy2AmVW+DLzIhVEREQcoM53Yzx06BAAzZs3L1e+a9cuMjMz7cmuxo0b2+edOXMGo/HS83h+fn6UlJRUKG/n0YTn/PtVusy2f/+Xbf/+L43btyZiZH8Kj52+5O3VVwMHmtlTWv1x8unYm3ZTky5r3R2nXV79ixk40ExBWnKNrEtEpK6LfG0DDcOiq6xjBWKGP0z2qo8dE5QbavvMJ/hfNwyD6eK3XVaLhaG/n8axz6c6MDL31+WzIgC8vDQoWk0JvOk3tH7k31XWsVitvLl4HU/FmB0TVD2h89kxdJwdQ8fZMVz9OFssF3u0Ur0637IrKCgIgIyMDHuZ1Wrl+eefx2KxlBucfsKECbRt25aXXnqJefPmOSS+M+mHOLU9k/7/esoh2xMREakpVSVfytUzmmo5Ejdn9ACDoZpKVh1ncQmXct0wGAw6n0VExKnqfMuuqKgoIiMjefHFF/H09MTX15fZs2ezZcsWfHx86Nixo73unDlzAEhISGDSpEksWbLkkraRm5tbaXlWyi6WDp9c7fJGTxP+GrOrWomJSbToeU219VJPwoS1DgioEomJScQGOWfbIiKO9uct8L8DF++OdM6qz/6PDo3/zyExuaM5afB2WtV1DEYT82a8yMAPX3RMUPVEj69s/y0uLnZuIG5k6yl4eE3VdYzA2Jt68vwzOu41SeezY+g4O4aOs2O4+nFeu3Yt/fpV3tuuOnW+ZZeHhwdffPEFwcHBjB07lokTJ3LLLbcwYMAAoqOjK+2u+MADD5CYmMjJkydrPB5PPx8i7zLTwN8HgCZRocRMHMXhJI3gKyIirmVUWNWJLiPQtQl0aFxFJanWHaFgrKJhlxEI8oL+LRwWksgV69oE2vlV/SPCgu36IiIi4ix1vmUXQExMDMnJ5cdR+ve//82AAQMAyMvL4/Tp04SEhACwePFiAgMDCQwMrPlgrFYiRt3AdVPGYmzgQdGJHDKXrCf1tQU1vy0REZFa1KUJjI2EeRlgwDY+1zlGwMcDJsc4KTg30tQbnu8Kr2y1HdcLE4xGbImwqdeCR51/BCli65H752vhN2uguKz8+XzuOvK7jhDp76QARUREcJFk168VFhaSlpbGxIkTAcjPz2f06NHk5+djMpkIDAxk8eLFGKodH+Pync0r5Nu7/1Lj6xUREXGGJ6IgpJEt4XUg31ZmNMCglvBoFIT6Ojc+dzEqzNZ6a85u2HXmfHnPZvC7a2yJRxFXcU1j+KA/zN5le2PruUR5qC+Maw+3hTg1PBEREddMdm3dupWysjL74PQtWrRg3bp1To5KHCFvxxoOvv8sGIw06TOKFnc8Y593YsV7nPh2Dh4BzQmfmIC17Cx7Xh0JFgueTdsQPjEBg0mDpYqIXMhgsHWzG94W9udBYRkEN4QmXs6OzP2Yg22fg/lwpgSaeUPzhs6OSuTKtPOHv/eEk0WQVWRrCRra6BLexSAiIuIALpns6tWrF1artfqK4nYatIigw/RVGD0bkPbSQJrd8ihGLx+sZaWc/G4eHV9dw5lNSzixfA7NhvyWiOc+x7NxMw59HE/u1pX4dxvs7F0QEamTDAYI93N2FPVDm0a2j4g7CPK2fUREROoSjQ4hLqVBUCuMng0A25urMNhO4dKcEzRo1haD0UjD0K7kpyVj9PLBs3GzC+rqUaOIiIiIiIiIu1OyS1xSTupyvILbYWxge5To4d+M4iMZWEqKyNu+irL88wOinM3OInfrSvy6DnJWuCIiIiIiIiLiIEp2icspOXGQo1+8Qptxr9vLDCYTLUZMIv3PQyjc/yMeAbb3t1vLStk/82Ha/vYtjdclIiIiIiIiUg+45JhdUn9Zzhaz/58P0fZ3szE1LP+KsCa9R9Kk90hOr/0ca1kpAAfm/oEg8wM0DOvqjHBFRERERERExMGU7BKXcur7+RQd2EHm7N8C0HrMNIqP7iVo4AP8/PZjFB1KwzukEyHj36T46F5OLJ9DYeZWjn/zNi1HTKJxj9ucvAciIiIiIiIiUpuU7BKX0jRuHE3jxpUr843qC0Db371VrtyrZQTXfl7gsNhERERERERExPk0ZpeIiIiIiIiIiLgNJbtERERERERERMRtKNklIiIiIiIiIiJuQ2N21TH93nycs/lFrH9prrNDqeD+jASW3vEyp37aV6vbifSHOX1rdRNVbltERETcX1JSEuPGjSM0NJTQ0FDmzZtXbn5CQgLBwcHExcUxffp0li5dSmxsLP/617/K1fv888957bXXMBqNvPnmm1x//fUMHDgQq9UKwFtvvUWnTp0ASE1N5brrruPs2bOUlpbyu9/9jjlz5jhmh0VEXMTlXJ/79+/Pli1b2LVrF23atKl0fd26deOZZ55hzJgxvPzyy3z//fcUFxfzxhtv0KdPHx5//HH+9re/0ahRI0fsnjiIWnbVopZ9OjPkP3/m/vQE7k9PYMh//kzL3p2dHZZd7DN3ceOHf7zk+h9HPlDriS4AX0+IDXLOx9ez1ndPRERE6ojx48eTlJRE48aNSU5OLjdv8eLF3HjjjWRlZbF582ZWr16Nh4cHGzduLFdv1qxZrFq1ioULF/L3v/8dAJPJRFJSEklJSfZEF8Ds2bO59tprAfDw8KBZs2bs2bOnlvdSRMT1XMr1GWwPHO68886Lrmfp0qUEBgbap+Pj4/n+++/5/PPP7dfsoUOHsmDBglrYC3EmJbtqSZu47tw0fzIHVmzis2t/y2fX/pYDKzZx0yeTaXPjtZUuYzDV3P8Og4epxtYlIiIi4s66dOnCoUOH7NOnTp3C29sbg8HAxo0bGTBgAACDBg0iJSWl3LJhYWHk5+dz5swZ+w8qq9WK2WxmwoQJFBUVAZCenk6zZs3w8/OzL2s2m1m6dGlt756IiMuq6voM0LJlyyqX//jjj7n33nvt056ettYNeXl5dO3aFYAbbriBb775pqZDFydTsquW9Jr6MBmfJ7F99leczS3gbG4B22d/xZ4vvqfn1IcBuDPlLaInjuLWr6YxZu/HNI1pB4BnI2/M7z7D/ekJ3PH9P2hljql2ey17d+b+jAQ6jInjzg2zGbbClqUOviGa27+ZwX1p8xi28nXaDrkOgLZDrqPrUyNoPTCW+zMSuD8jAWODqnu1PnTkC4Ji2mEwGblv94cEdAyxbbtPZx468gWht/cGoGHzAB78+VM8fRte2cETERERcaDk5GQiIyPt0xkZGYSGhgKQnZ2Nv79tnAM/Pz+ys7PLLTt06FC6detGXFwcjz/+OABffPEFSUlJREVFMXeubWiKf/7znzzxxBPllg0NDWX37t21tVsiIi6vqutzddauXUuPHj3w8Cj/O/eBBx7gpptuYuDAgQD4+Phw+vTpmgta6gQlu2qBf7tW+IW2YN9/11aYt/fLNfiHtcQ/IhiAyNFm1j7zFh9HPsDJX7oIht/Rj71frmb+NWPZ+q8vGfTec/i0DKywrl/zaOhF09hI/nvDRL6+5Xn8wloSN+8Ffvr3f/mk0zg2TfuIAbOfJrBzGD8v28C2mV9yKDGVjyMf4OPIB7CUlF7S/lnLLGSt30lwP1smPLh/V3L2HSG4XxfbdL+unNy6l7N5hZe0PhERERFnmDt3LmazmdatWxMbG1tpnYCAAHJycgDIzc0lICCg3PwZM2awc+dONmzYQHx8PABNmjQBYNiwYWzfvp3Dhw8D1bdAEBERm0u5PlfnnXfeYcKECRXKExISSElJ4eWXX77KKKUuU7KrFngH2pqnF2adqjCv8JgtY+wdZHtCmJawnDPph7BaLPZk09F1O/h5aQrWMgt7v1jF6R2ZhA3tXe12DUYjm6Z/TGlhMWWFJYQP70PW+p3sX5yMtczCoe+28PO3G2k3esBV7+PRNT+VS26l/v0ze/KrZd8uHFn701VvQ0RERKQ2nRsTZurUqeXKIyMjyczMBKB79+6sWrUKgMTERHr27Fmurre3Nw0bNsTf35/8/HzAlhQDW4uE8PBwduzYQWpqKkOGDCE1NZWnnnoKgMzMTNq3b1+r+ygi4oou5fpcnb1793LnnXfy+uuv89prr5GZmUlxcTEAvr6+9gHpCwoKKjzIENentzHWgqJTthuchi0COZNxuNy8hs1tT/qKTtqeEOYfOl5h+fyD5cvyDhy/pJZdpYXFFP+ybQCf4CDyfr2uzCx8Q1tcwl5U7ciabURPHEUDfx/8I1qx779rufaFe/EJDiS4Xxd+eObtq96GiIiIiDMEBgZSUFAA2FpjRUdH079/f6Kjo+nRowdHjx4lISGBSZMm8eCDD9KnTx8sFgt/+tOfAIiLi6NBgwYEBATw0Ucf0bhxY+Li4uzzZs6cCdjeODZ+/Hjn7KSIiAu68PoMMGbMGL777jv27NnDlClTuPHGG3nmmWd4/fXXWbNmDQAffPABHh4ehIaG8vDDD7N3717Kysp45ZVXAFi1ahWDBw92yv5I7VGyqxbk7DlM7s9ZhA/rw9FftXAKH96H3J+zyNl7BACrxVph+UZtmpWb9g1pxvHN1Y/nYLVYyk0XHDlZ4e2PviHNKThystL6l+PU9v1YLRY6/eZ2jm3YhdVi4cian+hwXxw+zZtwbMOuK163iIiISG0zm82YzeaLzh82bBgrVqwgLi6O+Ph4exdFsCXAJk2aBMCECRMqdJNZv379Rde7YsUKAEpLSzl27Fi5sWhEROTyrs8fffRRhfmvv/56uemHHnrI/vd7771Xof7ixYuZMWPGFccrdZO6MdaSlJc/IPLugXT+7VA8fRvi6edDp9/eTuRdA0mJf7/KZVte34mQwT0wmIxEjOxPk06h7P/fusuOYd+iH2jRK4rQ23phMBppPTCWkJt7sOcLW1P8whNnaNS66RW/BfLoD9vp9MhtHFmzDYAja7fR6ZHbOLZpN2XFZ69onSIiIiJ1wYMPPmhvjVUbPDw87IPXi4jIpavp6/OsWbPw9fWtsfVJ3aCWXbXkwDcbWDFmOjF/uJPYSXcBcHLrXlaMmW5PDl3Mvv+uod3oAdww6/fkHzlJ4oS/U3D45GXHkLv/KN89/Deu/eP99P3H4+QfPM6qJ2Zy6peB8PcvTibijn7c89N7GAwGPo0ef8mD1AMcWb2NsNt7c2SNrfXakTU/0cC/kcbrEhERERERERGnUbKrFh1Zs63KxNYXPR+rULZm4qwr2tbR5O18HPlAhfJDiakcSkytdJmS7DyWjfrTJa3fYLS1/rowGZb24bekffitfbow6zQfBN95GVGLiIiIiIiIiNQsdWOUS9KkcyiWs6WVDqgvIiIiIiIiIlJXqGWXCxme9A982zStUH7g202seuzNq15/3Mcv0aLXNRXKz+YVYfQ0sWn6fEpyCipZUkRERERERESkblCyy4UsMj9dq+tfcf+0Wl2/iIiIiIiIiEhtU7JL6py8s5CR45xtR/qDr6dzti0iIiIiIiIiV0/JLqlzMnJgwlrnbHtOX4gNcs62RUREREREROTqaYB6ERERERERERFxG0p2iYiIiIiIiIiI21CyS0RERERERERE3IbG7BK3kPaSmfxdyRg8PDGYPPBufQ2txkzDP+ZGZ4cmIiIiIiIiIg6kll3iNlqNmUa3BXlEz8uiUcfe7Jl+B2X5Z5wdloiIiIiIiIg4kJJd4naMnl40vWk8lqI8io5kODscEREREREREXEgJbvE7ViKCzmxfA5GH3+8W7V3djgiIiIiIiIi4kAukewqKSkhPj6ekJAQGjZsyKBBg0hJScFgMLBo0SJnhyd1xOH58aTeF8C234RRsO9HIid/jcnH39lhiYiIiIiIiIgD1fkB6q1WK6NHjyYlJYUpU6YQGRnJ/PnzGTFiBADdunVzSlwm7wYM/+51GjYP4OPIB5wSg5TX6r6/0nLEs84Ow6ksVlh5GD7bB2lnwGSA3s3h7giICXR2dO4l+ZjtOG8+aZuOCYS7wqFvczAYnBubyOXalwsL9sGKw1BUBm0bwcgwuD0EvE3Ojk7k8mSXwML9sOjn82Vv7YTR4dDM22lhiYgIsOmE7Z7jnEd/gNFhMDBY99BSs+p8suvdd99lyZIlpKam0rlzZwDMZjPh4eEEBgbStm1bp8TVbdLd5B08QcPmAU7ZvsivlVpg8mbbj1UjYPmlfMUR+PYwPN0Z7m/nzAjdg9UKM3dAwp7yx3ndcfjhGNwTDs900Ze1uI7vj8LzG2zJ8nPnc3oOvLoVvvoZ3uoNvp5ODVHkkh3Mh0fWwrGi8uXvp8MX+2F2H+jY2CmhiYjUe3N3w+xdYLzgPnnTCdhwAm5rA3/qVn6eyNWo890YZ8yYwZgxY+yJLgCTyUR4eHiFVl1//vOfMRgM/PTTT7UaU1B0BK0HxvLTrP/W6nZELse8DFuiC87/YAXbD1iAf2y3fZnI1fnmkC3RBZUf50/3wdcHHB6WyBU5WgAvbIQya/nz+ZfTmZ3ZtqSXiCuwWuGZFDhRVMk8IO8s/H4dnLVUnC8iIrVrbZYt0QXn75vh/P3H/w7Cp3sdHpa4sTqd7EpPT2ffvn2MGjWqwrwDBw6US3Zt3ryZdevWERoaWqsxGUxG+vz9d6x7cQ6WktJa3ZbIpSq1VP/lYERfIDVh/t6qL5wG4OM9th9dInXdwkzb9eNip6sVW8vQypIHInXNppOwJ7d84vZCFuBEMSQecWRUIiIC8Mne6lttzd9bPhEmcjXqdDfGQ4cOAdC8efNy5bt27SIzM9Oe7CouLubxxx/nk08+wWw2X/Z2/Pz8KCkpqVDezqMJz/n3K1fW5bHhnNy2j6x1O2nZu3OFZeTiBg40s6f0dLX1fDr2pt3UpMtad8dpl1f/YgYONFOQllwj63Ik74hutJ+xrso6FmDlz0V49Vf/jStlbBRA5w+yqqxjBTJywbdlW0qzq64r4myRr6XgHRqNoYp+txYrdL79IbJXf+LAyEQuX8v7p9F02NMYjBcfaM5aVsqjr8/n4KzfODAykZrR5TPbkwcvLw0+V5t0nGuB0UiXT/MxGKpua3O0EAIioik+nOagwNyfq5/PFsuVN8eu0y27goKCAMjIyLCXWa1Wnn/+eSwWiz3Z9fLLLzNmzBjCwsJqNR6/sJZ0fHAwG/+aUKvbEblcBtOlDahzqfWkcpdz/AweDWoxEpGaYTA1qDLRZa+n81lcgMHDE6zV3xTrfBYRcSyD0aPaRJe9rod+r0jNqNMtu6KiooiMjOTFF1/E09MTX19fZs+ezZYtW/Dx8aFjx44kJyezceNGXn311SveTm5ubqXlWSm7WDp8sn26Rc9raNi0MSPXzgTA6GHCs1FD7tn+HonjXyNr3c4rjqE+SExMokXPa6qtl3oSJqx1QECVSExMIjbIOdu+GtklMOQbKK2i2a8BiAwwsam42GFxuZsyq+04n67YELQcf084fSADzzr9OEEEXtoEyw9X32Vg5Sfv0rnJu44JSuQKffUz/CW16joGkwcv/eYexv3tHofEJFKTenxl+2+x7uVqlY5z7bhjBRwquPjQCQBeRji8cxON6nSWwrW4+vm8du1a+vXrV33FStTpn2IeHh588cUXBAcHM3bsWCZOnMgtt9zCgAEDiI6Oxmg08v3337Nz507Cw8MJCwvj4MGD3HzzzXz77bc1Hs++xT/wnz5P8FXcs3wV9yxrn3mbswVFfBX3LMc3p9f49kQuVUADuKl11f+grcBd4Y6KyD2ZDHBnmC1xeDEGYEQoSnSJS7gzrOpElxHo4A+dAhwUkMhVGNwKfExVX6NNBhgW4rCQRETkF6PDq050GYHbQlCiS2pMnf85FhMTQ3JyMgUFBaSlpfHoo4+yZcsWexfGF154gcOHD7N//372799PmzZt+Oabbxg8eHCNx1JWWELBkVP2T/HJHLBaKThySoPVi9M9EQVB3hf/R90jCIa2dWhIbmlMJLTzq/zHlBEI9YWH2js6KpErExsIoy7yXhcjtqTt5Fi4hJ6OIk7n7QHxsba/f33Knpv+Qxfbd6WIiDjWnWEQ3eTi99AtGsJvOzo4KHFrdT7Z9WuFhYWkpaWVexOjsxxN3s7HkQ84OwwRwPYF8X5/GBRc/k0nPia4PwL+eb1aG9WERh7wf/3gjlBocMHx9DTankbN7Qd+GmpAXITBAM9Hw1OdINCr/LzuTWFuf7XqEtdyU2v4Ry+I9C9fHtIIpnWHu9XCWUTEKbxMMKu3raeJ9wXvETEZbNfu9/vrYYTULJdrJLh161bKysoumuzav3+/YwMSp8nfncKBuU+D1Ypf9CBaj5lqn5cxdShlBTkYTB5ETFqAh39TJ0bqOC0bwqvXwYkiGPJLT95vboaGLvcvvW7z84SXYmwJgoFLbWXLBkNjjXksLshogAcj4b4IuP5rW9l/b4Q2jZwbl8iV6tcC+jaHPbm278OABtCxsVooiog4W0MPmNQVHouCndm2oRQi/Ss+cBOpCS73E7hXr15YrdWMpCv1gk9EN66ZYRvJfnf8jZQV5GDysT3KbffCQgwenpxMTODU9/NpPvQpZ4bqcE0veCqiRFftubAFlxJd4uo8LmipqESXuDqDwfYD6tctvERExPkaeUCP+tEWQZxInZrEZZ17La21rAzPwFYYvXwqzLOcLcI7JMop8YmIiIiIiIiI4ynZJS7t1Pfz2f5EFKZGARhM55swleaeYtdzfTj29Uy82yjZJSIiIiIiIlJfKNklLi1wwH10nrWLs6cOU7h/m73cwy+Qa/72A63vn0rWV/9wYoQiIiIiIiIi4khKdonLspwtBsBgNGJq6IehgW2gKqvFgrWsFACTT2OMnnqth4iIiIiIiEh9oaGrxWWdSfmKY0tmgcWCb+cbsBTlczIxgYBed5Ax9XYwGDF6ehH2+w+cHaqIiIiIiIiIOIiSXeKymvQdTZO+o8uV+UTEAtBx+vdOiEhEREREREREnE3dGEVERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbGrNL6pxIf5jT13nbFhERERFxJUlJSYwbN47Q0FBCQ0OZN29eufkJCQkEBwcTFxfHV199xZtvvonFYuHDDz+kbdu29noPPfQQaWlpeHl58fLLLzNo0CD++c9/8sknn+Dh4cEHH3xAWFgYv/vd75gzZ46jd9PpLuc49+/fny1btrBr1y7atGlT6fq6devGM888w5gxY3j55Zf5/vvvKS4u5o033qBPnz48/vjj/O1vf6NRo0aO2D0Rt6Jkl9Q5vp4QG+TsKEREREREXMf48eOZPHkyTz31FMnJyfTu3ds+b/HixSxYsID8/Hw+/fRTVq5cicFgqHQ9n3/+ebnkzCeffEJycjLJycm8/fbb/P3vf6dZs2bs2bOHdu3a1fp+1TWXcpzBdhxfeOGFi65n6dKlBAYG2qfj4+P5y1/+woEDB/j973/PwoULGTp0KAsWLODhhx+uvR0ScVPqxihSTyUlJREeHo7ZbGbs2LEV5k+bNo309PQq1/Hkk0/Sv39/pk+fXmHe/v37CQ4Oxmw28+CDD7Js2TLMZjNms5mgoCBSU1Mr1AHYuXMnM2bMqJmdFBEREalnunTpwqFDh+zTp06dwtvbG4PBQHJyMhaLhZtuuonHH38ci8VSblmDwcDdd9/NXXfdxalTpwAICQmhuLiYM2fO2JMzZrOZpUuXOm6n6qCqjjNAy5Ytq1z+448/5t5777VPe3p6ApCXl0fXrl0BuOGGG/jmm29qOnSRekHJLpF6bPz48SQlJdG4cWOSk5Pt5RaLha1bt9K+ffuLLrtx40Y8PDxYvXo1mzdvJisrq0Kd2267jaSkJD788EOGDBlCUlISiYmJREREEBMTU6EOQFRUFJs3b8Zqtdbw3oqIiIi4v+TkZCIjI+3TGRkZhIaGAnDs2DFOnDjBt99+S9OmTfnqq6/KLfvGG2+wdu1a7r77bl555RUA+vXrR1RUFI8++igPPfQQAKGhoezevdsxO1RHVXWcq7N27Vp69OiBh0f5jlYPPPAAN910EwMHDgTAx8eH06dP11zQIvWIkl0iUuHJ1I8//kiHDh2qXGb9+vUMGjQIgAEDBrBp06YKdb755hv69+/Pxx9/bC/bsGEDPXr0sD/1qqxOREQE27dvv6p9EhEREalP5s6di9lspnXr1sTGxlZap3HjxvTv3x+j0cgNN9xAWlpauflNmjQBYNiwYWzfvp2cnBz+85//kJ6ezpdffsmUKVNqeS/qvks5ztV55513mDBhQoXyhIQEUlJSePnll68yShHRmF0iQnJyMr///e/t0+np6YSFhVW5THZ2Nl26dAHAz8+P7OzscvODg4NJS0vDYDBw8803M2TIEIKCgli0aBHDhw+vss65p4Xn1i8iIiIiVTs3ltSvRUZGkpmZCcB1111nb02/bdu2Cvd7ubm5+Pn5kZycTHh4OAaDgUaNGuHh4UFgYKD9fi8zM7PKHgDu7FKOc3X27t3LnXfeyaFDhzAajfTv35+WLVvi5eWFr6+vfUD6goICAgICajJ8kXpDyS6Remzu3LmsWLGCfv36XfTJ1I4dO3jsscfKlQ0ZMoSAgABycnIA243Rrwco9fLysv/dv39/9uzZQ1BQEImJifzpT3+qso6IiIiI1IzAwEAKCgoAaN68Oddeey0DBgygWbNmzJ8/n6NHj5KQkMCkSZN48MEHOX78OF5eXnzwwQf4+fnRu3dv+vbtS1lZGTNnzgRsY7+OHz/embtV51x4nAHGjBnDd999x549e5gyZQo33ngjzzzzDK+//jpr1qwB4IMPPsDDw4PQ0FAefvhh9u7dS1lZmb0L6apVqxg8eLBT9kfE1SnZJVKPXezJVPv27Vm4cCEAnTp1IikpqUKdDRs28MknnzB06FBWrVrFXXfdVW5+Xl4evr6+WK1WNm7cyBNPPMHevXtp06YNDRo0uGgdsD0t7Nu3bw3vrYiIiIh7OvcSoIsZNmwYK1asIC4ujueff57nn3/ePq9ly5ZMmjQJgC+//LLCsi+//HK5bnWlpaUcO3as3HhV9cXlHOePPvqowvzXX3+93PS5MdAA3nvvvQr1Fy9erBc3iVwhjdklIhXExMRUGMPh16677jqKi4vp378/MTExtGjRgqNHj/Laa68B8MMPP9CjRw/69OnD4MGDCQ4OLteF8WJ1wDbAp7owioiIiNSMBx98kLi4uBpZl4eHB3Pnzq2RdbmbmjzOALNmzcLX17fG1idSn6hll0g9VdWTKaPRSHR0NOnp6VWOxzBr1qxy0xc+GRw8eHCFZtdPP/10uenK6uzcuZPu3bvbB7AXERERERERuRxKdolIpSrr3ugIUVFRREVFOWXbIiIiIiIi4vrUjVFERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oTG7pM7JOwsZOc7ZdqQ/+Ho6Z9siIiIiIiIicvWU7JI6JyMHJqx1zrbn9IXYIOdsW0RERERERESunroxioiIiIiIiIiI21CyS0RERERERERE3IaSXSIiIiIiIiIi4jY0Zpe4hbSXzOTvSsbg4YnB5IF362toNWYa/jE3Ojs0EREREREREXEgtewSt9FqzDS6Lcgjel4WjTr2Zs/0OyjLP+PssERERERERETEgZTsErdj9PSi6U3jsRTlUXQkw9nhiIiIiIiIiIgDKdklbsdSXMiJ5XMw+vjj3aq9s8MREREREREREQdymWRXSUkJ8fHxhISE0LBhQwYNGkRKSgoGg4FFixY5OzypAw7Pjyf1vgC2/SaMgn0/Ejn5a0w+/s4OS0REREREREQcyCUGqLdarYwePZqUlBSmTJlCZGQk8+fPZ8SIEQB069bNYbH0e/Nxwkf0w3K21F6W9JvXOZSY6rAYpHKt7vsrLUc86+wwnMpqhfXH4Yv958te3Qp3hkGk8n7igvblwuf7YU0WlFqgY2Pb+dynORgMzo5O5PJkF8N/f4ZlByG7BFr6wPC2cEtr8HaJOzIRcTSL1fYd+J/958te/wlGh0FbX2dF5Z42n4TP952f/ksq3BUG1wQ4KSARuSoucWv17rvvsmTJElJTU+ncuTMAZrOZ8PBwAgMDadu2rUPj2f3RCta/NNeh2xSpjsUKr2yFLzPBeEESYOF+2w3S5FjbjyoRV7HkAExJBaxg+aXsRBGszoLb2sDL3cCkhJe4iIwcePQHOF1yvuxkMfx0Gj7ZC2/3gUAv58UnInVPqQUmb4YVh8t3x/l0ry0pM6073NjKaeG5DasVZu6AhD3lj/PXP8NXP8MfOsN97ZwWnohcIZfoxjhjxgzGjBljT3QBmEwmwsPD7a26wsLCuOaaa4iNjSU2NpZvvvnGWeGKOMUne22JLrAlvs6xAFZgaipsO+WEwESuwK4zMGWL7Vy2XFB+7u//HYQEvX9CXERJGTy5Ds6UlC8/d6nenwt/3OjwsESkjvu/3bZEF5T/LrQCZVZ4cZOtBbRcncUHbIkuqPye443tsO6Yo6MSkatV55Nd6enp7Nu3j1GjRlWYd+DAgXJdGL/44gtSU1NJTU3l5ptvrrWYIkb2594d73PHqjeJ/v1IDKY6fxjFzZVZ4aM9VdcxAJ/uq7qOSF2xYG/1dT7eY3vqLVLXrTwCx4vK/4i6kAXYdBJ2n3FkVCJSlxWVVf1daMXWIukz3dtdFavV9vCsqobiRmz3HCLiWup8N8ZDhw4B0Lx583Llu3btIjMzs0bG6/Lz86OkpKRCeTuPJjzn369c2Y65S9j41wSKTuUSFB3BgLcmYvJqwJa/fXrVcbi7gQPN7Ck9XW09n469aTc16bLW3XHa5dW/mIEDzRSkJdfIuhzJOyya9q9tqLKOBVi6t4C/92nimKDqiS6fFQHg5eXt5EjcS6f3j2LyrfpcPV0CTaP7U5ie4qCo3J/O59oRMjGBxtePxGC6+G2X1Wph0O/+zPGFrzowMhGpqxp1MRPxp6p7qliA+ZsP8/J14Y4Jyg15Ngvlmrd2V1nHAvxwzIJ3I3+spWcdE5hIDXH1ezuL5cqfbNf5JklBQUEAZGSc769itVp5/vnnsVgs5ZJd999/P9HR0Tz22GNkZ2fXSjyntu2j6GQOWK2c/HEPW/6+gPDhfWtlWyKXytig4SXVM3hqQBhxDYYGl/aFfKnnvogzGRs0rP6NChYrRi+dzyJic8n3dvoevCqXfJwNRgweuo8WcSV1vmVXVFQUkZGRvPjii3h6euLr68vs2bPZsmULPj4+dOzYEYDVq1cTEhJCcXExEydO5IknnuCjjz66pG3k5lbe2T0rZRdLh0+uemGLtep2r2KXmJhEi57XVFsv9SRMWOuAgCqRmJhEbJBztn01ThXDkG/Lj9X1awYgzN/EpuJih8VVH/T4yvbfYh3XGnVfEqTnnB/TqDIGYOfab2mh+/wao/O5dszcYesmU+X5bDLx9l9f4NYPXnBYXCJSdx3IgxHfVV3HCHQPaUKqrtlXrKAU4pZBSTWNR4K8oCD7pN4ELS7H1e/t1q5dS79+/aqvWIk637LLw8ODL774guDgYMaOHcvEiRO55ZZbGDBgANHR0RiNtl0ICQkBwMvLi8cee4y1a2snWxI2rA+efj4ANIkKJeaZ0ez/2vW6vYl7CfSCgS2r/gdtBe4Mc1BAIlfpzrCqEwNGoF8LlOgSlzCibfWJW18PGKS3qonIL0J8oUdQ1fd2FuBO9WC8Kj4ecFtI1cfZAIwOq76BrojULXW+ZRdATEwMycnlE0r//ve/GTBgAAD5+fmUlpbSuHFjrFYrn376KbGxsbUSyzUP3UzvGY9g9DRRmJXNni++Z+u/vqyVbYlcjic7wYYTkFdasYWXAegUAHe0dUZkIpfv9hDbGxe3nqqYJDAawMcEv+/klNBELluIL4xrD++nV5xnwHaOvxAN3iZHRyYiddkzXeDhNVBcVvkLLno2hZuUJL9qv+kAa7LgZCUvEjECYb5wT4QzIhORq+ESya5fKywsJC0tjYkTJwKQlZXFqFGjKCsro6ysjE6dOvHWW2/VyraXjfxTraxX5Gq1aQTv94dXt9qSXud4GOCWNvBsV/B2yX/xUh81MMG/r7e97vvrA3D2grvP2EBbYiDMz3nxiVyux66BJg1sCa/TF7wTp7UPPNVJrbpEpKL2jWFuP5ixDX48db68gRGGt4XfdwaPOt9Pp+5r3hDe7wevbIUfjp1/yGY02JKJz3UFX0+nhigiV8Alf/pu3bqVsrIy++D0ERERbNmyxclRSW37+d0nKdyXiv+1txA8+kV7+cH3n+Xkd/NoM/4fBJnHAJD2khmA0jPH8Y+9iZAJb7L98Sg8AloA0O6FhXj4BTp8H2pbqC/M7gM/58HuHFuiKzYQAjSeprighh7wUgw8EQU3LrOVfTHI9oRVxNUYDHBfO7grHK7/2lY2py/EBKprjIhcXIdfEl57c20fTyN0D1Lypaa19IF/Xg+HC2Bntq3VbXQgNHXNF9iJCC6a7OrVqxdWa1WjX4i7yU/fiMHoQcdXVrPn1Ts5m52F5y+JqxYjJuHdtku5+h2nJQFw6MM/4td1IACega3p8NcVDo3bWdr62j4i7qBxg/N/K9Elru7CVhiu+EIUEXGOCD/bR2pXKx/bR0Rcnxq+ikvI370ev+hBAPh1GUBBxib7vHNJr8rk/pSEbxczAGfPZJH2xxs4+MFzSpaKiIiIiIiIuCklu8QllOVnY/LxB8DY0I+y/Oxqlyk6kkGDZqEYPW3NQjpOX0XHV1ZhKSkiZ9OS2gxXRERERERERJxEyS5xCaZGAZQV5ABgKczF1Cig2mXOrF9EQK/h9mkP3yYABPQcSuHP22slThERERERERFxLiW7xCU06tCT3G2JAORuX4VPZPdqlzmzaQmNu98KgLX0LJazxQDk7UrGq0V47QUrIiIiIiIiIk6jZJe4hEbtr8N6tpi0P/bHJzyGs6eOcDIxAYCjC18j68vXOPqfV8la9AYApTknMJg8MTVqDEBZwRnSnu9D2h9voPhQGgHXj3DavoiIiIiIiIhI7XHJtzFK/dT2d7PKTftExALQcuQkWo6cVG6eh39T2k9ZVm466o1NiIiIiIiIiIh7U8suERERERERERFxG0p2iYiIiIiIiIiI21CyS0RERERERERE3IbG7JI6J9If5vR13rZFakpSUhLjxo0jNDSU0NBQ5s2bV25+QkICwcHBxMXFMX36dJYuXUpsbCz/+te/ytU7fvw4jzzyCNnZ2dx777088sgjDB06lJycHDw8PFiwYAFGo5GRI0disVho06YNCQkJnDlzhqlTp/LGG284crdFRERERKSOu9TfKk2bNmXixIkApKenM2vWLO64445ydYuKiggPD+fzzz+nX79+/OY3v2H37t2UlZXx3nvv0aFDB8aNG8d7772HwWBwyP4p2SV1jq8nxAY5OwqRmjF+/HgmT57MU089RXJyMr1797bPW7x4MQsWLCArK4vNmzezevVqnn76aTZu3EiPHj3s9f7yl7/w5ptvEhoaai9buHAhnp6eJCQkMH/+fCZMmMDnn39Os2bNiI+PZ+XKlQwePJjs7Gzy8vLw9fV16H6LiIiIiEjddim/VQwGA0lJSQCYzWZuvPHGCut5//336dSpk336rbfewtPTk9WrV/P222/zxhtv0KtXLxITExk0aFCt7xeoG6OIiEN06dKFQ4cO2adPnTqFt7c3BoOBjRs3MmDAAAAGDRpESkpKuWV3797NCy+8wODBg0lLSwPA09MTsD1FiYqKwsfHh2bNmgFgMpnsT0x69epl/3JyZ0lJSYSHh2M2mxk7dmyF+dOmTSM9Pb3KdTz55JP079+f6dOnX7TOm2++SVxcXKX1ly1bhtlsxmw2ExQURGpqKjt37mTGjBlXsWciIiIiIrWrqt8q5xw9epRGjRrh5+dXbtmysjLWrFlD//797WXnfqvk5eXRpUsXAAYOHMiSJUtqczfKUbJLRMQBkpOTiYyMtE9nZGTYW2plZ2fj72/rQ+vn50d2dna5ZdesWcPUqVOZNWsWL730EmD7AurTpw8zZ84kKirKXjcrK4uVK1fan5iEhoaye/fu2ty1OmP8+PEkJSXRuHFjkpOT7eUWi4WtW7fSvn37iy67ceNGPDw8WL16NZs3byYrK6tCnbNnz5KamnrR+kOGDCEpKYnExEQiIiKIiYkhKiqKzZs3Y7Vaa3x/RURERERqQlW/Vc5ZvHgxQ4cOrbDsp59+yp133lmh/MYbb+SJJ57guuuuAxz/u0TJLhGRWjR37lzMZjOtW7cmNja20joBAQHk5OQAkJubS0BAQLn5nTt3pl27drRv354zZ84AEBgYyA8//MDUqVP5xz/+AUBpaSkPP/wwb731FiaTqdb2qa779ZOpH3/8kQ4dOlS5zPr16+0JwgEDBrBp06YKdRISErj33nurrb9hwwZ69OhhfxIWERHB9u3br26nRERERERq2KX8Vjln8eLFDBs2rFyZ1Wrlv//9L8OHD69Qf+XKlSxcuJApU6bUYMSXTskuEZFadK610dSpU8uVR0ZGkpmZCUD37t1ZtWoVAImJifTs2bNc3bCwME6cOEFWVhY+Pj5YLBZKS0sBaNy4Md7e3gD84Q9/4IEHHqBr1672ZTMzM6ts0eSOfv1kKj09nbCwsCqXqa51ncVi4ZtvvuHmm2+utv6iRYvKfeHXp9Z1IiIiIuI6LuW3CkB+fj5nzpyhVatW5erl5eWxd+9ebr31Vj766COeffZZioqKKC4uBmy/VRo2bAg4/neJBqgXEXGCwMBACgoKAGjZsiXR0dH079+f6OhoevTowdGjR0lISGDSpElMnjyZkSNHUlpaysyZM8nPz+f222/HaDTi5eXFBx98wN69e5kzZw5bt27l7bffZtKkSdx2222sW7eOmTNnOnlvHWPu3LmsWLGCfv36XfTJ1I4dO3jsscfKlQ0ZMqRC67p27dqVq7Nw4cJyT7Kqqp+YmMif/vSnmtglERERERGHu/C3CsC3337L4MGD7dMX/lY518NhypQpxMXF4e3tza233kphYSEGg4FZs2YBtnvkW265xWH7oGSXiEgtOTdY+cUMGzaMFStWEBcXR3x8PPHx8fZ5LVu2ZNKkSQBER0fbW36d8/3331dY34VfSGAb1ysgIKDCIJLu6tzbZH6tffv2LFy4EIBOnTpVOmD/hg0b+OSTTxg6dCirVq3irrvuKjc/LS2NpKQkEhISSE1N5eabbyYxMbFC/b1799KmTRsaNGhgXzYzM5O+ffvW4J6KiIiIiFydy/mtMmLECEaMGGGfd+FvlXMu7K5Y2UD069ev55FHHrnquC+VujGKiDjJgw8+aH+zX20IDAy0j+dVn8XExNjfYnkx1113HcXFxfTv35+YmBhatGjB0aNHee211wB46aWXWL58OcuWLSM2NpZJkyZVqA8VuzCCbYDPc2+hERERERFxBTX9W+X999/HaHRcCkotu0RExOVV9WTKaDQSHR1Nenp6leMEnGtifU5lT6wAVqxYUWl9gKeffrrc9M6dO+nevXu51zaLiIiIiEjtUrJLRETcXmXdGx0hKiqKqKgop2xbRERERKS+UjdGERERERERERFxG0p2iYiIiIiIiIiI21CyS0RERERERERE3IbG7JI6J+8sZOQ4Z9uR/uDr6Zxti4iIiIiIiMjVU7JL6pyMHJiw1jnbntMXYoOcs20RERERERERuXrqxigiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchgaoF7eQ9pKZ/F3JGDw8MZg88G59Da3GTMM/5kZnhyYiIiIiIiIiDqSWXeI2Wo2ZRrcFeUTPy6JRx97smX4HZflnnB2WiIiIiIiIiDiQkl3idoyeXjS9aTyWojyKjmQ4OxwRERERERERcSCXSXaVlJQQHx9PSEgIDRs2ZNCgQaSkpGAwGFi0aJGzw5M6xFJcyInlczD6+OPdqr2zwxERERERERERB3KJMbusViujR48mJSWFKVOmEBkZyfz58xkxYgQA3bp1c3hMbW68lm7P34N/u1aU5hXy09uL2T77K4fHIecdnh/P0c+nYvDwwjukE5GTv8bk4+/ssMRN7c+D/+w/P/23bXBnGET4OSsi95RVCF9mnp+esgVGhUKXJmAwOC8uEam7zlrguyOw+Gc4XgQBDeDWELi5FXi7xJ2viIjI1TlRBIt+Pj/90iYYFQbdAuvPPbRLfOW/++67LFmyhNTUVDp37gyA2WwmPDycwMBA2rZt69B4Wg2Iofdrv2XNU//maPJ2PBp60ah1U4fGIBW1uu+vtBzxrLPDkHrg83225NaFvtgHn+2DP3SG+9o5Jy538/1ReGEjlFrOly05AF8fgHsjbMe6vnxZi8ilyS6Gx5MhLcfWfcGC7b+bTsL7u+HtPtDSx8lBioiI1KKU4/CHFCgqO1+2/DB8cwiGhsDkWDDVg3tol+jGOGPGDMaMGWNPdAGYTCbCw8PtrbqKiop49NFHad++PV27duWRRx6ptXi6PXcPW9/8D0fWbMNaZuFsXiHZaQdqbXsiUnesOwYztoEV2+ecc/mYN7bDqqNOCMzN7MmB5zfYEl2VHedP9sKCfc6ITETqsuc3QnqO7e9z14tz/z1cAE+tA4u1siVFRERc35ECeHo9FJeVLz/33bf4ALy32/FxOUOdT3alp6ezb98+Ro0aVWHegQMH7Mmu5557Dm9vb3bv3s22bdv461//WivxeDT0omlsOxo2C2DE6n9y99Y5DPrgeXxDmtfK9kSkbvkwo+oLp/GXOnJ1FuyzfSlX9Zt0XgaU6UeriPxiZ7atBZflIvMtwN48SD7mwKBEREQc6Iv9UGKp+h56/t6KyTB3VOe7MR46dAiA5s3LJ5N27dpFZmYm3bp1Iy8vjw8//JCDBw9i+KVPS4sWLS55G35+fpSUlFQob+fRhOf8+5UraxDQCIPRSOhtvVh+71QKT56h51/GMXDuJBYPnnS5u1evDBxoZk/p6Wrr+XTsTbupSbUdTqUGDjRTkJbslG1L3Wf09qVzwskq61iA1FPg07QVZblV15WLi3rvCB5+gVXWOV4EQZ37ULhnk4Oicn9dPisCwMvL28mRuDcd59rR4p4pNBvxHAaj6aJ1rGWlPDBtHofeecyBkYmIiDhGh3/vxKtFRJV1cs9Cq+tvJW/rSgdFdeUslos9wqpenW/ZFRQUBEBGxvmmElarleeffx6LxUK3bt3Ys2cPQUFB/PnPf6ZHjx6YzWbWrFlTK/GczbPdoO6Ys4S8g8cpKyxh8yvzCeoarnG7nKjjtCSN1yW1zujd6NLrel16XanI6HVpg+oYvX1rORIRcRVGb1+wVn9TrOuGiIi4K9Mlfsddzu8aV1XnW3ZFRUURGRnJiy++iKenJ76+vsyePZstW7bg4+NDx44dSU1NZe/evXTr1o3XXnuN9evXM3ToUDIyMvD3r/5tfLm5uZWWZ6XsYunwyeXKzuYWkHfgGFjVd+ZyJSYm0aLnNdXWSz0JE9Y6IKBKJCYmERvknG1L3VdqgRuXQX5p1fW8TXDi53S8L964QKox+jvbGy+ru9JuX/MtwRpsusb0+OWlwsXFxc4NxM3pONeOBfvgtW1V1zGaPPjDuLt57G93OyYoERERBxq/GradvniX/nN++Ppz2jd2SEhXZe3atfTr16/6ipWo8y27PDw8+OKLLwgODmbs2LFMnDiRW265hQEDBhAdHY3RaKRt27Z4eHhw7733AtCrVy+aNm3K7t21M/Ja2offEjXhNnxaBWHy8qTbc/dw4sc95B86USvbE5G6wcMIw9pCVS8vMQK3h6BE11UaFVZ1ossIXN8MJbpExO6W1tDgEu5shzv2Jd4iIiIOMzKs6kSXEegUgEskuq5WnU92AcTExJCcnExBQQFpaWk8+uijbNmyxT44fdOmTRk4cCDLly8HYPfu3Rw7dozIyMhaiWfbrEUc+m4Lw779G6M3v4tPi0ASx79WK9sSkbplbCQ09a784mkEArxgXHtHR+V+hreFDv6VJxaNQAMTPNnJ0VGJSF3m3wAej6q6zgOR0Nr9e26IiEg9Nbg1xAZWfg9tAIwG+ENnR0flHC6R7Pq1wsJC0tLS7MkugLfffpvp06fTtWtX7rnnHhISEggICKidAKxWNk37iE+7jOfTzuP4btwMteoSqSeaesN7/eDaSrq7xgTa5rVo6Pi43E1DD3i7DwwMrvhlHeEH7/SBjvXgiZSIXJ7728ELXcHfs3y5jwkeuwaerCYZJiIi4so8jTDzeriljS2xdaG2vvBWH+rNsD11fsyuymzdupWysrJyya6IiAiSkpKcF5TUup/ffZLCfan4X3sLwaNfLDfv7OmjbHsknC6z02nQtA0nVrzHiW/n4BHQnPCJCZh8/AAo2JvKzmevo/vCs87YBXETwT7wdl/Ylws/nrKVdW0C7aofIlAug38D+Nt1cLQQNhyHsxbo0Bg6B4Chqr6kIlKv3Rlu63L+wzF4doOt7Nubwdsl73pFREQuj48H/OVaeKoTrDsGxRZo52d7MF+f7qFd8mu/V69eWDVAfL2Sn74Rg9GDjq+sZs+rd3I2OwvPgBb2+ce+/heNOvQCbK8VP/ndPDq+uoYzm5ZwYvkcWgx/GoDjy2bjE3GtU/ZB3E+4n+0jtatlQxiqMXZE5DI0MIE5+Py0El0iIlLfNPWG2+vxPbRLdmOU+id/93r8ogcB4NdlAAUZm+zzSvOyKc09gVfzMNt0zgkaNGuLwWikYWhX8tOSASg6nI6HfzNMDZWdEBEREREREXFXSnaJSyjLz8bkY+sjZmzoR1l+tn3e8SWzaDbkd/ZpD/9mFB/JwFJSRN72VZTlnwHg2OJ/0vy2Jxwat4iIiIiIiIg4lpJd4hJMjQIoK8gBwFKYi6lRgO3v4kKKDuzAJ+L8+G0Gk4kWIyaR/uchFO7/EY+AFpScPAyAZ5OWDo9dRERERERERBxHyS5xCY069CR3WyIAudtX4RPZHYDiY/spPrqH9ClDyEldzs/vPA5Ak94j6TgtiUYdetG4+y0UHdhBwb5U0qcMoWBfKj+/+5TT9kVEREREREREao+G6xSX0Kj9dZxc+QFpf+yPf7ebOXvqCDlbviVo4ANc89o6APb/8yFa3T8VgJ/ffoyiQ2l4h3QiZPybGEwm/GPjANgdH0fbR2Y6bV9EREREREREpPYo2SUuo+3vZpWb9omILTcd9vsPLqj71kXX0+GvK2oyLBERERERERGpQ9SNUURERERERERE3IaSXSIiIiIiIiIi4jaU7BIREREREREREbehMbukzon0hzl9nbdtERERZ0pKSmLcuHGEhoYSGhrKvHnzys1PSEggODiYuLg4pk+fztKlS4mNjeVf//pXuXr33HMPR48eJTc3l5CQEP773/9iNpsBOH78ODfddBMvv/wyI0eOxGKx0KZNGxISEjhz5gxTp07ljTfecNQui4iIiNQoJbukzvH1hNggZ0chIiLiPOPHj2fy5Mk89dRTJCcn07t3b/u8xYsXs2DBArKysti8eTOrV6/m6aefZuPGjfTo0cNe79NPPwXgnXfewWAwALZEGsAf//hHBg4ciLe3N59//jnNmjUjPj6elStXMnjwYLKzs8nLy8PX19dxOy0iIiJSQ9SNUURERC5JUlIS4eHhmM1mxo4dW2H+tGnTSE9Pv+jya9as4frrr6dPnz68/vrr5eYtW7YMs9mM2WwmKCiI1NRUCgsLufXWWxkwYADjxo0DYOfOncyYMaNmd6wO69KlC4cOHbJPnzp1Cm9vbwwGAxs3bmTAgAEADBo0iJSUlErXsXjxYoYOHVquLCkpCbPZjI+PD82aNQPAZDLZk2K9evWyJ8bcWW2e05XNO3XqFN27dy+XRKxv57SIiIgjKNklIiIil2z8+PEkJSXRuHFjkpOT7eUWi4WtW7fSvn37iy4bERHBqlWr+OGHH/j6668pKCiwzxsyZAhJSUkkJiYSERFBTEwM3377Lf369eP777/H09OTn376iaioKDZv3ozVaq3V/awrkpOTiYyMtE9nZGQQGhoKQHZ2Nv7+tv73fn5+ZGdnV1g+Ly+P3NxcgoODK6yjQYMG9rKsrCxWrlzJoEGDAAgNDWX37t21sUt1Tm2d05XN8/PzY/ny5Vx//fX2evXtnBYREXEEJbtERETksv26xdGPP/5Ihw4dqlymVatW9gSLyWTCaKx4G7JhwwZ69OiBwWAgPDyc/Px8wJa0ady4MWBLImzfvr2mdqVOmjt3LmazmdatWxMbG1tpnYCAAHJycgDIzc0lICCgQp1vvvmGIUOGlCtbtGgRw4cPt0+Xlpby8MMP89Zbb2EymWpsH1xNTZ/Tlc3z9PQkMDCwwnrqwzktIiLiSEp2iYiIyGX7dYuj9PR0wsLCLmnZ5cuX065dO7y9vSvMuzARExkZyerVq4mKisJgMBASEgLUj1ZH51obTZ06tVx5ZGQkmZmZAHTv3p1Vq1YBkJiYSM+ePSus59eJLYAlS5Zw66232qf/8Ic/8MADD9C1a1d7WWZmZpUtmtxRbZ3TVc07pz6c0yIiIo6kZJeIiIhcsktpcbRjxw77+FvnPq+++ioABw8e5JVXXqkwvtE5iYmJ9q508+bN4+6772bnzp00bdqUH374oVb2yZUEBgbau8q1bNmS6Oho+vfvT3FxMT169ODo0aO89tprAJSVlbF79246depkX/7EiRN4enraW8nt3buXOXPm8Pbbb2M2m/nf//4HwLp16+xvbnR3tXlOV3e+i4iISO3Q2xhFRETkkp17S+CvtW/fnoULFwLQqVOnSgc3Ly4u5qGHHmL27NmVvuVv7969tGnTxt71y2Kx2Lt8BQYG2sekyszMpG/fvjW0R3XPuWTKxQwbNowVK1YQFxdHfHw88fHx9nktW7Zk0qRJgK3r3Lp168ot27RpU5YtW2afjoiIKDfOFNgGUQ8ICMDPz68G9qbuq61zurrz/ULufk6LiIg4mlp2iYiIyFWLiYkhLS2tyjrz589nx44d/Pa3v8VsNnPo0KFyLZF+3eXuvvvu4/3338dsNpOamspNN90E2AZY79KlS+3tTB334IMPEhcXV2vrDwwM5B//+Eetrd9VXO05Xdk8gLi4OLZs2UJcXBw//fQToHNaRESkpqlll4iIiFySqlocGY1GoqOjSU9Pv+hYT+PGjWPcuHEVys+1RHr66afLlTdp0oRvv/22XNnOnTvp3r07BoPhCvZApLzaPqcrm7dixYpy0zqnRUREap6SXSIiIlIjKusKVtOioqKIioqq9e2IgM5pERERV6VujCIiIiIiIiIi4jaU7BIREREREREREbehZJeIiIiIiIiIiLgNjdkldU7eWcjIcc62I/3B19M52xYRERERERGRq6dkl9Q5GTkwYa1ztj2nL8QGOWfbIiIiIiIiInL11I1RRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0NUC9uIe0lM/m7kjF4eGIweeDd+hpajZmGf8yNzg5NRERERERERBxILbvEbbQaM41uC/KInpdFo4692TP9Dsryzzg7LBERERERERFxICW7xO0YPb1oetN4LEV5FB3JcHY4IiIiIiIiIuJASnaJ27EUF3Ji+RyMPv54t2rv7HBERERERERExIFcJtlVUlJCfHw8ISEhNGzYkEGDBpGSkoLBYGDRokUOi+P+jIRynwd//pRhK1932Pbl4g7Pjyf1vgC2/SaMgn0/Ejn5a0w+/s4OS0Skzisqhf9mnp+e9iNsP+28eNxVqQVWHD4/Hb8ZUo6D1eq8mNyRxQrJx+ClTefLEo/Yjr+IiIjUDy4xQL3VamX06NGkpKQwZcoUIiMjmT9/PiNGjACgW7duDovl48gHyk0PW/k6+xatddj25eJa3fdXWo541tlhiIi4lIwceDwZThafL1uUCV9mwrAQeCkWTAanhec2jhXajvO+vPNl3xyCpQfh+mbw2nXQ0CXuyuq2vLPw9HrYcgqMF5y3kzZAe3/49/UQ5O28+ERERMQxXOK26t1332XJkiWkpqbSuXNnAMxmM+Hh4QQGBtK2bVunxNU0NpKADm3IWJDolO2LiIhcjdyz8NgPkF1SvvxcA5ivDtgSA49HOTw0t1JmhSfWQWZe+XLLLy261h+Hv6TCKz0cHprbmbwZUk/Z/rb8qsXcnhx4OgXm9QeDErgiIiJuzSWSXTNmzGDMmDH2RBeAyWQiPDwcT09P9u/fzx133GGfl52dTU5ODqdOnarVuNrfN4hD322hMEt9PURExPV8fQBOlVRd55O98FB7aOQSdwx109os2Jt78flWbN0bH8+HNo0cFpbbyciBNVkXn28BdmTDxhNwXTNHRSUiIiLOUOdvXdPT09m3bx8zZ86sMO/AgQOMGjWKsLAwUlNT7eUTJ06ktLT0krfh5+dHSUnFu/12Hk14zr9fpct4NPQifHhfVj/170veTn03cKCZPaXVJwZ9Ovam3dSk2g6nUgMHmilIS3bKtkVEHC1i2vf4RPbEYLz4EJ5FZRB24z3krPvSgZG5lzZPvkdA37sxmC5+22WxWun10Euc+ErjgF6p5nfF03zUi1Wez9ayUu768/sc/r8nHBiZiIiIXAmL5coH3Kzzya5Dhw4B0Lx583Llu3btIjMzs8J4XSUlJXz88cd88803tRpX2NDelBaWcHDFpuorS63rOC3J2SGIiLgcU6MmVSYG7PV8GjsgGvdl8mlcfb85SxmmRnqpytUw+TQGaxlVv3/JqpfXiIiI1AN1PtkVFBQEQEZGBj179gRsA9Y///zzWCyWCsmur776itatW3Pttdde8jZycyvvW5CVsoulwydXOq/9/Tey57MkrGV6tc+lSkxM4v/bu/e4qOrE/+PvGQZQQ1C8a6goXlAESRNNjRGttDbLzMy01OzXbatlt6y+ru7aPdetdVtbN7/ZzdK+5daarXlLSS2STAivCIaoeE28gCC3md8fkyhyVWEOc3g9Hw8eMuecmXnPdDozvOdzPtOqX/cqt0s6Lj1g0Jz/69bFqXczY+4bANztie+l74+en6OrIks/eEtRLd5ySyYz+stWaUl65c+zxcumOTOf1R3vPeu2XGbz0R7pb9sr38bq5a3fTRqrx/8y1j2hAADAZTt9+rS2bt2qXr16XfJ1q/4412ChoaEKCQnRtGnT9Omnn+qrr77Sbbfdpi1btqhRo0bq1q1bqe3feecd3X///bWayb9zW7Xs2027F39dq/cDAEBtur19FQWMpFYNpL7N3ZXInG6r4nmWJB+rdGM7t8QxrRFXS7YqBtA5Jd1qzPcaAQCAS+Tv76+BAwfK3//SR2XX+bLLZrNpyZIlatOmjSZOnKjY2FiNGDFC0dHRCg8Pl/WC0y8yMzP1zTffaPz48bWaqcu4GB3ZtFPZ6Ydr9X4AAKhN17eWIgNdpdbFLHIVA78Pk7z45ror0i1AuuXqyrd5uLvk5+2ePGYV6Cvd37XybUZ3kDr6uScPAAAwTp0/jVGSIiIiFB9fetLwuXPnKjo6utSy999/X7fcckvJqY+15ccXP6zV2wcAwB1sVmlOf+mFJOnrg65y6xx/b2lqL2lYW6PSmcuM3q4y6997paILnuiGXtJD3aXxnYxKZi7/r6trdNc7qa4vVzjHZpHGdZIe62FcNgAA4D4eUXZdLC8vTykpKYqNjS21/L333iv3WxthHjk7NurAu09JFquaXjdarW5/smTdL2ve0S+r3patSUsFxy6Us7hQe169Q3I45N38agXHLpTFy8vA9ABQ91xlk17tKx3MldYfdhUEQVe5Rn151/nx357DZnWVh1O6SusOSacLpZYNpCFtpEYe+W6sbrJYXKO77gp2Pc+/5EtNfFzPcxMfo9MBAAB38ci3V8nJySouLi4zOf3u3bsNSgR38WnVSV1fXi+rt49S/jhELUY8IqtvIzmLi3R87fvq9upGnfpxuX5Z/bZaDH9InZ7+VN4BLZT50QxlJ38t/8gbjX4IAFAntW0k3c3ooloX6CuN7mh0CvPz82ZuLgAA6jOP/Mw2KipKTqdTffv2NToK3MynWVtZvV0fzVqsXpLFtQsXnf5FPi3ay2K1qmGHXjqTEi+rbyN5B7S4YFsmnQEAAAAAwOw8suwCTietlm+bzrL6NJAk2fxbKP9QmhwFZ5Wzfb2Kz5wq2bbw5BFlJ3+txr1ijIoLAAAAAADchLILHqfglwM6vOQVXT35tZJlFi8vtRo1VanPDVfe3p9ka9JKkuQsLtLeN+5X+4f+yXxdAAAAAADUAx45ZxfqL0dhvvb+fZLaPzxPXg1Lf3d40wF3qOmAO3Ti20/lLC6SJO1f8Ac1s9+rhh17GREXAAAAAAC4GWUXPErWN4t0dv8OZcx7SJLUbsJLyj/8s5oNuVf7/vWozmamqEFQDwVNmaP8wz/rl9VvKy8jWcdW/kutR01VQN9bDH4EAAAAAACgNlF2waM0HzZZzYdNLrXML3SgJKn9w/8stdy3dSdd82mu27IBAAAAAADjMWcXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADTsDidTqfRIeqqguxcndi5z+gYptE0tL18GjeqcrucQinttBsClSPEX/LzNua+AQAAAADAlaPsAgAAAAAAgGlwGiMAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATMNmdAAAAAAAAFB/FWTn6sTOfUbHMI2moe3l07iR0TEMRdkFAAAAAAAMc2LnPn1123SjY5jGiKUvqlW/7kbHMBSnMQIAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpeEzZVVBQoBkzZigoKEgNGzZUTEyMEhISZLFYtHTpUqPjwaROFUiL9kgvJEmzkqWNR6Rip9GpAABOp/RTlvTaNun5JOntFOlwntGpAABATbJ4WdXvhckat+Nd3bPrfV332iPy8vU2OhY8gM3oANXhdDo1ZswYJSQkaObMmQoJCdGiRYs0atQoSVJkZKTBCWFGn+2VZm+TCh2Sl0VySvp0rxR0lfS3KKmjn8EBAaCeOpkvPfWDlJTl+tTOYpEcTumtFOneEOmxUMlqMTolAAC4UuFP3KHW14VpacyTKi4s0tD3nlGf6fcqYcY7RkdDHecRI7vmz5+v5cuXa82aNXrooYc0dOhQzZ8/X15eXgoMDFT79u2NjgiTWZ0pvZzsKrok12gux68jujJzpYe/df2xBQBwryKH9Nj3UnKW67JDrmO0U66fD9Kkt3cbGBAAANSYLuOHausbnyn3cJbyj59W0mufKGSsXRarR1QZMJBH7CGzZs3ShAkT1LNnz5JlXl5eCg4OLhnVtXv3bg0YMEBdu3bVgAEDlJqaalRceDinU/rnLqmiQQEOp/RLvvT5PrfGAgDIdTr5rlOukqsi76dKOYVuiwQAAGqBj38j+bVroazt6SXLjm9Nl0/jRvILamFgMniCOn8aY2pqqtLT0/XGG2+UWbd//36NHj1akvTwww/rt7/9rSZMmKAPP/xQDz30kNauXVvl7Z8+fVqtW7dWUVGRLBbOeYDUsHMfhbz6XaXbOJ0Ovf71Hj0cFuamVAAASWr/5Mfyv/ZWWbwqfguT75A63zJFJ7/50I3JAADA5epsa6qn/QeVWmbzayhJKjiVW7Ks4NQZSZL3r+tQviFD7NpTdMLoGDXCx8dH2dnZl3y9Oj+yKzMzU5LUsmXLUst37dqljIwMRUZG6ujRo9qyZYvGjRsnSRo3bpy2bNmiY8eOVXn7W7duVV5enpxOZh2Hiy2gZZXbWCzWam0HAKhZtiatKi26SrbjGA0AgEcrynF984y3f6OSZT4BV0mSCnP4VhpUrs6P7GrWrJkkKS0tTf369ZPkmrD+mWeekcPhUGRkpPbv36927drJy8tLkusUx7Zt22r//v1q0aJ6wxvj4uI0cODA2nkQ8CjbT0gTN1S9XXDLACXmM3EXALjT1B+kbw5VfhqjJL31+iv6zaevuCUTAAC4MkcSdumr26aXWlZwOlc5mccU2LOjTu85KElqFhasguxc5eyvemBLfbZuXZxa9etudAxD1fmyKzQ0VCEhIZo2bZq8vb3l5+enefPmKTExUY0aNVK3bt2UmJhodEyYSI8mUvurpP1nXJMdV2Qk34sAAG53y9XSukOVb9PAS7K3dk8eAABQe1I/+lrhj4/SkU075SgqVu8n71La/8XJ6ajqYy/Ud3W+7LLZbFqyZIkefvhhTZw4UUFBQYqNjZW/v7/27Nkjq9WqoKAgZWZmqri4WF5eXiouLtbBgwcVFBRkdHx4IItFejRUenZz+eutkpo1kG7v4NZYAABJg1q5PpTYdbLi0V2TQiQ/bzeGAgAAtSL5jc/kG+iv2+P+JovVor1ffq8fX2JOTlStzpddkhQREaH4+PhSy+bOnavo6GhJrvm8evfurcWLF2vChAlavHixIiMjq30KI3CxYW2l6RHSX7ZKBRf9NXX1VdKcKKmJjzHZAKA+s1mlN/pLUxOkxKzzyy2//twXIk3palQ6AABQk5zFDiXMeEcJM94xOgo8jEeUXRfLy8tTSkqKYmNjS5b961//0sSJE/X888+radOm+uCDD4wLCFO4vYMU00ZafkD66zbXsjf6S/1bSFa+uBMADNPER5o/UNp+Upr06xyLj3SXfhMkteTLmQAAAOo9jyy7kpOTVVxcrMjIyJJl3bt316ZNmwxMBTPy95Hu7nS+7LqOL/cCgDrBYpHCmp6/fD+juQAAAPArjyy7oqKi5HRWNnU4AAAAAAAA6iOr0QEAAAAAAACAmkLZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATMNjyq6CggLNmDFDQUFBatiwoWJiYpSQkCCLxaKlS5caHQ8A6jyHU/r+qDR3h/T37dLqTKnQYXQqAIAknciXFv8szdkuvb1bysgxOhEAGK/jrQM0YukLGp+2UHcm/NPoOPAgNqMDVIfT6dSYMWOUkJCgmTNnKiQkRIsWLdKoUaMkSZGRkQYnBIC6bc9paeoP0r4z5z/lcEhq6iO92EeKamFkOgCov5xOaX6K9G6qVOSUvCyuDyf+tUsa2kaaGSk19Ih37ABQ8/JPndGud1aoQYsA9XzwN0bHgQfxiJfO+fPna/ny5UpKSlLPnj0lSXa7XcHBwQoMDFT79u0NTggAddfhPOnBb6XsQtflCwdznSqQfve99PYgKaypIfEAoF5bsFv6393nLxc7z/++9pCUWyS90V+yWNyfDQCMdmh9siSp/fBrDU4CT+MRpzHOmjVLEyZMKCm6JMnLy0vBwcElo7qeeuopBQcHy2KxaNu2bUZFBYA6Z/Ee6XRh6ZLrHIdcIwje2uXuVACA7ELpndSK1zslxR+TErPcFgkAAFOo82VXamqq0tPTNXr06DLr9u/fX1J23X777Vq/fr06dOjg7ogAUGc5ndLSfa4/mCrikPT9MemXs+5KBQCQpDUHpYIq5k60WqRl+9yTBwAAs6jzpzFmZmZKklq2bFlq+a5du5SRkVFSdg0aNOiK7sdut8tqrfPdHwwS9omrBfD1bWBwEuDSWGw+ClucXeV2TkmdI/rp7N6faj8UUIM4PsOTtbzzj2o5ZroslbwHLXY4tWjZGr3cn7lqAJhXZ1tTPe1/ZX/T47whQ+zaU3TC6Bg1wsfHR9nZVf89c7E63+40a9ZMkpSWllayzOl06plnnpHD4WByegCohLOoQI783GptW5zDeTIA4E7FOVmVFl2SJEexinOOuycQAAAmUedHdoWGhiokJETTpk2Tt7e3/Pz8NG/ePCUmJqpRo0bq1q1bjdxPXFycBg4cWCO3BfPp+4Xr3/z8fGODAJfhpZ+kpRnlz9kluT71CGsqbc5Mq2ALoO7i+AxP9stZ6ebVrrkTK2Lxsum9J+/WoL/c7b5gAOBmRxJ26avbppdZbrFaZfX2ksVmkywWefl6y+l0ylFQZEBKz7FuXZxa9etudAxD1fmyy2azacmSJXr44Yc1ceJEBQUFKTY2Vv7+/tqzZw+nHgJAFcZ3kpbvlwod5RdeTkn/r2Y+NwAAXILmDaQ7O0qfpJe/3iqpS4A0oGX56wHA7Drfeb0G/f2xksv37l2snP1HtaTfowamgieo82WXJEVERCg+Pr7Usrlz5yo6OtqgRADgOTo2dn1t/ZMJUs5FH4LZLNL03vwhBQBG+UNP6Uyh9N8DrnLrwg8lujeR5kRJXhaDwgGAwdI+iVPaJ3FGx4AH8shhUXl5eUpJSSk1X9cTTzyhq6++WgcOHNCwYcPUs2dPAxMCQN3Sp7n01Y3S9Ijzy57oIa24UfpNkHG5AKC+s1ml566RPrZLd3c6v/zNAdJ7g6VAX8OiAQDgsTyy7EpOTlZxcXGpsuuNN97QgQMHVFRUpMOHD2v79u0GJgSAuqehTbq9w/nL94VITfgjCgDqhBB/6Q9h5y9HtZCsjOgCAOCyeMRpjBeLioqS01nJTJ4AAAAAAAColzxyZBcAAAAAAABQHsouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGh5TdhUUFGjGjBkKCgpSw4YNFRMTo4SEBFksFi1dutToeACugNMp/XBMei9Vej9V2nbCtQzwVHtzpA/3SO/sluIOSUUOoxMBAOA+xU7p2yPSu6nSwjQp5ZTRieCJrD42XffXhzX6+zc1PnWhRm18Q93vH2F0LHgIm9EBqsPpdGrMmDFKSEjQzJkzFRISokWLFmnUqFGSpMjISIMTArhcO09Kf/xR2nem9PJuAdIrfaT2fobEAi7LyQLpT1uk746WXh7oI/2xtxTd2pBYAAC4zZbjrtfCw3mll/cOlF7qI7VqaEwueB6rl5fyjp7UqrtfUHbGEQX26KAbFk/X2WMntXdZvNHxUMd5xMiu+fPna/ny5VqzZo0eeughDR06VPPnz5eXl5cCAwPVvn17oyMCuAw/Z0sPfisdOFN2Xepp6YGN0tG8suuAuuhssfTod9L3R8uuO1EgPZVQtgQDAMBMtp2Qfhtf/vu35CzXe7tTBe7PBc9UlJevxL98rOy9hyWnU1nb92r/qs1q2S/U6GjwAB5Rds2aNUsTJkxQz549S5Z5eXkpODhYkZGROn78uG6++WZ169ZNvXr10h133KFjx44ZmBhAdfxvipRfLJV3hpfD6SoIPtrj9ljAZVlxQNp9uvz9+dxZuXO2c4ouAMC8/rlTKnZU8N5O0qE8acleN4eCaVhsXmoVFaoTOzOMjgIPUOfLrtTUVKWnp2v06NFl1u3fv1+RkZGyWCx6+umnlZKSoq1bt6pz58569tlnDUgLoLpOF0hfHyr/zdA5Tkn/2ecqvoC67vMMyVLJeqdcoxl3Mm8JAMCEDudKCb9U/t5Ocr1eApej/8tTVJiTpz2ffmN0FHiAOj9nV2ZmpiSpZcuWpZbv2rVLGRkZioyMVGBgoOx2e8m6/v37a968eZd0P3a7XVZrne/+YJCwT85Kknx9GxicxDx823VX1zk/VbndmSLpqsAWcuSedkOq+oH9uXaE/u9+2Zq0rHK76JFjdXrTf2o/UD3B/gyzYZ+Gp2rUbYA6vxhX5XaHzhTL17dR7QeCR+lsa6qn/QdVuP7amRPVok83rRwzU47CIjcm80xDhti1p+iE0TFqhI+Pj7Kzsy/5enW+3WnWrJkkKS0trWSZ0+nUM888I4fDUWZyeofDoXnz5mnkyJFuzQng0hTnVm94i7O4SI783FpOA1y54tyTclbjHMXiMwztAgCYT3Xf2znyLv2PVtRv/Z6fpLbXh2vlXc8pP4v9B9VT50d2hYaGKiQkRNOmTZO3t7f8/Pw0b948JSYmqlGjRurWrVup7R9//HH5+fnpscceu6T7iYuL08CBA2syOkyk7xeuf/Pz840NYjL3b3BNZFrRcHerpKFBNv2YW84M9rhs7M+1Y36K66cyTX2kIz+skHed/6jJc7A/w2zYp+GpnE7pznXSvpzzc1VezCrpzp5N9Cz7Ny5yJGGXvrptepnl/V64X20GhWnFnTOVf5wzPapr3bo4terX3egYhqrzZZfNZtOSJUv08MMPa+LEiQoKClJsbKz8/f21Z8+eUqcePvXUU0pNTdWyZcs4JRHwAPd3lWI3lb/OIslikSZ0dmsk4LLd0UFa/LN0prDiAndiF1F0AQBMyWKRHugqzdhSwXpJNqt0d7BbY8GDXXV1c/V44GYVny3QnZveLFl+ZNMurRn/koHJ4AnqfNklSREREYqPjy+1bO7cuYqOji65PG3aNP3444/673//K19fX3dHBHAZBrWS/idcmpXs+gTwwk8BbVbppWuknk2NSgdcmuYNpLn9pSe+l04Vnl9ulav8mtBZGt/JqHQAANS+EVdLR/KkuTtd5daF7+0aeEmzr5U6NjYqHTzNmQO/6L02dxodAx7KIz9fzsvLU0pKSsl8Xdu3b9crr7yigwcP6rrrrlPv3r01atQog1MCqI7RHaUvhrlGeZ3zWKj03xukmLaGxQIuS8+m0hc3uErcc8YESx/bpdierk+9AQAws0ldpM9jSo/O/0NP13u7/lV/jwsA1AiPGNl1seTkZBUXF5eUXT179qzWpMAA6qbWjaRHuksLdrsuT+pibB7gSlxlc5W4ryS7Lk/tZWgcAADcLshP+l1PaeEe1+V7mJYCgJt5ZNkVFRVFuQUAAAAAAIAyPPI0RgAAAAAAAKA8lF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0PKbsKigo0IwZMxQUFKSGDRsqJiZGCQkJslgsWrp0qdHx3K7YKX13VPo0XfrvfulkgdGJAACAGZ0tktYcdL3nWHtQyi82OhFw+RxOKeGYa3/+cp90/KzRiYArs+e09Nle10/aaaPT1Lz+rzygMZv/pXt2f6AxW95Sv+cnyeptMzoWPIBH7CVOp1NjxoxRQkKCZs6cqZCQEC1atEijRo2SJEVGRhqc0L3WHpRmb5OOXfDibLNId3SUft9T8vaYChMAANRVTqf0fpr0bqp0puj8cj+b9GA3aVwnyWIxLh9wqb47Kr3yk3Qo7/wyL4t0y9XS072kBh7xlxHgknlGmpkoJWaVXt47UJoZKV19lTG5atrOd1do8/MLVZSXL9/AxrLPf1LhT9yhpNc+MToa6jiPOKTPnz9fy5cvV1JSknr27ClJstvtCg4OVmBgoNq3b29wQvf5+qD07Oayy4uc0ifp0tE8afa1vPkEAABXZt4u6Z3UsstziqTXt0tni6X7u7o/F3A5vj8qxW5ylbgXKnZKy/a7CrB/9JdsfGgMD3DsrDRlo5SVX3ZdcpY0eYO0MFpq3dD92Wraqd0Hzl+wWOR0ONW4UxvjAsFjeMThfNasWZowYUJJ0SVJXl5eCg4OLhnVdfvttysiIkKRkZEaPHiwkpKSDEpbe4oc0l+3un53VrBN3GFp8y9uiwQAAEzocJ5rRFdl5qeU/4cWUNc4na6zIpzO8t9DOyX98Iu0/rC7kwGX5/1U1/HXUc46h6RTBdJ7VRzDPUmvx27X+LSFGrftHQX27KAd8780OhI8QJ0vu1JTU5Wenq7Ro0eXWbd///6Ssuv999/XTz/9pMTERD311FO6//773R211n1/TDqWX3HRJUlWi/R5htsiAQAAE1q2r+ptipzS8v21nwW4UsknpIycKt5DS/qM99DwAIUO6Yt95Rdd5zgkfbnfNQLXDLbO/Y8+CrlXn1//O6V8sEp5R08YHQkeoM6fxpiZmSlJatmyZanlu3btUkZGRknZFRAQULLu1KlTslovrcez2+2XfB13azb8UbWd8rdKt3E4pf9s2KLXBg5wU6r6IewT1wRpvr4NDE5ibjzP7sHz7B48z+7B81w7rv7t22oy+G5ZvLwr3MZZVKgZf3tHU95+wo3JzI99uuY1uf4eBT3+bqXbOCSt35YuX3t394SqJ9ifa56tSWuF/m/VzezZYql5+xAV/uIZn0p0tjXV0/6DKt3mVGqmsrZnaPA/ntDKO2e6J5iHGjLErj1F5igFfXx8lJ2dfcnXq/NlV7NmzSRJaWlp6tevnyTXhPXPPPOMHA5HqcnpH3jgAa1atUpOp1MrVqwwJG9tKj5b9X9gp6NYjrxL3xEAAADOcZzNkVTFBKBW66/bAXWbI6/q/dTpdKiY99DwAI78M9Xf9mz1t/UUVm8v+TNnF6qhzpddoaGhCgkJ0bRp0+Tt7S0/Pz/NmzdPiYmJatSokbp161ay7dtvvy1JWrhwoaZOnarly5dX+37i4uI0cODAGs9fk7LypZtXuU4bqIjF6qXnx0XrrmlMolGT+n7h+jc/n+e1NvE8uwfPs3vwPLsHz3Pt+OGY9Eh85dtYrF7671+fVNiCJ90Tqp5gn655Z4qkm1ZWfkqXxWLVH4aHa8oTPO81if25djz6nWue5opOZbRapIim0ubjh9ya60ocSdilr26bXmqZd+NG6jCin/atSFDB6Vw1De2giNjROhj3k0EpPce6dXFq1a9+j1St2+ftSbLZbFqyZInatGmjiRMnKjY2ViNGjFB0dLTCw8PLPfXw3nvv1bp163T8+HEDEteeQF9pZCVfPGm1SE19pJuvdl8mAABgPn2bS90CKn6jaJXr6+17NnFjKOAyXWWTxgZXvN766za3158veIeHuy+kijm7nNLELm6LU3ucTnUafb1Gf/+mxqctVMy7T+vA14na9McFRieDB6jzI7skKSIiQvHxpT9enDt3rqKjoyVJOTk5OnHihIKCgiRJy5YtU2BgoAIDA92etbY9GSYdPSttPOIqtxwXjPLy95bmDpD8Kp5eAwAAoEoWizQnSnrkO2nvBWeAWeX6A6uzv/SXa13bAZ7gke7SoTxpVWbZ99ANbdIb/aVmTCsFD9G/pfRsuDQr2XX53O587pD8ZJg0qJURyWpWYU6eVo193ugY8FAeUXZdLC8vTykpKYqNjZUknTlzRmPGjNGZM2fk5eWlwMBALVu2TBYTvgPz9ZJe7yclHHN9Y8zaX0emPhUm3RIkNaboAgAANaBFA+mjaOnrg9KfEl3LolpIv2kvxbSRvOv8+QHAeTar9NI10h0dXN9cvtL1HVj6XQ/p1vZSEx9j8wGX6s6O0rXNpX/vlRb97Fp2dydpdAepY2MjkwF1g0eWXcnJySouLi6ZnL5Vq1b6/vvvDU7lPlaLq83v3/L8efB3dzI2EwAAMB9fL+nmoPNl1z/4smd4MIvFdYpu3+bny657Q4zNBFyJDn7SH8LOl11PhhmbB6hLPLLsioqKktNZySztAAAAAAAAqJcYgA4AAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAwBWJi4tTcHCw7Ha7Jk6cWGb9woULtWbNGknSyy+/rMGDB+vxxx8vs93dd98tu92uPn366Pbbb5ckPfXUU2rRooU+/PDDku0mT54sp9NZOw8GAFAvDJrzW0W9NMXoGOUan7ZQgWHBRsfwaJRdAAAAuGJTpkxRXFycAgICFB8fX2rdsmXLNHToUB05ckRbtmzRhg0bZLPZtHnz5lLbffzxx4qLi9ODDz6om2++WZI0depUzZ49u9R2UVFRWrduXe0+IACAx2h9XU8N//dzGp+6UONTF2r4v59T6wE9jY5VoveTd2noB/9T7e0/CrlXWdvSazGR+VF2AfAYVY0ceOmll5Samlrh9bOystSnTx/5+fmVWZeXl6ebb75Z0dHRmjx5siRp48aN6t+/v6677jq99tprkqSdO3dq1qxZNfSIAMB8wsLClJmZWXI5KytLDRo0kMVi0ebNmxUdHS1JiomJUUJCQrm3sWzZMt16662SpFatWpVZP2TIEC1fvrwW0gMAPM3Vw/rohkXTtX/Nj/rkmof0yTUPaf+aH3XD4um6eug15V7H4lVzVYjF5lVjt4WaQ9kFwKNUNHLA4XAoOTlZXbp0qfC6jRs31urVq9W/f/8y61atWqVBgwbpm2++kbe3t7Zt26ZOnTpp/fr1+u677/Tll18qNzdXoaGh2rJlC6fPAEAF4uPjFRISUnI5LS1NHTp0kCSdPHlS/v7+klzH5JMnT5a5fk5OjrKzs9WmTZsK76NDhw7avXt3zQYHAHikqBfvV9qncdo+7wsVZueqMDtX2+d9oT1LvlG/F++XJN2Z8E+Fx47WzV+8pAk/f6TmEZ0lSd5XNZB9/pMan7pQt3/zN7W1R1R5f60H9NT4tIXqOmGY7vxhnkau+askqc314frNylm6J+V9jfz6NbUffq0kqf3wa9XriVFqN6S3xqct1Pi0hbL62Cq9j0mHlqhZRGdZvKy6Z/cHatItyHXf1/XUpENL1OE3AyRJDVs20X37Ppa3X8PLe/JMjLILgEe6eOTATz/9pK5du1Z6HW9vbwUGBpa7Ljg4WGfOnJHk+kMrICBAbdu2lY+PjyTJy8tLVqvrkNmpUydt3769Jh4GAJjGggULZLfb1a5dO/Xu3bvcbZo0aaLTp09LkrKzs9WkSZMy26xcuVLDhw+vxaQAALPw79xWjTu0Uvp/vi2z7ufPN8q/Y2v5d3J9eBIyxq5vn/ynPgq5V8d/PUUw+PZB+vnzDVrUfaKS//G5Yt55Wo1al//3woVsDX3VvHeI/nN9rL4c8Ywad2ytYe8/q21z/6PFPSbrx5c+VPS83yuwZ0ftW/GDtr7xuTLXJemjkHv1Uci9chQUVevxOYsdOrJpp9oM6iVJajO4l06nH1KbQWGuy4N66XjyzyrMyavW7dUnlF0APNLFIwdSU1PVsWPHy769kJAQbdiwQaGhobJYLAoKCipZt3r1anXu3FkNGjSQxIgCACjPuZG3L774YqnlISEhysjIkCT16dNH69evlyStW7dO/fr1K3M7S5cu1W233VbpfWVkZFQ6khcAUD80CGwsSco7klVmXd7RE65tmrlGFKcsXK1TqZlyOhwlZdPh73do31cJchY79POS9TqxI0Mdbx1Q5f1arFb9+PJHKsrLV3FegYJvu05HNu3U3mXxchY7lLk2UftWbVbnMdFX/BgPb9xWqtxK+usnJeVX64FhOvTttiu+DzOi7ALgUaozcmDHjh2y2+2lfl599dVKb/f999/X2LFjtXPnTjVv3lzfffedJOnAgQN65ZVXSubsAgBcmsDAQOXm5kqSWrdurfDwcA0ePFj5+fnq27evDh8+XDIBfXFxsXbv3q0ePXqUXH/27NmaPXu2Xn31Vb3++uuSXEXZiBEj3P9gAAB1ytmsbElSw1ZlR2M1bNnUtc1x14jiM5nHymxz5kDpZTn7j1VrZFdRXr7yf71vSWrUpplyLr6tjCNq1KZZlbdVlUMbt6pV/x7y8W8k/05tlf6fb+XlY1OjNoFqMyhMhzZsveL7MKPKTxQFgDpmypQpmj59epnlXbp00WeffSZJ6tGjh+Li4i7pdh0OR8kpjoGBgTp58qTy8/M1adIkzZs3r9Sk9hkZGRo4cODlPwgAMJlzHyxUZOTIkVqzZo2GDRumGTNmaMaMGSXrWrduralTp0pynTL+/fffl7ru1KlTS9afs2nTJj344IM19wAAAB7p9J6Dyt53RMEjr9Phi0Y4Bd92nbL3HdHpnw9JkpyOsnPuXnV1i1KX/YJa6NiWqs/gcDocpS7nHjpe5tsf/YJaKvfQ8XK3vxRZ2/fK6XCox//7jY7+sEtOh0OHNm5T13uGqVHLpjr6w67Lvm0zY2QXAFOIiIhQSkpKldsNGzZMiYmJGjZsmLZt21YyouCee+7Ru+++K7vdrqSkJN1www1atGiRduzYoYceekh2u71kjrC0tDSFhYXV9kMCANO47777NGzYsBq7vXfffbdkHkUAQP2W8Kf3FDJ2iHo+dKu8/RrKu3Ej9XjoNwq5a4gSZrxb6XVb9++hoBv7yuJlVac7Bqtpjw7a+9/vK71OedKXfqdWUaHqcEuULFar2g3praCb+mrPEtep+3m/nNJV7Zpf9rdAHv5uu3o8eIsObXSN4jr07Vb1ePAWHf1xt4rzCy/rNs2OkV0APEZlIwesVqvCw8OVmppa6Twua9asKbPs3IiBVatWlVo+efJkTZ48udSynTt3qk+fPrJYLJeYHgAAAEBN27/yB62Z8LIi/nCnek+9S5J0PPlnrZnwckk5VJH0/2xU5zHRuv7N3+nMoeNa98BflXvw+CVnyN57WGvv/4uu+Z/xGvi33+rMgWNa/9gbyvp1Ivy9y+LV6fZBunvbO7JYLPo4fEq1J6mXpEMbtqrjbwbo0EbX6LVDG7fJx/8q5uuqBGUXANMo7/TGmhYaGqrQ0NBavx8AAAAA1XNo49ZKi60l/R4ts2xj7JuXdV+H47fro5B7yyzPXJekzHVJ5V6n4GSOVoz+c7Vu3/LryOULy7CUD1Yp5YPzH8znHTmh99rceQmp6x/GfwMAAAAAANQBTXt2kKOwqNwJ9VF9jOwCAAAAAAD41W1xf5Pf1c3LLN+/6ketf3TOFd/+sI/+qFZR3cssL8w5K6u3l358eZEKTude8f3UZ5RdAAAAAAAAv1pq/32t3v6a8S/V6u2D0xgBAAAAAABgIpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBoeUXYVFBRoxowZCgoKUsOGDRUTE6OEhARZLBYtXbrU6HgAasCBM+d/P3bWuBwAgNKKHOd/3/yLVOw0LgsAoH7yauCjO777h8anLTQ6CjxEnS+7nE6nxowZo7ffflvTp0/Xl19+qeDgYI0aNUqSFBkZaXBCAFfiUK70eLw06uvzy25ZJT27WTqZb1wuAID02V7pltXnLz/8nfSb1dKX+wyLBACohyKnjlXOgV+MjgEPYjM6QFXmz5+v5cuXKykpST179pQk2e12BQcHKzAwUO3btzc4IYDLdTRPmrxBysqXLhwo4JC09qCUdlp6d7DU2NuohABQf72fKv1jZ9nlx85KM5OkM8XS2GC3xwIA1DPNwjup3ZDe+uG5DzRkwVNGx4GHqPMju2bNmqUJEyaUFF2S5OXlpeDg4DKjup577jlZLBZt27bN3TEBXIb/3e0quhzlrHNI2psjLf7Z3akAAL+cld7cVfk2c7ZLpwvckwcAUD9ZvKy67q8P6/tpb8tRUGR0HHiQOl12paamKj09XaNHjy6zbv/+/aXKri1btuj7779Xhw4d3BkRwGXKLZL+u7/8outCS/ZKTuaHAQC3WrZfclRx7C10SMsPuCcPAKB+Cnv0Nh3fmq4j35cz1BioRJ0+jTEzM1OS1LJly1LLd+3apYyMjJKyKz8/X7/97W+1ePFi2e32y7ovu90uq7VOd3/lCvvENZO3r28Dg5OYG89zzfNt201d/55c5XZZ+VKjps3lyMt2Q6r6gf3ZPXie3YPnuXZc/dv/VZNB42SxVXweubOoUP/z2jua+PYTbkxmfuzT7sHz7B48z+5hhue5s62pnvYfVGpZ446t1e2+G/XFDVMNSuW5hgyxa0/RCaNj1AgfHx9lZ1/634J1uuxq1qyZJCktLU39+vWT5Jqw/plnnpHD4Sgpu/70pz9pwoQJ6tixo1FRAVwiR0FetbZzOh1yFvL1jADgTo6Cs5LFUvlGFosc+bnuCQQAqHda9euuhs0DdMe3b0iSrDYveV/VUHdvf0frpsxmtBcqVafLrtDQUIWEhGjatGny9vaWn5+f5s2bp8TERDVq1EjdunVTfHy8Nm/erFdfffWK7isuLk4DBw6soeTu0/cL17/5+XxtXW3iea55Tqc0Nk5Kzy49Of2FrJKiWlr145kcNyYzP/Zn9+B5dg+e59rx7RHpd5sq38biZdPns36va97+vXtC1RPs0+7B8+wePM/uYYbn+UjCLn112/RSy9KXfaeDG86fCdKiTzcN+vtv9cWwp3T2+Gl3R/Qo69bFqVW/7kbHMFSdPm/PZrNpyZIlatOmjSZOnKjY2FiNGDFC0dHRCg8Pl9Vq1TfffKOdO3cqODhYHTt21IEDB3TTTTdp1apVRscHUAmLRbovpOKiS3LN5zW+s7sSAQDOGdBS6uhX8RtFq6RuAVJkoDtTAQDqk+K8AuUeyir5yT9+WnI6lXsoi8nqUaU6XXZJUkREhOLj45Wbm6uUlBQ98sgjSkxMLDmF8dlnn9XBgwe1d+9e7d27V1dffbVWrlypG2+80eDkAKpyy9XS5C6u3y88GJ37/akwqX/Li68FAKhtVov09yipZUPX5XMnNJ77t91V0uv9qj7TEQCAmnI4frs+CrnX6BjwEHX6NMby5OXlKSUlRbGxsUZHAXCFLBbpt6HSwJbSp3ul5CzXsqgW0p0dXaMGAADGaHeV9LFd+nK/69tzj+dLLRpItwZJI4KkqzzuXSQAAKgvPO5tSnJysoqLi0tGdl1s79697g0E4Ir1bub6AQDULX7e0t2dXD8AAACewuPKrqioKDmdlc3yAwAAAAAAgPqqzs/ZBQAAAAAAAFQXZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAgAHi4uIUHBwsu92uiRMnlln/0ksvKTU1tcLrZ2VlqU+fPvLz86v2+rfeektDhw6V3W5XYWGhdu7cqVmzZl35gwEAk7nSY7QkPf744xo8eLBefvnlctdffEyWpDlz5mjYsGGSyj+Oc9wGgOqh7AIAwCBTpkxRXFycAgICFB8fX7Lc4XAoOTlZXbp0qfC6jRs31urVq9W/f/9qrd+3b5+2bt2qr7/+WnFxcfL29lZoaKi2bNkip9NZsw8MAEzgSo7Rmzdvls1m04YNG7RlyxYdOXKk1PryjsmFhYVKSkoq2aa84zzHbQCoHsouAAAMFhYWpszMzJLLP/30k7p27Vrpdby9vRUYGFjt9atWrdKZM2cUExOjmTNnlizv1KmTtm/ffvnhAcDkLucYvWnTJsXExEiSoqOj9eOPP5ZaX94xeeHChRo3blzJNhUd5zluA0DVKLsAADBYfHy8QkJCSi6npqaqY8eONXofR48elcVi0dq1a5Wenl4yeqBDhw7avXt3jd4XAJjJ5RyjT548KX9/f0muEVonT54stf7iY/KWLVu0cuVK3XTTTVXm4bgNAFWzGR0AAID6asGCBVqzZo0GDRqk3r17l7vNjh079Oijj5ZaNnz4cD377LOXdF8BAQGKjo6WJF1//fVKSUmp8D4BAFd2jG7SpIlOnz4tScrOzlbnzp1LbXPxMTk1NVUjR46s+QcBAPUUZRcAAAaZMmWKpk+fXmZ5ly5d9Nlnn0mSevToobi4uCu+rwEDBmjRokWSpK1bt5acKpORkaGBAwde8e0DgNlcyTH6hx9+0OLFi3Xrrbdq/fr1uuuuu0qtv/iY3LRpU23cuFELFy5UUlKS3n77bT3wwAPl5uK4DQBV4zRGAADqmIiICKWkpFS53bBhw5SYmKhhw4Zp27ZtOnz4sGbPnl3ueh8fHxUVFclutys3N1dRUVGSpLS0NIWFhdXaYwEAs6nOMfraa69Vfn6+Bg8erIiICLVq1arUMfqaa64pdUz+85//rNWrV2vFihXq3bt3SdF18XFe4rgNANXByC4AAAxgt9tlt9vLXWe1WhUeHq7U1NRKv+1rzZo1ZZZNnTq1wvVz5swpdXnnzp3q06ePLBZL9YMDQD1QE8foN998s9Tl1q1blzpGX3xMPufCY/fFx3GO2wBQPZRdAADUQeWdOlPTQkNDFRoaWuv3AwBm445jdHk4bgNA9XAaIwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpeEzZVVBQoBkzZigoKEgNGzZUTEyMEhISZLFYtHTpUqPjAQBQIr/4/O+Hco3LAQAo68CZ878XOozLAaByg+b8VvdmLNb4tIUlP+2G9DY6FjyEzegA1eF0OjVmzBglJCRo5syZCgkJ0aJFizRq1ChJUmRkpMEJAQCQihzSgt3Sx+nnl41cI0W1kP4QJnVqbFw2AKjvdp+S/rZd+uGX88uGr5Tu6SxN6iJ5WYzLBqB8uz9co01/XGB0DHggjyi75s+fr+XLlyspKUk9e/aUJNntdgUHByswMFDt27c3OCEAoL5zOKXpW6Q1B0svd0pKOCZN3iC9M0jq7G9IPACo13adkh7YKBUUl15+qlCat0valyPNjJQsFF4AYAoecRrjrFmzNGHChJKiS5K8vLwUHBxcMqqrY8eO6t69u3r37q3evXtr5cqVRsUFANRD6w+XLbrOcUjKK5Zmb3VrJADAr175yVV0VXTW4n8PSAm/VLASgGE63TFY43a8q9vXz1H47+6QxcsjKgzUAXV+ZFdqaqrS09P1xhtvlFm3f/9+jR49uuTykiVLFBYW5s54AABIkpbslawW1wiv8jic0ubjUkaO1MHPrdEAoF7bfUrafrLybawWaUm667RzAHXDjgXLtfmFhTqbla1m4Z0U/c9Yefn6KPEvHxsdDR6gzpddmZmZkqSWLVuWWr5r1y5lZGTU2HxddrtdVqvntcRhn5yVJPn6NjA4ibnxPMNM2J9rR/f/3SfvJq2q3K7viDE6nfCFGxLVD+zPMBv26ZrXZPA4BT3xXqXbOJzSiqSf9cbgUPeEqifYn93DDM9zZ1tTPe0/qNSyrK3nJ0E9/tMeJf71/xT51FjKrmoYMsSuPUUnjI5RI3x8fJSdnX3J16vz7U6zZs0kSWlpaSXLnE6nnnnmGTkcjlJl1/jx4xUeHq5HH31UJ0+edHdUAEA95izMr952RYW1nAQAcCFHtY/P1dsOgEEcTol59VBNdX5kV2hoqEJCQjRt2jR5e3vLz89P8+bNU2Jioho1aqRu3bpJkjZs2KCgoCDl5+crNjZWjz32mD788MNq309cXJwGDhxYWw+j1vT9dXBAfj4vzrWJ5xlmwv5cO2YlS//eW/F8MJLka5X2rv+P/Lzdlcr82J9hNuzTNe9kvjR8lVRUwWnmkuvv5wftoXqC571GsT+7hxme5yMJu/TVbdNLLes48jplrktSYXaumoZ2UMSTY7T3y3iDEnqWdevi1Kpfd6NjGKrOl102m01LlizRww8/rIkTJyooKEixsbHy9/fXnj17Sk49DAoKkiT5+vrq0Ucf1ciRI42MDQCoZ8YES//OkOvrF8thkTSqgyi6AMDNmvhKtwRJX+wr/xBtkeRlke7o4O5kACrTfdJNGjDrQVm9vZR35KT2LPlGyf/43OhY8BB1vuySpIiICMXHl25w586dq+joaEnSmTNnVFRUpICAADmdTn388cfq3bu3AUkBAPVVp8bS85HSnxIlOc+P8LLK9fu1zaXHexiXDwDqs6fCXF8QkpR1/rgsuX63WqRX+kpXX2VgQABlrLjjz0ZHgAfziLLrYnl5eUpJSVFsbKwk6ciRIxo9erSKi4tVXFysHj166J///KexIQEA9c7wq6XOjaVP9krrDkkFDlcJdmdHaXg7yVbnZ8oEAHNqaJP+OUD6KtN1yvneHKmBVYppK90V7DpWAwDMwyPLruTkZBUXF5dMTt+pUyclJiYanAoAAKlLgPTHCNcPAKDu8PGSbmvv+gEAmJtHll1RUVFyOiuZYRIAAAAAAAD1EidUAAAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAADChuLg4BQcHy263a+LEiWXWL1y4UGvWrJEkvfzyyxo8eLAef/zxMtu9/vrrateunV588cWSZZMmTdKAAQNkt9u1du1aSdLkyZPldDpr6dEA1UfZBQAAAACASU2ZMkVxcXEKCAhQfHx8qXXLli3T0KFDdeTIEW3ZskUbNmyQzWbT5s2bS203YcIELVy4sMxtf/rpp4qLi1NMTIwkKSoqSuvWrau9BwNUE2UXUAOq+sTkpZdeUmpqaoXXz8rKUp8+feTn51dmXV5enm6++WZFR0dr8uTJkqSNGzeqf//+uu666/Taa69Jknbu3KlZs2bV0CNCfVab+3NF69966y0NHTpUdrtdhYWF7M8AAAA1LCwsTJmZmSWXs7Ky1KBBA1ksFm3evFnR0dGSpJiYGCUkJJS6bsuWLWW1lq4PLBaLxo4dq7vuuktZWVmSpCFDhmj58uW1/EiAqlF2ATWkok9MHA6HkpOT1aVLlwqv27hxY61evVr9+/cvs27VqlUaNGiQvvnmG3l7e2vbtm3q1KmT1q9fr++++05ffvmlcnNzFRoaqi1btjBsGDWitvbn8tbv27dPW7du1ddff624uDh5e3uzPwMAANSw+Ph4hYSElFxOS0tThw4dJEknT56Uv7+/JNd7tZMnT1Z5e6+//rq+/fZbjR07Vq+88ookqUOHDtq9e3fNhwcuEWUXUMMu/sTkp59+UteuXSu9jre3twIDA8tdFxwcrDNnzkiScnJyFBAQoLZt28rHx0eS5OXlVfIpS6dOnbR9+/aaeBiApJrfn8tbv2rVKp05c0YxMTGaOXNmyXL2ZwAAgCu3YMEC2e12tWvXTr179y53myZNmuj06dOSpOzsbDVp0qTK223atKkkaeTIkbxnQ51D2QXUsIs/MUlNTVXHjh0v+/ZCQkK0YcMGhYaGymKxKCgoqGTd6tWr1blzZzVo0EASn6Sg5tX0/lyeo0ePymKxaO3atUpPT1dSUpIk9mcAAICacG7E/oWTy0uuvzMyMjIkSX369NH69eslSevWrVO/fv2qvN3s7GxJrveLwcHBkqSMjIxKzwAA3IWyC6gh1fnEZMeOHbLb7aV+Xn311Upv9/3339fYsWO1c+dONW/eXN99950k6cCBA3rllVdK5uwCalJt7c/lCQgIKJkj4vrrr1dKSsqVRAcAAEA1BAYGKjc3V5LUunVrhYeHa/DgwcrPz1ffvn11+PBhzZ49W5L0wQcf6Mknn9R7772np59+WpJ03333adCgQXruuef07LPPSnIVZSNGjDDmAQEXsBkdADCLKVOmaPr06WWWd+nSRZ999pkkqUePHoqLi7uk23U4HCWnfAUGBurkyZPKz8/XpEmTNG/evFKTfGdkZGjgwIGX/yCAX9XW/lyeAQMGaNGiRZKkrVu3aty4cZLYnwEAAK7UuQ8kKzJy5EitWbNGw4YN04wZMzRjxoySda1bt9bUqVMluYqt++67r9R1P//88zK3t2nTJj344IM1Ex64AozsAmpZREREtUaqDBs2TImJiRo2bJi2bdtW8knKPffco3fffVd2u11JSUm64YYbtGjRIu3YsUMPPfSQ7HZ7yZxKaWlpCgsLq+2HhHrsSvfn8tb7+PioqKhIdrtdubm5ioqKksT+DAAAUNvuu+8+DRs2rMZu79133y3zrY2AERjZBdSAyj4xsVqtCg8PV2pqaqXnr69Zs6bMsnOfpKxatarU8smTJ2vy5Mmllu3cuVN9+vSRxWK5xPRAabW9P5e3fs6cOaUusz8DAAAAuFyUXYAblHc6WE0LDQ1VaGhord8PwP4MAAAAoC5jfCEAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaXhM2VVQUKAZM2YoKChIDRs2VExMjBISEmSxWLR06VKj48HEThWc/73IYVwOoCYUFJ///UyRcTkAAABw5c5e8N7uLO/tgBI2owNUh9Pp1JgxY5SQkKCZM2cqJCREixYt0qhRoyRJkZGRBieEGR3Ok/65U1qVeX7ZraulcZ2lCZ0lq8W4bMClKiiWFqRKn6afX3bjCuk3QdKjoVKAj3HZAAAAcGnyiqS3UqTPM84vu3GldFsH6ZHuUiOP+Eu/eq4eeo0in7lb/p3bqignT9v+tUzb531hdCzUcR7xv8D8+fO1fPlyJSUlqWfPnpIku92u4OBgBQYGqn379gYnhNkczpUmbpBO5EsXDuY6li+9sUNKOy09FylZKLzgAYoc0u8TpE3HSi/Pd0ifZUibj0vvDKLwAgAA8ARni6RHvpO2n5ScFyzPLZY+/llKOi69NdAchVfb6AgNmP2QNj4xV4fjt8vW0FdXtWtudCx4AI84jXHWrFmaMGFCSdElSV5eXgoODi4Z1XX27Fk98sgj6tKli3r16qUHH3zQqLgwgb9uK1t0XWj5Aembw26NBFy2zzPKFl3nOCXty5H+tcutkQAAAHCZPvxZ2naydNF1jlPSrlPSB2luDlVLIp++W8lz/q1DG7fKWexQYU6eTqbsNzoWPECdL7tSU1OVnp6u0aNHl1m3f//+krLr6aefVoMGDbR7925t3bpVL7zwgrujwiSO5rmKrMqm57JapE/3uisRcGU+SZcqG4TolLRsv2s4PAAAAOquYqe0JL3ybZyS/r3X8+cbtjX0VfPendWwRRON2vB3jU1+WzHvPSO/oJZGR4MHqPMDGzMzXRMmtWxZeofetWuXMjIyFBkZqZycHH3wwQc6cOCALL+eV9aqVatLuh+73S6rtc53f2WEfXJWkuTr28DgJObh1/smBf+x8nPAHU7p25+z5Gtv46ZUwGXysqnXx2eq3OxssdQ6tI/O7tvmhlBAzeF1EGbDPg0zYX+uebaAlgp9u+qRTScKpIB2nVSUlVnltnVBZ1tTPe0/qNQynyZXyWK1qsMtUVo97kXlHT+lfs9P1pAFU7XsxqkGJfUMQ4bYtafohNExaoSPj4+ys7Mv+Xp1vt1p1qyZJCkt7fw4TKfTqWeeeUYOh0ORkZHas2ePmjVrpueee059+/aV3W7Xxo0bjYoMT+eo5vAWR3HV2wBGczrkdFbvYz0n+zQAAECd5iy+hKH4Hv7erjDHVZbueHu5cg4cU3Fegba8skjNegUzbxeqVOdHdoWGhiokJETTpk2Tt7e3/Pz8NG/ePCUmJqpRo0bq1q2bkpKS9PPPPysyMlKzZ8/Wpk2bdOuttyotLU3+/v7Vup+4uDgNHDiwlh9Nzev76wCk/Px8Y4OYSE6hdNNK1+TdFbFKGtmzhZJ43uEBHvpWSjxe+am5zX2l71OTZKvzH4EApfE6CLNhn4aZsD/XPKdTGhcn7ckuf84uyTV9RQc/6YfDGR7zhVpHEnbpq9uml1pWmJ2rnP1HXQ8al2Tduji16tfd6BiGqvN/1thsNi1ZskRt2rTRxIkTFRsbqxEjRig6Olrh4eGyWq1q3769bDabxo0bJ0mKiopS8+bNtXv3boPTwxP5ebu+srey1wWHpLuC3ZUIuDLjOlVedEnS2E6i6AIAAKjjLBbpns4VF12Sa924Tub45viUD1Yp9IFb1KhtM3n5eivy6bv1y097dCbzF6OjoY6r8yO7JCkiIkLx8fGlls2dO1fR0dGSpObNm2vIkCFavXq1brzxRu3evVtHjx5VSEiIEXFhAk+ESrtPSUlZrtLr3IuJ1eKar+upMCmsqZEJgeqzt5EmhUjvpbk+4ThXfJ373d5aurezcfkAAABQfbcGSVtPuL5xu7z3drcGSaM6GJevJm19c6l8Avw0ctVfJItVRxN2ad2U2UbHggfwiLLrYnl5eUpJSVFsbGzJsn/961+6//779eSTT8rb21sLFy5UkyZNDMsIz9bAJr05QFq6z/VNdhk5kpdFGtRKuruT1JdTxOFhHushhQdK/5cubf7FVdp2DXCNULwlyLV/AwAAoO6zWKRp4VK/5q73dslZruVhTV2j9W9sa45RXZIkp1M/vvShfnzpQ6OTwMN4ZNmVnJys4uJiRUZGlizr1KmT4uLijAsF0/H1chUBdwW7igGLTPSigXrp+tauH6fTNVrRyv4MAADgkSwW6YZ2rp9zU1rxtwpwnkeWXVFRUXIySR3ciFIAZmKxVD4nHQAAADwHJRdQFtMRAwAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLtMLC4uTsHBwbLb7Zo4cWKZ9QsXLtSaNWu0f/9+XXfddbr++us1efJkOZ3OUtutWLFCAwYM0I033qiDBw9Kkp566im1aNFCH374Ycl25V0XAAAjVfe1UJJefvllDR48WI8//niZ7e6++27Z7Xb16dNHt99+uyReCwHgStTU8fn1119Xu3bt9OKLL5YsmzRpkgYMGCC73a61a9dK4vgM1DeUXSY3ZcoUxcXFKSAgQPHx8aXWLVu2TEOHDlXbtm317bffav369bJardq6dWup7WbNmqV169bp9ddf16xZsyRJU6dO1ezZs0ttFxUVpXXr1tXuAwIA4BJV57XwyJEj2rJlizZs2CCbzabNmzeX2u7jjz9WXFycHnzwQd18882SeC0EgCtVE8fnCRMmaOHChWVu+9NPP1VcXJxiYmIkcXwG6hvKrnoiLCxMmZmZJZezsrLUoEEDWSwWeXl5yWKxSJJ8fX3Vtm3bUte12Wxq0KCBevbsqYSEBElSq1atytzHkCFDtHz58lp8FAAAXL7KXgs3b96s6OhoSVJMTEzJ693Fli1bpltvvVUSr4UwRlWjYV566SWlpqZWehuPP/64Bg8erJdffrnc9W+99ZaGDh0qu92uwsJCSdKcOXM0bNgwSa7/d/r06SM/P7+S6+zcubPkQ1HgUl3J8blly5ayWkv/WWuxWDR27FjdddddysrKksTxGahvKLvqifj4eIWEhJRcTktLU4cOHUour127VuHh4Tp8+LACAgJKXbewsFDHjx/Xxo0bS14sytOhQwft3r275sMDAFADKnstPHnypPz9/SVJjRs31smTJ8tcPycnR9nZ2WrTpk2F98FrIdyhotEwDodDycnJ6tKlS4XX3bx5s2w2mzZs2KAtW7boyJEjpdbv27dPW7du1ddff624uDh5e3ursLBQSUlJJds0btxYq1evVv/+/UuWhYaGasuWLZwmhstypcfni73++uv69ttvNXbsWL3yyiuSOD4D9Q1ll8ktWLBAdrtd7dq1U+/evSvcLiYmRsnJyerQoYNWrFhRat2LL76oO++8U4sXL1aPHj1qOTEAADWrOq+FTZo00enTpyVJ2dnZatKkSZltVq5cqeHDh9diUuDSXDwa5qefflLXrl0rvc6mTZtKTuuKjo7Wjz/+WGr9qlWrdObMGcXExGjmzJmSXHMnjRs3rmQbb29vBQYGlrntTp06afv27Zf7cFAP1dTx+WJNmzaVJI0cOZJ9EqinKLtM7twnfxdO2ChJISEhysjIkCQVFBSULA8ICFCDBg1KbTto0CCtW7dOkyZNUlRUVIX3lZGRUekniQAAGKE6r4V9+vTR+vXrJUnr1q1Tv379ytzO0qVLddttt1V6X7wWwp0uHg2Tmpqqjh07VnqdqkbJHD16VBaLRWvXrlV6erq2bNmilStX6qabbqoyDyNncKlq6vh8sezsbEmu/0eCg4MlcXwG6hub0QFgjMDAQOXm5kqSEhISNG3aNFmtVoWEhGjo0KE6fPiwFi5cqKlTp+r5559XXFyc2rVrp7feekuSNHv2bL333nuyWCw6evSo/vCHP2jdunUaMWKEkQ8LAIBqu/C1sHXr1goPD9fgwYMVHh6uvn37lnotLC4u1u7du0uNcOa1EEZZsGCB1qxZo0GDBlU4GmbHjh169NFHSy0bPnx4mVEynTt3LrVNQEBAyfxI119/vVJTUzVy5MiafxBAJS7l+PzBBx/o73//u06dOqXTp0/rL3/5i+677z4dO3ZMvr6+eu+99ySJ4zNQz1ic9fzE+m+//VaDBg3Sxo0bNXDgQKPjXLK+X7j+3XwZ70E++OADtW3btmSy0Ss1efJkLViwoMwEkQAA1JYreR2UeC1E3VPVPh0XF6eNGzdq+vTpZdYlJibqs88+0wsvvFDh7f/www9avHixXn/9dY0ZM0Zz584t9WULW7Zs0aJFi/TXv/5VsbGxatq0qTZu3CgvLy9t3rxZr776qh544AFJ0rBhw7RmzZqS6/7P//yP7rnnHvXq1esyHjnMiL9VUF1HEnbpq9vKHtdweUYsfVGt+nU3Ooah+D+9Hrvvvvtq7MVDkt59911ePAAAHoXXQphJRESEUlJSKt3m2muvVX5+vgYPHqyIiAi1atVKhw8f1uzZsyVJ11xzjYqKimS325Wbm6s///nPWr16tVasWKHevXuXKroSExM1bNgwbdu2TZJrUvGwsLDafZCoNzg+A7gSnMYIAAAAeAi73S673V7uOqvVqvDwcKWmplY6N9Gbb75Z6nLr1q01derUkstz5swp93oXjuK68HdJ2rlzp/r06SOLxVLFIwAAoPZRdgEAAAAmUd7pje4QGhqq0NBQQ+4bAICLMY4TAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQ8puwqKCjQjBkzFBQUpIYNGyomJkYJCQmyWCxaunSp0fEMcabI6AQAANQNOYVGJwCuHPsxzKSg+PzvDqdxOQDUTzajA1SH0+nUmDFjlJCQoJkzZyokJESLFi3SqFGjJEmRkZEGJ3SvA2ekBbulFZnnl01aL03qItnbGJcLAAB32XBYejf1/OVhK6Qb2kn/r6vU3s+4XMDl+DlbejtF+vrQ+WUPbpTu7yr1b2lcLuBy5BS6/lb5POP8slFfS/d0lsZ0lKwWw6LBw4xPW1jqspePt06mZuqLoU8alAiexCPKrvnz52v58uVKSkpSz549JUl2u13BwcEKDAxU+/btDU7oPunZ0pSNrhcRxwXLd5yUnvpB+n1PaXxno9IBAFD7Pk2XZm0tPTy9yCmtzHSVYG8PkkL8DYsHXJIdJ6WHvpXyi0u/t0vKkh7/XvpTb+nW+vNWFx4uu9D1t0p6tnThYK6DudLsrdKOE9KfIym8UD0fhdxb6vLIr19T+tJvDUoDT+MRpzHOmjVLEyZMKCm6JMnLy0vBwcGKjIzU3r171bt375Kfjh07KjAw0MDEtefPiVJOUek3Q9L5y3/bLu3NdncqAADc48AZ6S9bXb+XeS10SrlF0h9/lJycMgMP4HBK0zaXLbok12WnpBd+ko6dNSAccBne3Fm26JLOX/7vAWn1QXenghk07x2iJl2vVtr/rTM6CjxEnS+7UlNTlZ6ertGjR5dZt3//fkVGRqpjx45KSkoq+bn99tt1zz33GJC2du086fr0r7Jz3i2S/p1R8XoAADzZZ1W8xjkk7cmWkk+4JQ5wRRKOSQdyyxZdF3I4pf/w3g4eIKdQWravbNF1IaukT9LdlQhm0uWeGGWuTVTeEV7gUT11/jTGzEzXxFQtW5aesGDXrl3KyMgoM19XQUGBPvroI61cufKS7sdut8tqrdvdX+CND6nd/3uj0m2ckhasTNC0PoPdEwoAADcKnrlafj2vr3K7EQ9M1fH/Vv6aCRitxR3PqtXdf5bFUvF7UKfDodmLV+qxV253XzDgMjTs0k8hL2+odBuHpKSjBfL1beyeUPAYnW1N9bT/oHLX2Rr6Kvi2gdrwxFw3p/JcQ4bYtafIHMWgj4+PsrMv/fS1ut3uSGrWrJkkKS0trWSZ0+nUM888I4fDUabs+uKLL9SuXTtdc801bs3pFs7KPve7cDvO3QAAmJTTIWd1Xud4LYQn4L0dzKSa+zO7My5Vx1sHqCivQAfW/Gh0FHgQi7Na7xiNU1RUpNDQUBUWFmr27Nny8/PTvHnzlJiYqKysLGVnZ5cakXXzzTdr+PDheuKJJ6p1+6dPn9bWrVvVq1cv+fvX7dls95yWxsZVvo1F0sQQ6bEe7kgEAIB7vbVLent35afJSNKH10vdm7gjEXD5ko5LD1RjruUnekj3hdR+HuBKnC2SblolnSmqeBurRbq2ufTmAPflgmc4krBLX902vdx1I5a+oKObdunHlz9ycyrPNWLpi2rVr7vRMQxV50d22Ww2LVmyRG3atNHEiRMVGxurESNGKDo6WuHh4aWKrszMTH3zzTcaP358tW/f399fAwcOrPNFlyR19peuaVb5fzSLpFEd3JUIAAD3GtWh8m/xskoKa0LRBc8QESh1blzxPm2R5GOVRga5NRZwWRrYXMfoyr5o0eGU7gp2WySYgH/ntmrZt5t2L/7a6CjwMHW+7JKkiIgIxcfHKzc3VykpKXrkkUeUmJhY5hTG999/X7fcckvJqY9m9Hyk1LxB2RcRq1zL/tRbaneV+3MBAOAOLRtKz0W6XvcuLggskpr6Si/2MSIZcOksFmlWX8nfu5z3dhbXz8t9pCa+hsQDLtnD3aReTcsuP/dH5/hO0vWt3BoJHq7LuBgd2bRT2emHjY4CD1PnJ6gvT15enlJSUhQbG1tq+Xvvvac33jD3ZLStG0kLr5c+3CN9niHlFLneHA1sJd0b4hr5BQCAmQ2/WmrTSFqYJn1z2HVK41U26bb2rtfCFg2MTghUX8fGrtNuF+6Rvtgn5RW7Sq6Y1tKEECmsnOIAqKsa2KR/Xif938/Sp3ulw3mu5T2aSvd0km5o6yp5ger68cUPjY4AD1Xn5+wqz6ZNm9S/f3/98MMP6tu3r9FxDFPslM4USr5erh8AAOqbgmLpbLF0lbfkxR9Q8HBFDtd8Rw29JB/e28HDOZ2u/dnLIjX0yCEWcKfK5uzCpWPOLg8d2RUVFVW9b2IyOS+L5O9jdAoAAIzjQykAE7FZpQDe28EkLBbJz9voFADqK4+YswsAAAAAAACoDsouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA2L0+l0Gh0CAAAAAADUTwXZuTqxc5/RMUyjaWh7+TRuZHQMQ1F2AQAAAAAAwDQ4jREAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAafx/NK7m2yrEPOAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -776,10 +776,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:38.354188Z", - "iopub.status.busy": "2024-11-08T21:58:38.353743Z", - "iopub.status.idle": "2024-11-08T21:58:38.611613Z", - "shell.execute_reply": "2024-11-08T21:58:38.611088Z" + "iopub.execute_input": "2024-11-08T22:03:51.859546Z", + "iopub.status.busy": "2024-11-08T22:03:51.859139Z", + "iopub.status.idle": "2024-11-08T22:03:52.116318Z", + "shell.execute_reply": "2024-11-08T22:03:52.115735Z" } }, "outputs": [ diff --git a/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb b/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb index 9b4005be8..8671d210f 100644 --- a/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb +++ b/dev/.doctrees/nbsphinx/explanations/state-vectors-and-gates.ipynb @@ -26,10 +26,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.221110Z", - "iopub.status.busy": "2024-11-08T21:58:41.220924Z", - "iopub.status.idle": "2024-11-08T21:58:41.917013Z", - "shell.execute_reply": "2024-11-08T21:58:41.916364Z" + "iopub.execute_input": "2024-11-08T22:03:54.737417Z", + "iopub.status.busy": "2024-11-08T22:03:54.737231Z", + "iopub.status.idle": "2024-11-08T22:03:55.449789Z", + "shell.execute_reply": "2024-11-08T22:03:55.449273Z" } }, "outputs": [ @@ -74,10 +74,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.919191Z", - "iopub.status.busy": "2024-11-08T21:58:41.918752Z", - "iopub.status.idle": "2024-11-08T21:58:41.925308Z", - "shell.execute_reply": "2024-11-08T21:58:41.924799Z" + "iopub.execute_input": "2024-11-08T22:03:55.452002Z", + "iopub.status.busy": "2024-11-08T22:03:55.451545Z", + "iopub.status.idle": "2024-11-08T22:03:55.458223Z", + "shell.execute_reply": "2024-11-08T22:03:55.457652Z" } }, "outputs": [ @@ -120,10 +120,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.927326Z", - "iopub.status.busy": "2024-11-08T21:58:41.926963Z", - "iopub.status.idle": "2024-11-08T21:58:41.931168Z", - "shell.execute_reply": "2024-11-08T21:58:41.930666Z" + "iopub.execute_input": "2024-11-08T22:03:55.460136Z", + "iopub.status.busy": "2024-11-08T22:03:55.459790Z", + "iopub.status.idle": "2024-11-08T22:03:55.464060Z", + "shell.execute_reply": "2024-11-08T22:03:55.463497Z" } }, "outputs": [ @@ -157,10 +157,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.933094Z", - "iopub.status.busy": "2024-11-08T21:58:41.932716Z", - "iopub.status.idle": "2024-11-08T21:58:41.936948Z", - "shell.execute_reply": "2024-11-08T21:58:41.936440Z" + "iopub.execute_input": "2024-11-08T22:03:55.466349Z", + "iopub.status.busy": "2024-11-08T22:03:55.465827Z", + "iopub.status.idle": "2024-11-08T22:03:55.470128Z", + "shell.execute_reply": "2024-11-08T22:03:55.469596Z" } }, "outputs": [ @@ -199,10 +199,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.938981Z", - "iopub.status.busy": "2024-11-08T21:58:41.938622Z", - "iopub.status.idle": "2024-11-08T21:58:41.944482Z", - "shell.execute_reply": "2024-11-08T21:58:41.943915Z" + "iopub.execute_input": "2024-11-08T22:03:55.472162Z", + "iopub.status.busy": "2024-11-08T22:03:55.471841Z", + "iopub.status.idle": "2024-11-08T22:03:55.477841Z", + "shell.execute_reply": "2024-11-08T22:03:55.477273Z" } }, "outputs": [ @@ -245,10 +245,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.946532Z", - "iopub.status.busy": "2024-11-08T21:58:41.946099Z", - "iopub.status.idle": "2024-11-08T21:58:41.952016Z", - "shell.execute_reply": "2024-11-08T21:58:41.951544Z" + "iopub.execute_input": "2024-11-08T22:03:55.479754Z", + "iopub.status.busy": "2024-11-08T22:03:55.479434Z", + "iopub.status.idle": "2024-11-08T22:03:55.484847Z", + "shell.execute_reply": "2024-11-08T22:03:55.484359Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.953906Z", - "iopub.status.busy": "2024-11-08T21:58:41.953550Z", - "iopub.status.idle": "2024-11-08T21:58:41.958599Z", - "shell.execute_reply": "2024-11-08T21:58:41.958121Z" + "iopub.execute_input": "2024-11-08T22:03:55.486753Z", + "iopub.status.busy": "2024-11-08T22:03:55.486324Z", + "iopub.status.idle": "2024-11-08T22:03:55.491210Z", + "shell.execute_reply": "2024-11-08T22:03:55.490757Z" } }, "outputs": [ diff --git a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png index 45851d64f..d5ad976be 100644 Binary files a/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png and b/dev/.doctrees/nbsphinx/explanations_qiskit-gate-decompositions_34_0.png differ diff --git a/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb index df4da3eaf..2618e8227 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/entanglement-forging.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:43.799378Z", - "iopub.status.busy": "2024-11-08T21:58:43.799183Z", - "iopub.status.idle": "2024-11-08T21:58:44.769481Z", - "shell.execute_reply": "2024-11-08T21:58:44.768868Z" + "iopub.execute_input": "2024-11-08T22:03:57.460356Z", + "iopub.status.busy": "2024-11-08T22:03:57.460168Z", + "iopub.status.idle": "2024-11-08T22:03:58.452322Z", + "shell.execute_reply": "2024-11-08T22:03:58.451711Z" } }, "outputs": [ @@ -29,14 +29,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "converged SCF energy = -75.6787887956298\n" + "converged SCF energy = -75.6787887956297\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Parsing /tmp/tmpz6wc_g1p\n", + "Parsing /tmp/tmpolu6mcs3\n", "converged SCF energy = -75.6787887956314\n" ] }, @@ -125,10 +125,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:44.773010Z", - "iopub.status.busy": "2024-11-08T21:58:44.772216Z", - "iopub.status.idle": "2024-11-08T21:58:44.777090Z", - "shell.execute_reply": "2024-11-08T21:58:44.776499Z" + "iopub.execute_input": "2024-11-08T22:03:58.455790Z", + "iopub.status.busy": "2024-11-08T22:03:58.454859Z", + "iopub.status.idle": "2024-11-08T22:03:58.459968Z", + "shell.execute_reply": "2024-11-08T22:03:58.459530Z" } }, "outputs": [], @@ -168,10 +168,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:44.778967Z", - "iopub.status.busy": "2024-11-08T21:58:44.778581Z", - "iopub.status.idle": "2024-11-08T21:58:44.781570Z", - "shell.execute_reply": "2024-11-08T21:58:44.781116Z" + "iopub.execute_input": "2024-11-08T22:03:58.462219Z", + "iopub.status.busy": "2024-11-08T22:03:58.461908Z", + "iopub.status.idle": "2024-11-08T22:03:58.465011Z", + "shell.execute_reply": "2024-11-08T22:03:58.464548Z" } }, "outputs": [], @@ -200,10 +200,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:44.783286Z", - "iopub.status.busy": "2024-11-08T21:58:44.782908Z", - "iopub.status.idle": "2024-11-08T21:58:44.894363Z", - "shell.execute_reply": "2024-11-08T21:58:44.893861Z" + "iopub.execute_input": "2024-11-08T22:03:58.467166Z", + "iopub.status.busy": "2024-11-08T22:03:58.466645Z", + "iopub.status.idle": "2024-11-08T22:03:58.580895Z", + "shell.execute_reply": "2024-11-08T22:03:58.580373Z" } }, "outputs": [ @@ -211,7 +211,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Energy at initialialization: -75.67794403659722\n" + "Energy at initialialization: -75.67794403659728\n" ] } ], @@ -238,10 +238,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:44.896587Z", - "iopub.status.busy": "2024-11-08T21:58:44.896203Z", - "iopub.status.idle": "2024-11-08T21:58:52.839892Z", - "shell.execute_reply": "2024-11-08T21:58:52.839350Z" + "iopub.execute_input": "2024-11-08T22:03:58.582935Z", + "iopub.status.busy": "2024-11-08T22:03:58.582739Z", + "iopub.status.idle": "2024-11-08T22:04:06.482352Z", + "shell.execute_reply": "2024-11-08T22:04:06.481791Z" } }, "outputs": [ @@ -253,10 +253,10 @@ " message: STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT\n", " success: False\n", " status: 1\n", - " fun: -75.68381564339327\n", - " x: [-1.603e-01 6.420e-03 ... 5.747e-02 -1.005e-01]\n", + " fun: -75.6838156431781\n", + " x: [-1.603e-01 6.417e-03 ... 5.747e-02 -1.005e-01]\n", " nit: 3\n", - " jac: [ 2.260e-04 1.094e-04 ... -4.755e-03 7.395e-03]\n", + " jac: [ 2.160e-04 1.094e-04 ... -4.746e-03 7.422e-03]\n", " nfev: 112\n", " njev: 7\n", " hess_inv: <15x15 LbfgsInvHessProduct with dtype=float64>\n" diff --git a/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb index a3a2f533e..4b6946947 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/fermion-operator.ipynb @@ -29,10 +29,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:54.349104Z", - "iopub.status.busy": "2024-11-08T21:58:54.348912Z", - "iopub.status.idle": "2024-11-08T21:58:55.046367Z", - "shell.execute_reply": "2024-11-08T21:58:55.045841Z" + "iopub.execute_input": "2024-11-08T22:04:08.091307Z", + "iopub.status.busy": "2024-11-08T22:04:08.091112Z", + "iopub.status.idle": "2024-11-08T22:04:08.799275Z", + "shell.execute_reply": "2024-11-08T22:04:08.798654Z" } }, "outputs": [ @@ -40,9 +40,9 @@ "data": { "text/plain": [ "FermionOperator({\n", + " (cre_a(0), des_a(3)): 0.5,\n", " (cre_a(3), des_a(0)): -0.25,\n", - " (cre_b(1), des_b(5), cre_a(4)): 1+1j,\n", - " (cre_a(0), des_a(3)): 0.5\n", + " (cre_b(1), des_b(5), cre_a(4)): 1+1j\n", "})" ] }, @@ -76,17 +76,17 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.048422Z", - "iopub.status.busy": "2024-11-08T21:58:55.048148Z", - "iopub.status.idle": "2024-11-08T21:58:55.052294Z", - "shell.execute_reply": "2024-11-08T21:58:55.051709Z" + "iopub.execute_input": "2024-11-08T22:04:08.801504Z", + "iopub.status.busy": "2024-11-08T22:04:08.801052Z", + "iopub.status.idle": "2024-11-08T22:04:08.805055Z", + "shell.execute_reply": "2024-11-08T22:04:08.804526Z" } }, "outputs": [ { "data": { "text/plain": [ - "'FermionOperator({((True, False, 3), (False, False, 0)): -0.25+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 0), (False, False, 3)): 0.5+0j})'" + "'FermionOperator({((True, False, 0), (False, False, 3)): 0.5+0j, ((True, False, 3), (False, False, 0)): -0.25+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j})'" ] }, "execution_count": 2, @@ -110,10 +110,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.054433Z", - "iopub.status.busy": "2024-11-08T21:58:55.053923Z", - "iopub.status.idle": "2024-11-08T21:58:55.058379Z", - "shell.execute_reply": "2024-11-08T21:58:55.057801Z" + "iopub.execute_input": "2024-11-08T22:04:08.807027Z", + "iopub.status.busy": "2024-11-08T22:04:08.806701Z", + "iopub.status.idle": "2024-11-08T22:04:08.811065Z", + "shell.execute_reply": "2024-11-08T22:04:08.810510Z" } }, "outputs": [ @@ -121,17 +121,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(0), des_a(3)): 1,\n", - " (cre_a(3), des_a(0)): -0.5,\n", - " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,\n", " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", + " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", + " (cre_a(3), des_a(0)): -0.5,\n", + " (cre_a(0), des_a(3)): 1,\n", " (cre_b(2)): 0-0.25j,\n", " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", + " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,\n", " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", - " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", - " (des_a(3), des_b(3)): 0.0625,\n", - " (cre_b(1), des_b(5), cre_a(4)): 2+2j\n", + " (cre_b(1), des_b(5), cre_a(4)): 2+2j,\n", + " (des_a(3), des_b(3)): 0.0625\n", "})" ] }, @@ -170,10 +170,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.060434Z", - "iopub.status.busy": "2024-11-08T21:58:55.059951Z", - "iopub.status.idle": "2024-11-08T21:58:55.063920Z", - "shell.execute_reply": "2024-11-08T21:58:55.063403Z" + "iopub.execute_input": "2024-11-08T22:04:08.813021Z", + "iopub.status.busy": "2024-11-08T22:04:08.812685Z", + "iopub.status.idle": "2024-11-08T22:04:08.816687Z", + "shell.execute_reply": "2024-11-08T22:04:08.816104Z" } }, "outputs": [ @@ -181,17 +181,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(0), des_a(3)): 0-6j,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", - " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,\n", " (cre_a(3), des_a(0), cre_b(2)): -1,\n", + " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", + " (cre_a(3), des_a(0)): 0+3j,\n", + " (cre_a(0), des_a(3)): 0-6j,\n", " (cre_b(2)): -5,\n", " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", + " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,\n", " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", - " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", " (cre_a(0), des_a(3), cre_b(2)): 2,\n", - " (des_a(3), des_b(3)): 0-1.25j,\n", - " (cre_b(1), des_b(5), cre_a(4)): 12-12j\n", + " (cre_b(1), des_b(5), cre_a(4)): 12-12j,\n", + " (des_a(3), des_b(3)): 0-1.25j\n", "})" ] }, @@ -220,10 +220,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.065934Z", - "iopub.status.busy": "2024-11-08T21:58:55.065440Z", - "iopub.status.idle": "2024-11-08T21:58:55.069385Z", - "shell.execute_reply": "2024-11-08T21:58:55.068822Z" + "iopub.execute_input": "2024-11-08T22:04:08.818469Z", + "iopub.status.busy": "2024-11-08T22:04:08.818278Z", + "iopub.status.idle": "2024-11-08T22:04:08.822136Z", + "shell.execute_reply": "2024-11-08T22:04:08.821663Z" } }, "outputs": [ @@ -231,16 +231,16 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_b(2), cre_a(3), des_a(0)): -1,\n", + " (cre_a(3), des_a(0)): 0+3j,\n", + " (des_b(3), des_a(3)): 0+1.25j,\n", + " (cre_b(2), cre_a(0), des_a(3)): 2,\n", " (cre_a(0), des_a(3)): 0-6j,\n", - " (cre_b(2)): -5,\n", " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", + " (cre_b(1), cre_a(4), des_b(5)): -12+12j,\n", " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,\n", - " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", - " (cre_b(2), cre_a(0), des_a(3)): 2,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", - " (des_b(3), des_a(3)): 0+1.25j,\n", - " (cre_b(1), cre_a(4), des_b(5)): -12+12j\n", + " (cre_b(2), cre_a(3), des_a(0)): -1,\n", + " (cre_b(2)): -5,\n", + " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j\n", "})" ] }, @@ -265,10 +265,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.071276Z", - "iopub.status.busy": "2024-11-08T21:58:55.070942Z", - "iopub.status.idle": "2024-11-08T21:58:55.074366Z", - "shell.execute_reply": "2024-11-08T21:58:55.073878Z" + "iopub.execute_input": "2024-11-08T22:04:08.823784Z", + "iopub.status.busy": "2024-11-08T22:04:08.823599Z", + "iopub.status.idle": "2024-11-08T22:04:08.826428Z", + "shell.execute_reply": "2024-11-08T22:04:08.825977Z" } }, "outputs": [ @@ -298,10 +298,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.076325Z", - "iopub.status.busy": "2024-11-08T21:58:55.075966Z", - "iopub.status.idle": "2024-11-08T21:58:55.079853Z", - "shell.execute_reply": "2024-11-08T21:58:55.079384Z" + "iopub.execute_input": "2024-11-08T22:04:08.828314Z", + "iopub.status.busy": "2024-11-08T22:04:08.828125Z", + "iopub.status.idle": "2024-11-08T22:04:08.832402Z", + "shell.execute_reply": "2024-11-08T22:04:08.831916Z" } }, "outputs": [ @@ -341,10 +341,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.081760Z", - "iopub.status.busy": "2024-11-08T21:58:55.081405Z", - "iopub.status.idle": "2024-11-08T21:58:55.086724Z", - "shell.execute_reply": "2024-11-08T21:58:55.086261Z" + "iopub.execute_input": "2024-11-08T22:04:08.834437Z", + "iopub.status.busy": "2024-11-08T22:04:08.834023Z", + "iopub.status.idle": "2024-11-08T22:04:08.839435Z", + "shell.execute_reply": "2024-11-08T22:04:08.838968Z" } }, "outputs": [ @@ -353,7 +353,7 @@ "text/plain": [ "array([ 0. +0.j , 0. +0.j ,\n", " 0. +0.j , 0. +0.j ,\n", - " -0.11930397-0.05940218j, 0. +0.j ,\n", + " -0.06659433-0.09977735j, 0. +0.j ,\n", " 0. +0.j , 0. +0.j ,\n", " 0. +0.j ])" ] @@ -380,10 +380,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.088681Z", - "iopub.status.busy": "2024-11-08T21:58:55.088330Z", - "iopub.status.idle": "2024-11-08T21:58:55.099251Z", - "shell.execute_reply": "2024-11-08T21:58:55.098800Z" + "iopub.execute_input": "2024-11-08T22:04:08.841551Z", + "iopub.status.busy": "2024-11-08T22:04:08.841118Z", + "iopub.status.idle": "2024-11-08T22:04:08.853583Z", + "shell.execute_reply": "2024-11-08T22:04:08.853031Z" } }, "outputs": [ diff --git a/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb index a0a2745f4..f8f072ad5 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/lucj.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:56.788631Z", - "iopub.status.busy": "2024-11-08T21:58:56.788433Z", - "iopub.status.idle": "2024-11-08T21:58:57.778410Z", - "shell.execute_reply": "2024-11-08T21:58:57.777823Z" + "iopub.execute_input": "2024-11-08T22:04:10.569384Z", + "iopub.status.busy": "2024-11-08T22:04:10.568845Z", + "iopub.status.idle": "2024-11-08T22:04:11.558138Z", + "shell.execute_reply": "2024-11-08T22:04:11.557545Z" } }, "outputs": [ @@ -34,7 +34,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Parsing /tmp/tmp4oof_itf\n", + "Parsing /tmp/tmp4297rm90\n", "converged SCF energy = -77.8266321248744\n" ] }, @@ -123,10 +123,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:57.782035Z", - "iopub.status.busy": "2024-11-08T21:58:57.781131Z", - "iopub.status.idle": "2024-11-08T21:58:57.851276Z", - "shell.execute_reply": "2024-11-08T21:58:57.850687Z" + "iopub.execute_input": "2024-11-08T22:04:11.561384Z", + "iopub.status.busy": "2024-11-08T22:04:11.560794Z", + "iopub.status.idle": "2024-11-08T22:04:11.634595Z", + "shell.execute_reply": "2024-11-08T22:04:11.634006Z" } }, "outputs": [ @@ -134,7 +134,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(CCSD) = -77.87421536374033 E_corr = -0.04758323886584202\n" + "E(CCSD) = -77.8742153637403 E_corr = -0.0475832388658375\n" ] }, { @@ -189,10 +189,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:57.853693Z", - "iopub.status.busy": "2024-11-08T21:58:57.853416Z", - "iopub.status.idle": "2024-11-08T22:00:41.430624Z", - "shell.execute_reply": "2024-11-08T22:00:41.429947Z" + "iopub.execute_input": "2024-11-08T22:04:11.637757Z", + "iopub.status.busy": "2024-11-08T22:04:11.637137Z", + "iopub.status.idle": "2024-11-08T22:05:56.137169Z", + "shell.execute_reply": "2024-11-08T22:05:56.136540Z" } }, "outputs": [ @@ -204,10 +204,10 @@ " message: STOP: TOTAL NO. of ITERATIONS REACHED LIMIT\n", " success: False\n", " status: 1\n", - " fun: -77.8738739212081\n", - " x: [-1.152e+00 9.229e-05 ... 2.607e-04 1.287e-01]\n", + " fun: -77.8738739300466\n", + " x: [-4.773e-01 -3.401e-04 ... 1.885e-04 1.287e-01]\n", " nit: 10\n", - " jac: [-1.279e-05 -1.705e-05 ... 2.842e-05 2.558e-05]\n", + " jac: [-2.132e-05 -8.527e-06 ... 2.132e-05 1.421e-05]\n", " nfev: 949\n", " njev: 13\n", " hess_inv: <72x72 LbfgsInvHessProduct with dtype=float64>\n" @@ -251,10 +251,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:00:41.432719Z", - "iopub.status.busy": "2024-11-08T22:00:41.432513Z", - "iopub.status.idle": "2024-11-08T22:01:17.366582Z", - "shell.execute_reply": "2024-11-08T22:01:17.365968Z" + "iopub.execute_input": "2024-11-08T22:05:56.140899Z", + "iopub.status.busy": "2024-11-08T22:05:56.139858Z", + "iopub.status.idle": "2024-11-08T22:06:32.916741Z", + "shell.execute_reply": "2024-11-08T22:06:32.916109Z" } }, "outputs": [ @@ -266,10 +266,10 @@ " message: CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\n", " success: True\n", " status: 0\n", - " fun: -77.87363426331358\n", - " x: [-1.152e+00 -7.322e-05 ... 3.520e-02 2.561e-01]\n", + " fun: -77.87363426494937\n", + " x: [-4.775e-01 -9.119e-05 ... 3.518e-02 2.561e-01]\n", " nit: 5\n", - " jac: [-2.132e-05 -1.421e-05 ... 4.263e-06 -1.421e-06]\n", + " jac: [ 1.990e-05 2.842e-05 ... 0.000e+00 -4.263e-06]\n", " nfev: 329\n", " njev: 7\n", " hess_inv: <46x46 LbfgsInvHessProduct with dtype=float64>\n" @@ -314,10 +314,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:17.369827Z", - "iopub.status.busy": "2024-11-08T22:01:17.369259Z", - "iopub.status.idle": "2024-11-08T22:01:32.185137Z", - "shell.execute_reply": "2024-11-08T22:01:32.184537Z" + "iopub.execute_input": "2024-11-08T22:06:32.920008Z", + "iopub.status.busy": "2024-11-08T22:06:32.919557Z", + "iopub.status.idle": "2024-11-08T22:06:49.315704Z", + "shell.execute_reply": "2024-11-08T22:06:49.315124Z" } }, "outputs": [ @@ -328,29 +328,29 @@ "Number of parameters: 46\n", " message: Convergence: Relative reduction of objective function <= ftol.\n", " success: True\n", - " fun: -77.87363432028101\n", - " x: [-1.152e+00 -2.361e-04 ... 3.488e-02 2.559e-01]\n", + " fun: -77.87363432565692\n", + " x: [-4.777e-01 -3.547e-04 ... 3.492e-02 2.558e-01]\n", " nit: 3\n", - " jac: [ 6.378e-07 -1.608e-06 ... -5.773e-07 -1.369e-06]\n", - " nfev: 487\n", + " jac: [-1.352e-06 -8.455e-07 ... -4.362e-07 -4.643e-07]\n", + " nfev: 511\n", " njev: 4\n", - " nlinop: 303\n", + " nlinop: 327\n", "\n", "Iteration 1\n", - " Energy: -77.8736217684642\n", - " Norm of gradient: 0.0031595733340700816\n", - " Regularization hyperparameter: 0.0025499345359661922\n", - " Variation hyperparameter: 0.9740484666566149\n", + " Energy: -77.87362951803819\n", + " Norm of gradient: 0.0017916907423955943\n", + " Regularization hyperparameter: 0.0017638230480210694\n", + " Variation hyperparameter: 0.9882021058109687\n", "Iteration 2\n", - " Energy: -77.87363430321963\n", - " Norm of gradient: 0.00010745254175743701\n", - " Regularization hyperparameter: 0.002550095989584378\n", - " Variation hyperparameter: 0.9740485436281343\n", + " Energy: -77.8736343056853\n", + " Norm of gradient: 6.762259618188165e-05\n", + " Regularization hyperparameter: 0.002422494824904172\n", + " Variation hyperparameter: 0.9857240665316018\n", "Iteration 3\n", - " Energy: -77.87363432028101\n", - " Norm of gradient: 9.466173883748333e-06\n", - " Regularization hyperparameter: 0.002550095989584378\n", - " Variation hyperparameter: 0.9740485436281343\n" + " Energy: -77.87363432565692\n", + " Norm of gradient: 1.373295931963946e-05\n", + " Regularization hyperparameter: 0.003552504471598931\n", + " Variation hyperparameter: 0.9857689585545333\n" ] } ], diff --git a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb index ebf4d2c31..d47ee9f70 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-circuits.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:33.798006Z", - "iopub.status.busy": "2024-11-08T22:01:33.797814Z", - "iopub.status.idle": "2024-11-08T22:01:34.481362Z", - "shell.execute_reply": "2024-11-08T22:01:34.480804Z" + "iopub.execute_input": "2024-11-08T22:06:50.933528Z", + "iopub.status.busy": "2024-11-08T22:06:50.933335Z", + "iopub.status.idle": "2024-11-08T22:06:51.637750Z", + "shell.execute_reply": "2024-11-08T22:06:51.637098Z" } }, "outputs": [], @@ -54,10 +54,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:34.483761Z", - "iopub.status.busy": "2024-11-08T22:01:34.483293Z", - "iopub.status.idle": "2024-11-08T22:01:35.046390Z", - "shell.execute_reply": "2024-11-08T22:01:35.045816Z" + "iopub.execute_input": "2024-11-08T22:06:51.640409Z", + "iopub.status.busy": "2024-11-08T22:06:51.639943Z", + "iopub.status.idle": "2024-11-08T22:06:52.224799Z", + "shell.execute_reply": "2024-11-08T22:06:52.224141Z" } }, "outputs": [ @@ -103,10 +103,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.048549Z", - "iopub.status.busy": "2024-11-08T22:01:35.048048Z", - "iopub.status.idle": "2024-11-08T22:01:35.107588Z", - "shell.execute_reply": "2024-11-08T22:01:35.106967Z" + "iopub.execute_input": "2024-11-08T22:06:52.227433Z", + "iopub.status.busy": "2024-11-08T22:06:52.226611Z", + "iopub.status.idle": "2024-11-08T22:06:52.286888Z", + "shell.execute_reply": "2024-11-08T22:06:52.286377Z" } }, "outputs": [ @@ -160,17 +160,17 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.109612Z", - "iopub.status.busy": "2024-11-08T22:01:35.109256Z", - "iopub.status.idle": "2024-11-08T22:01:35.113556Z", - "shell.execute_reply": "2024-11-08T22:01:35.112953Z" + "iopub.execute_input": "2024-11-08T22:06:52.289176Z", + "iopub.status.busy": "2024-11-08T22:06:52.288666Z", + "iopub.status.idle": "2024-11-08T22:06:52.292981Z", + "shell.execute_reply": "2024-11-08T22:06:52.292359Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -195,17 +195,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.115614Z", - "iopub.status.busy": "2024-11-08T22:01:35.115258Z", - "iopub.status.idle": "2024-11-08T22:01:35.120213Z", - "shell.execute_reply": "2024-11-08T22:01:35.119603Z" + "iopub.execute_input": "2024-11-08T22:06:52.295028Z", + "iopub.status.busy": "2024-11-08T22:06:52.294563Z", + "iopub.status.idle": "2024-11-08T22:06:52.299537Z", + "shell.execute_reply": "2024-11-08T22:06:52.298958Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -242,17 +242,17 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.122242Z", - "iopub.status.busy": "2024-11-08T22:01:35.121883Z", - "iopub.status.idle": "2024-11-08T22:01:35.126435Z", - "shell.execute_reply": "2024-11-08T22:01:35.125856Z" + "iopub.execute_input": "2024-11-08T22:06:52.301396Z", + "iopub.status.busy": "2024-11-08T22:06:52.301059Z", + "iopub.status.idle": "2024-11-08T22:06:52.305582Z", + "shell.execute_reply": "2024-11-08T22:06:52.305013Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -279,17 +279,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.128351Z", - "iopub.status.busy": "2024-11-08T22:01:35.128008Z", - "iopub.status.idle": "2024-11-08T22:01:35.132466Z", - "shell.execute_reply": "2024-11-08T22:01:35.131879Z" + "iopub.execute_input": "2024-11-08T22:06:52.307644Z", + "iopub.status.busy": "2024-11-08T22:06:52.307302Z", + "iopub.status.idle": "2024-11-08T22:06:52.311630Z", + "shell.execute_reply": "2024-11-08T22:06:52.311041Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -315,17 +315,17 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.134572Z", - "iopub.status.busy": "2024-11-08T22:01:35.134198Z", - "iopub.status.idle": "2024-11-08T22:01:35.138593Z", - "shell.execute_reply": "2024-11-08T22:01:35.137992Z" + "iopub.execute_input": "2024-11-08T22:06:52.313501Z", + "iopub.status.busy": "2024-11-08T22:06:52.313302Z", + "iopub.status.idle": "2024-11-08T22:06:52.317533Z", + "shell.execute_reply": "2024-11-08T22:06:52.317073Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -354,17 +354,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.158301Z", - "iopub.status.busy": "2024-11-08T22:01:35.157702Z", - "iopub.status.idle": "2024-11-08T22:01:35.162990Z", - "shell.execute_reply": "2024-11-08T22:01:35.162424Z" + "iopub.execute_input": "2024-11-08T22:06:52.319403Z", + "iopub.status.busy": "2024-11-08T22:06:52.319066Z", + "iopub.status.idle": "2024-11-08T22:06:52.323951Z", + "shell.execute_reply": "2024-11-08T22:06:52.323492Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -391,17 +391,17 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.165103Z", - "iopub.status.busy": "2024-11-08T22:01:35.164737Z", - "iopub.status.idle": "2024-11-08T22:01:35.170161Z", - "shell.execute_reply": "2024-11-08T22:01:35.169568Z" + "iopub.execute_input": "2024-11-08T22:06:52.325685Z", + "iopub.status.busy": "2024-11-08T22:06:52.325493Z", + "iopub.status.idle": "2024-11-08T22:06:52.331034Z", + "shell.execute_reply": "2024-11-08T22:06:52.330451Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 10, @@ -428,17 +428,17 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.171978Z", - "iopub.status.busy": "2024-11-08T22:01:35.171656Z", - "iopub.status.idle": "2024-11-08T22:01:35.177391Z", - "shell.execute_reply": "2024-11-08T22:01:35.176807Z" + "iopub.execute_input": "2024-11-08T22:06:52.333012Z", + "iopub.status.busy": "2024-11-08T22:06:52.332649Z", + "iopub.status.idle": "2024-11-08T22:06:52.338428Z", + "shell.execute_reply": "2024-11-08T22:06:52.337844Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 11, diff --git a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb index 3aeabdf58..2536860ee 100644 --- a/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb +++ b/dev/.doctrees/nbsphinx/how-to-guides/qiskit-sampler.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:37.130980Z", - "iopub.status.busy": "2024-11-08T22:01:37.130796Z", - "iopub.status.idle": "2024-11-08T22:01:37.808315Z", - "shell.execute_reply": "2024-11-08T22:01:37.807796Z" + "iopub.execute_input": "2024-11-08T22:06:54.254793Z", + "iopub.status.busy": "2024-11-08T22:06:54.254605Z", + "iopub.status.idle": "2024-11-08T22:06:54.959789Z", + "shell.execute_reply": "2024-11-08T22:06:54.959158Z" } }, "outputs": [], @@ -71,10 +71,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:37.810805Z", - "iopub.status.busy": "2024-11-08T22:01:37.810246Z", - "iopub.status.idle": "2024-11-08T22:01:37.873487Z", - "shell.execute_reply": "2024-11-08T22:01:37.872967Z" + "iopub.execute_input": "2024-11-08T22:06:54.962579Z", + "iopub.status.busy": "2024-11-08T22:06:54.962141Z", + "iopub.status.idle": "2024-11-08T22:06:55.025396Z", + "shell.execute_reply": "2024-11-08T22:06:55.024909Z" } }, "outputs": [ @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:37.875563Z", - "iopub.status.busy": "2024-11-08T22:01:37.875211Z", - "iopub.status.idle": "2024-11-08T22:01:38.168011Z", - "shell.execute_reply": "2024-11-08T22:01:38.167479Z" + "iopub.execute_input": "2024-11-08T22:06:55.027498Z", + "iopub.status.busy": "2024-11-08T22:06:55.027124Z", + "iopub.status.idle": "2024-11-08T22:06:55.303899Z", + "shell.execute_reply": "2024-11-08T22:06:55.303269Z" } }, "outputs": [ @@ -165,7 +165,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "converged SCF energy = -108.835236570774\n" + "converged SCF energy = -108.835236570775\n" ] }, { @@ -174,7 +174,7 @@ "text": [ "norb = 14\n", "nelec = (3, 3)\n", - "E(CCSD) = -108.9630419334855 E_corr = -0.1278053627110063\n" + "E(CCSD) = -108.9630419334856 E_corr = -0.1278053627110059\n" ] }, { @@ -188,15 +188,15 @@ "data": { "text/plain": [ "{'0000000000011100000000000111': 9926,\n", - " '0000000000110100000000001101': 12,\n", - " '0000000000011100000000011100': 11,\n", - " '0000000001110000000000000111': 10,\n", - " '0000000001011000000000010110': 9,\n", - " '0001000001010000000000000111': 4,\n", + " '0000000000110100000000001101': 13,\n", + " '0000000001110000000000000111': 12,\n", + " '0000000000011100000000011100': 10,\n", + " '0000000001011000000000010110': 10,\n", + " '0010000000110000000000000111': 4,\n", " '0000000001011000100000000110': 4,\n", + " '0010000000011000000000010110': 3,\n", " '0011000000010000000000000111': 3,\n", - " '0010000000110000000000000111': 3,\n", - " '0000000000011100100000001100': 3}" + " '0001000001010000000000000111': 2}" ] }, "execution_count": 3, @@ -276,10 +276,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:38.170182Z", - "iopub.status.busy": "2024-11-08T22:01:38.169791Z", - "iopub.status.idle": "2024-11-08T22:01:38.726692Z", - "shell.execute_reply": "2024-11-08T22:01:38.726068Z" + "iopub.execute_input": "2024-11-08T22:06:55.306017Z", + "iopub.status.busy": "2024-11-08T22:06:55.305711Z", + "iopub.status.idle": "2024-11-08T22:06:55.860469Z", + "shell.execute_reply": "2024-11-08T22:06:55.859913Z" } }, "outputs": [ @@ -294,7 +294,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "SCF energy = -75.3484557059711\n" + "SCF energy = -75.3484557070704\n" ] }, { @@ -312,7 +312,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(UCCSD) = -75.45619739146197 E_corr = -0.1077416854908703\n" + "E(UCCSD) = -75.45619739126296 E_corr = -0.1077416841925733\n" ] }, { diff --git a/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb b/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb index 213690f93..dce5050cd 100644 --- a/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb +++ b/dev/.doctrees/nbsphinx/tutorials/double-factorized-trotter.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:40.284956Z", - "iopub.status.busy": "2024-11-08T22:01:40.284746Z", - "iopub.status.idle": "2024-11-08T22:01:41.053945Z", - "shell.execute_reply": "2024-11-08T22:01:41.053327Z" + "iopub.execute_input": "2024-11-08T22:06:57.424217Z", + "iopub.status.busy": "2024-11-08T22:06:57.424020Z", + "iopub.status.idle": "2024-11-08T22:06:58.186709Z", + "shell.execute_reply": "2024-11-08T22:06:58.186089Z" } }, "outputs": [ @@ -80,10 +80,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.057417Z", - "iopub.status.busy": "2024-11-08T22:01:41.056510Z", - "iopub.status.idle": "2024-11-08T22:01:41.061425Z", - "shell.execute_reply": "2024-11-08T22:01:41.060954Z" + "iopub.execute_input": "2024-11-08T22:06:58.190383Z", + "iopub.status.busy": "2024-11-08T22:06:58.189303Z", + "iopub.status.idle": "2024-11-08T22:06:58.194778Z", + "shell.execute_reply": "2024-11-08T22:06:58.194190Z" } }, "outputs": [], @@ -106,10 +106,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.063510Z", - "iopub.status.busy": "2024-11-08T22:01:41.063073Z", - "iopub.status.idle": "2024-11-08T22:01:41.067627Z", - "shell.execute_reply": "2024-11-08T22:01:41.067142Z" + "iopub.execute_input": "2024-11-08T22:06:58.197069Z", + "iopub.status.busy": "2024-11-08T22:06:58.196562Z", + "iopub.status.idle": "2024-11-08T22:06:58.201371Z", + "shell.execute_reply": "2024-11-08T22:06:58.200890Z" } }, "outputs": [ @@ -172,10 +172,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.069538Z", - "iopub.status.busy": "2024-11-08T22:01:41.069193Z", - "iopub.status.idle": "2024-11-08T22:01:41.073653Z", - "shell.execute_reply": "2024-11-08T22:01:41.073054Z" + "iopub.execute_input": "2024-11-08T22:06:58.203120Z", + "iopub.status.busy": "2024-11-08T22:06:58.202936Z", + "iopub.status.idle": "2024-11-08T22:06:58.207036Z", + "shell.execute_reply": "2024-11-08T22:06:58.206562Z" } }, "outputs": [ @@ -208,10 +208,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.075600Z", - "iopub.status.busy": "2024-11-08T22:01:41.075265Z", - "iopub.status.idle": "2024-11-08T22:01:41.079257Z", - "shell.execute_reply": "2024-11-08T22:01:41.078651Z" + "iopub.execute_input": "2024-11-08T22:06:58.208899Z", + "iopub.status.busy": "2024-11-08T22:06:58.208701Z", + "iopub.status.idle": "2024-11-08T22:06:58.212282Z", + "shell.execute_reply": "2024-11-08T22:06:58.211825Z" } }, "outputs": [ @@ -242,10 +242,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.081046Z", - "iopub.status.busy": "2024-11-08T22:01:41.080860Z", - "iopub.status.idle": "2024-11-08T22:01:41.098634Z", - "shell.execute_reply": "2024-11-08T22:01:41.098163Z" + "iopub.execute_input": "2024-11-08T22:06:58.214090Z", + "iopub.status.busy": "2024-11-08T22:06:58.213749Z", + "iopub.status.idle": "2024-11-08T22:06:58.236983Z", + "shell.execute_reply": "2024-11-08T22:06:58.236471Z" } }, "outputs": [ @@ -302,10 +302,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.100553Z", - "iopub.status.busy": "2024-11-08T22:01:41.100086Z", - "iopub.status.idle": "2024-11-08T22:01:41.104547Z", - "shell.execute_reply": "2024-11-08T22:01:41.103939Z" + "iopub.execute_input": "2024-11-08T22:06:58.239159Z", + "iopub.status.busy": "2024-11-08T22:06:58.238665Z", + "iopub.status.idle": "2024-11-08T22:06:58.243140Z", + "shell.execute_reply": "2024-11-08T22:06:58.242665Z" } }, "outputs": [], @@ -360,10 +360,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.106463Z", - "iopub.status.busy": "2024-11-08T22:01:41.106124Z", - "iopub.status.idle": "2024-11-08T22:01:41.109825Z", - "shell.execute_reply": "2024-11-08T22:01:41.109224Z" + "iopub.execute_input": "2024-11-08T22:06:58.245288Z", + "iopub.status.busy": "2024-11-08T22:06:58.244816Z", + "iopub.status.idle": "2024-11-08T22:06:58.248360Z", + "shell.execute_reply": "2024-11-08T22:06:58.247895Z" } }, "outputs": [], @@ -400,10 +400,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.111938Z", - "iopub.status.busy": "2024-11-08T22:01:41.111598Z", - "iopub.status.idle": "2024-11-08T22:01:41.209340Z", - "shell.execute_reply": "2024-11-08T22:01:41.208776Z" + "iopub.execute_input": "2024-11-08T22:06:58.250430Z", + "iopub.status.busy": "2024-11-08T22:06:58.250104Z", + "iopub.status.idle": "2024-11-08T22:06:58.348726Z", + "shell.execute_reply": "2024-11-08T22:06:58.348100Z" } }, "outputs": [], @@ -439,10 +439,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.211584Z", - "iopub.status.busy": "2024-11-08T22:01:41.211171Z", - "iopub.status.idle": "2024-11-08T22:01:41.259484Z", - "shell.execute_reply": "2024-11-08T22:01:41.259009Z" + "iopub.execute_input": "2024-11-08T22:06:58.351471Z", + "iopub.status.busy": "2024-11-08T22:06:58.350836Z", + "iopub.status.idle": "2024-11-08T22:06:58.399852Z", + "shell.execute_reply": "2024-11-08T22:06:58.399338Z" } }, "outputs": [ @@ -450,7 +450,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9402384004020212\n" + "Fidelity of Trotter-evolved state with exact state: 0.9402428512433694\n" ] } ], @@ -480,10 +480,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.261498Z", - "iopub.status.busy": "2024-11-08T22:01:41.261144Z", - "iopub.status.idle": "2024-11-08T22:01:41.471900Z", - "shell.execute_reply": "2024-11-08T22:01:41.471413Z" + "iopub.execute_input": "2024-11-08T22:06:58.401821Z", + "iopub.status.busy": "2024-11-08T22:06:58.401450Z", + "iopub.status.idle": "2024-11-08T22:06:58.611761Z", + "shell.execute_reply": "2024-11-08T22:06:58.611226Z" } }, "outputs": [ @@ -491,7 +491,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985210983501476\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985212764981216\n" ] } ], @@ -521,10 +521,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.474016Z", - "iopub.status.busy": "2024-11-08T22:01:41.473658Z", - "iopub.status.idle": "2024-11-08T22:01:41.597130Z", - "shell.execute_reply": "2024-11-08T22:01:41.596624Z" + "iopub.execute_input": "2024-11-08T22:06:58.613926Z", + "iopub.status.busy": "2024-11-08T22:06:58.613537Z", + "iopub.status.idle": "2024-11-08T22:06:58.740178Z", + "shell.execute_reply": "2024-11-08T22:06:58.739480Z" } }, "outputs": [ @@ -532,7 +532,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985210983500776\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985212764981467\n" ] } ], @@ -563,10 +563,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.599143Z", - "iopub.status.busy": "2024-11-08T22:01:41.598788Z", - "iopub.status.idle": "2024-11-08T22:01:41.698526Z", - "shell.execute_reply": "2024-11-08T22:01:41.697935Z" + "iopub.execute_input": "2024-11-08T22:06:58.742511Z", + "iopub.status.busy": "2024-11-08T22:06:58.742079Z", + "iopub.status.idle": "2024-11-08T22:06:58.856213Z", + "shell.execute_reply": "2024-11-08T22:06:58.855611Z" } }, "outputs": [ @@ -574,7 +574,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9996731173183298\n" + "Fidelity of Trotter-evolved state with exact state: 0.9996731172098104" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" ] } ], diff --git a/dev/.doctrees/tutorials/double-factorized-trotter.doctree b/dev/.doctrees/tutorials/double-factorized-trotter.doctree index c00d68875..874a32e4e 100644 Binary files a/dev/.doctrees/tutorials/double-factorized-trotter.doctree and b/dev/.doctrees/tutorials/double-factorized-trotter.doctree differ diff --git a/dev/_images/explanations_qiskit-gate-decompositions_34_0.png b/dev/_images/explanations_qiskit-gate-decompositions_34_0.png index 45851d64f..d5ad976be 100644 Binary files a/dev/_images/explanations_qiskit-gate-decompositions_34_0.png and b/dev/_images/explanations_qiskit-gate-decompositions_34_0.png differ diff --git a/dev/explanations/hamiltonians.html b/dev/explanations/hamiltonians.html index 046872dd0..590589bfb 100644 --- a/dev/explanations/hamiltonians.html +++ b/dev/explanations/hamiltonians.html @@ -377,7 +377,7 @@

Operator action via SciPy LinearOperators
-np.float64(-99.55717072551552)
+np.float64(-99.55717072551562)
 

Time evolution by the Hamiltonian can be computed using expm_multiply:

@@ -395,7 +395,7 @@

Operator action via SciPy LinearOperators
-/tmp/ipykernel_4130/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.
+/tmp/ipykernel_4150/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.
   evolved_vec = scipy.sparse.linalg.expm_multiply(-1j * time * linop, vec)
 
diff --git a/dev/explanations/hamiltonians.ipynb b/dev/explanations/hamiltonians.ipynb index 4e643fbb9..4d0529d56 100644 --- a/dev/explanations/hamiltonians.ipynb +++ b/dev/explanations/hamiltonians.ipynb @@ -33,10 +33,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:26.141961Z", - "iopub.status.busy": "2024-11-08T21:58:26.141772Z", - "iopub.status.idle": "2024-11-08T21:58:26.857424Z", - "shell.execute_reply": "2024-11-08T21:58:26.856740Z" + "iopub.execute_input": "2024-11-08T22:03:37.127792Z", + "iopub.status.busy": "2024-11-08T22:03:37.127290Z", + "iopub.status.idle": "2024-11-08T22:03:37.841488Z", + "shell.execute_reply": "2024-11-08T22:03:37.840951Z" } }, "outputs": [], @@ -68,10 +68,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:26.860028Z", - "iopub.status.busy": "2024-11-08T21:58:26.859641Z", - "iopub.status.idle": "2024-11-08T21:58:26.862526Z", - "shell.execute_reply": "2024-11-08T21:58:26.862061Z" + "iopub.execute_input": "2024-11-08T22:03:37.844041Z", + "iopub.status.busy": "2024-11-08T22:03:37.843565Z", + "iopub.status.idle": "2024-11-08T22:03:37.846519Z", + "shell.execute_reply": "2024-11-08T22:03:37.846060Z" } }, "outputs": [], @@ -99,10 +99,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:26.864476Z", - "iopub.status.busy": "2024-11-08T21:58:26.864115Z", - "iopub.status.idle": "2024-11-08T21:58:26.867371Z", - "shell.execute_reply": "2024-11-08T21:58:26.866921Z" + "iopub.execute_input": "2024-11-08T22:03:37.848534Z", + "iopub.status.busy": "2024-11-08T22:03:37.848156Z", + "iopub.status.idle": "2024-11-08T22:03:37.851149Z", + "shell.execute_reply": "2024-11-08T22:03:37.850693Z" } }, "outputs": [], @@ -127,10 +127,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:26.869230Z", - "iopub.status.busy": "2024-11-08T21:58:26.868872Z", - "iopub.status.idle": "2024-11-08T21:58:26.873426Z", - "shell.execute_reply": "2024-11-08T21:58:26.872900Z" + "iopub.execute_input": "2024-11-08T22:03:37.853062Z", + "iopub.status.busy": "2024-11-08T22:03:37.852705Z", + "iopub.status.idle": "2024-11-08T22:03:37.857142Z", + "shell.execute_reply": "2024-11-08T22:03:37.856600Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:26.876399Z", - "iopub.status.busy": "2024-11-08T21:58:26.875580Z", - "iopub.status.idle": "2024-11-08T21:58:26.904003Z", - "shell.execute_reply": "2024-11-08T21:58:26.903414Z" + "iopub.execute_input": "2024-11-08T22:03:37.859539Z", + "iopub.status.busy": "2024-11-08T22:03:37.859137Z", + "iopub.status.idle": "2024-11-08T22:03:37.887287Z", + "shell.execute_reply": "2024-11-08T22:03:37.886661Z" } }, "outputs": [ { "data": { "text/plain": [ - "np.float64(-99.55717072551552)" + "np.float64(-99.55717072551562)" ] }, "execution_count": 5, @@ -191,10 +191,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:26.940093Z", - "iopub.status.busy": "2024-11-08T21:58:26.939889Z", - "iopub.status.idle": "2024-11-08T21:58:27.577895Z", - "shell.execute_reply": "2024-11-08T21:58:27.577257Z" + "iopub.execute_input": "2024-11-08T22:03:37.919970Z", + "iopub.status.busy": "2024-11-08T22:03:37.919479Z", + "iopub.status.idle": "2024-11-08T22:03:38.680256Z", + "shell.execute_reply": "2024-11-08T22:03:38.679625Z" } }, "outputs": [ @@ -202,7 +202,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_4130/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", + "/tmp/ipykernel_4150/2190712273.py:2: UserWarning: Trace of LinearOperator not available, it will be estimated. Provide `traceA` to ensure performance.\n", " evolved_vec = scipy.sparse.linalg.expm_multiply(-1j * time * linop, vec)\n" ] } @@ -224,10 +224,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:27.581327Z", - "iopub.status.busy": "2024-11-08T21:58:27.580475Z", - "iopub.status.idle": "2024-11-08T21:58:28.174486Z", - "shell.execute_reply": "2024-11-08T21:58:28.173870Z" + "iopub.execute_input": "2024-11-08T22:03:38.683082Z", + "iopub.status.busy": "2024-11-08T22:03:38.682645Z", + "iopub.status.idle": "2024-11-08T22:03:39.279766Z", + "shell.execute_reply": "2024-11-08T22:03:39.279034Z" } }, "outputs": [], diff --git a/dev/explanations/orbital-rotation.ipynb b/dev/explanations/orbital-rotation.ipynb index aa11f241f..71d04f774 100644 --- a/dev/explanations/orbital-rotation.ipynb +++ b/dev/explanations/orbital-rotation.ipynb @@ -62,10 +62,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:31.248455Z", - "iopub.status.busy": "2024-11-08T21:58:31.248263Z", - "iopub.status.idle": "2024-11-08T21:58:31.950434Z", - "shell.execute_reply": "2024-11-08T21:58:31.949837Z" + "iopub.execute_input": "2024-11-08T22:03:42.161536Z", + "iopub.status.busy": "2024-11-08T22:03:42.161304Z", + "iopub.status.idle": "2024-11-08T22:03:42.868059Z", + "shell.execute_reply": "2024-11-08T22:03:42.867403Z" } }, "outputs": [], diff --git a/dev/explanations/qiskit-gate-decompositions.ipynb b/dev/explanations/qiskit-gate-decompositions.ipynb index eb6ea629f..4ca798782 100644 --- a/dev/explanations/qiskit-gate-decompositions.ipynb +++ b/dev/explanations/qiskit-gate-decompositions.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:33.557591Z", - "iopub.status.busy": "2024-11-08T21:58:33.557135Z", - "iopub.status.idle": "2024-11-08T21:58:35.100647Z", - "shell.execute_reply": "2024-11-08T21:58:35.100092Z" + "iopub.execute_input": "2024-11-08T22:03:44.292215Z", + "iopub.status.busy": "2024-11-08T22:03:44.291717Z", + "iopub.status.idle": "2024-11-08T22:03:48.540631Z", + "shell.execute_reply": "2024-11-08T22:03:48.540030Z" } }, "outputs": [ @@ -81,10 +81,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:35.102807Z", - "iopub.status.busy": "2024-11-08T21:58:35.102486Z", - "iopub.status.idle": "2024-11-08T21:58:35.297381Z", - "shell.execute_reply": "2024-11-08T21:58:35.296777Z" + "iopub.execute_input": "2024-11-08T22:03:48.542988Z", + "iopub.status.busy": "2024-11-08T22:03:48.542466Z", + "iopub.status.idle": "2024-11-08T22:03:48.750116Z", + "shell.execute_reply": "2024-11-08T22:03:48.749579Z" } }, "outputs": [ @@ -119,10 +119,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:35.299622Z", - "iopub.status.busy": "2024-11-08T21:58:35.299284Z", - "iopub.status.idle": "2024-11-08T21:58:35.406801Z", - "shell.execute_reply": "2024-11-08T21:58:35.406257Z" + "iopub.execute_input": "2024-11-08T22:03:48.752180Z", + "iopub.status.busy": "2024-11-08T22:03:48.751804Z", + "iopub.status.idle": "2024-11-08T22:03:48.863238Z", + "shell.execute_reply": "2024-11-08T22:03:48.862623Z" } }, "outputs": [ @@ -156,10 +156,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:35.408715Z", - "iopub.status.busy": "2024-11-08T21:58:35.408383Z", - "iopub.status.idle": "2024-11-08T21:58:35.517195Z", - "shell.execute_reply": "2024-11-08T21:58:35.516583Z" + "iopub.execute_input": "2024-11-08T22:03:48.865716Z", + "iopub.status.busy": "2024-11-08T22:03:48.865312Z", + "iopub.status.idle": "2024-11-08T22:03:48.977937Z", + "shell.execute_reply": "2024-11-08T22:03:48.977376Z" } }, "outputs": [ @@ -196,10 +196,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:35.519146Z", - "iopub.status.busy": "2024-11-08T21:58:35.518799Z", - "iopub.status.idle": "2024-11-08T21:58:35.702341Z", - "shell.execute_reply": "2024-11-08T21:58:35.701705Z" + "iopub.execute_input": "2024-11-08T22:03:48.979921Z", + "iopub.status.busy": "2024-11-08T22:03:48.979714Z", + "iopub.status.idle": "2024-11-08T22:03:49.173170Z", + "shell.execute_reply": "2024-11-08T22:03:49.172569Z" } }, "outputs": [ @@ -250,10 +250,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:35.704423Z", - "iopub.status.busy": "2024-11-08T21:58:35.704044Z", - "iopub.status.idle": "2024-11-08T21:58:35.923073Z", - "shell.execute_reply": "2024-11-08T21:58:35.922563Z" + "iopub.execute_input": "2024-11-08T22:03:49.175454Z", + "iopub.status.busy": "2024-11-08T22:03:49.175010Z", + "iopub.status.idle": "2024-11-08T22:03:49.410346Z", + "shell.execute_reply": "2024-11-08T22:03:49.409742Z" } }, "outputs": [ @@ -292,10 +292,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:35.925120Z", - "iopub.status.busy": "2024-11-08T21:58:35.924704Z", - "iopub.status.idle": "2024-11-08T21:58:36.058740Z", - "shell.execute_reply": "2024-11-08T21:58:36.058269Z" + "iopub.execute_input": "2024-11-08T22:03:49.412561Z", + "iopub.status.busy": "2024-11-08T22:03:49.412145Z", + "iopub.status.idle": "2024-11-08T22:03:49.548360Z", + "shell.execute_reply": "2024-11-08T22:03:49.547839Z" } }, "outputs": [ @@ -334,10 +334,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:36.060870Z", - "iopub.status.busy": "2024-11-08T21:58:36.060461Z", - "iopub.status.idle": "2024-11-08T21:58:36.572165Z", - "shell.execute_reply": "2024-11-08T21:58:36.571582Z" + "iopub.execute_input": "2024-11-08T22:03:49.550576Z", + "iopub.status.busy": "2024-11-08T22:03:49.550188Z", + "iopub.status.idle": "2024-11-08T22:03:50.085499Z", + "shell.execute_reply": "2024-11-08T22:03:50.084879Z" } }, "outputs": [ @@ -378,10 +378,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:36.574342Z", - "iopub.status.busy": "2024-11-08T21:58:36.573973Z", - "iopub.status.idle": "2024-11-08T21:58:36.753240Z", - "shell.execute_reply": "2024-11-08T21:58:36.752684Z" + "iopub.execute_input": "2024-11-08T22:03:50.087522Z", + "iopub.status.busy": "2024-11-08T22:03:50.087324Z", + "iopub.status.idle": "2024-11-08T22:03:50.269563Z", + "shell.execute_reply": "2024-11-08T22:03:50.268906Z" } }, "outputs": [ @@ -430,10 +430,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:36.755304Z", - "iopub.status.busy": "2024-11-08T21:58:36.754933Z", - "iopub.status.idle": "2024-11-08T21:58:36.922262Z", - "shell.execute_reply": "2024-11-08T21:58:36.921762Z" + "iopub.execute_input": "2024-11-08T22:03:50.271902Z", + "iopub.status.busy": "2024-11-08T22:03:50.271515Z", + "iopub.status.idle": "2024-11-08T22:03:50.439704Z", + "shell.execute_reply": "2024-11-08T22:03:50.439044Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:36.924284Z", - "iopub.status.busy": "2024-11-08T21:58:36.923912Z", - "iopub.status.idle": "2024-11-08T21:58:37.062735Z", - "shell.execute_reply": "2024-11-08T21:58:37.062048Z" + "iopub.execute_input": "2024-11-08T22:03:50.442148Z", + "iopub.status.busy": "2024-11-08T22:03:50.441731Z", + "iopub.status.idle": "2024-11-08T22:03:50.573820Z", + "shell.execute_reply": "2024-11-08T22:03:50.573309Z" } }, "outputs": [ @@ -513,10 +513,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:37.065292Z", - "iopub.status.busy": "2024-11-08T21:58:37.064861Z", - "iopub.status.idle": "2024-11-08T21:58:37.251921Z", - "shell.execute_reply": "2024-11-08T21:58:37.251405Z" + "iopub.execute_input": "2024-11-08T22:03:50.576237Z", + "iopub.status.busy": "2024-11-08T22:03:50.575719Z", + "iopub.status.idle": "2024-11-08T22:03:50.756041Z", + "shell.execute_reply": "2024-11-08T22:03:50.755423Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:37.254053Z", - "iopub.status.busy": "2024-11-08T21:58:37.253673Z", - "iopub.status.idle": "2024-11-08T21:58:37.413303Z", - "shell.execute_reply": "2024-11-08T21:58:37.412713Z" + "iopub.execute_input": "2024-11-08T22:03:50.758244Z", + "iopub.status.busy": "2024-11-08T22:03:50.757859Z", + "iopub.status.idle": "2024-11-08T22:03:50.916841Z", + "shell.execute_reply": "2024-11-08T22:03:50.916220Z" } }, "outputs": [ @@ -593,10 +593,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:37.415486Z", - "iopub.status.busy": "2024-11-08T21:58:37.415117Z", - "iopub.status.idle": "2024-11-08T21:58:37.548505Z", - "shell.execute_reply": "2024-11-08T21:58:37.547919Z" + "iopub.execute_input": "2024-11-08T22:03:50.918941Z", + "iopub.status.busy": "2024-11-08T22:03:50.918593Z", + "iopub.status.idle": "2024-11-08T22:03:51.049059Z", + "shell.execute_reply": "2024-11-08T22:03:51.048468Z" } }, "outputs": [ @@ -630,10 +630,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:37.550932Z", - "iopub.status.busy": "2024-11-08T21:58:37.550561Z", - "iopub.status.idle": "2024-11-08T21:58:37.709744Z", - "shell.execute_reply": "2024-11-08T21:58:37.709145Z" + "iopub.execute_input": "2024-11-08T22:03:51.051038Z", + "iopub.status.busy": "2024-11-08T22:03:51.050837Z", + "iopub.status.idle": "2024-11-08T22:03:51.211346Z", + "shell.execute_reply": "2024-11-08T22:03:51.210712Z" } }, "outputs": [ @@ -677,10 +677,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:37.711751Z", - "iopub.status.busy": "2024-11-08T21:58:37.711404Z", - "iopub.status.idle": "2024-11-08T21:58:37.887148Z", - "shell.execute_reply": "2024-11-08T21:58:37.886638Z" + "iopub.execute_input": "2024-11-08T22:03:51.213860Z", + "iopub.status.busy": "2024-11-08T22:03:51.213469Z", + "iopub.status.idle": "2024-11-08T22:03:51.391503Z", + "shell.execute_reply": "2024-11-08T22:03:51.390854Z" } }, "outputs": [ @@ -736,16 +736,16 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:37.889300Z", - "iopub.status.busy": "2024-11-08T21:58:37.888946Z", - "iopub.status.idle": "2024-11-08T21:58:38.351989Z", - "shell.execute_reply": "2024-11-08T21:58:38.351431Z" + "iopub.execute_input": "2024-11-08T22:03:51.393701Z", + "iopub.status.busy": "2024-11-08T22:03:51.393357Z", + "iopub.status.idle": "2024-11-08T22:03:51.857335Z", + "shell.execute_reply": "2024-11-08T22:03:51.856721Z" } }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADVjUlEQVR4nOzdeXhU1f3H8ffMJGQhGwmyhySQAGFLUpAdGSCoaAURQUUUEbTVqsW6FqFFBZRSl5/V0lrRIi2KUi1oUQElskXCFnayQFhkCUsMWUlIZn5/jAwMWVhCZjKTz+t58pB77pl7v/fkcufOd84512C1Wq2IiIiIiIiIiIh4AKOrAxAREREREREREblWlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHsPL1QHUZaX5Rfy0+6Crw/AYjWJb0yDQ/5L1Cs5CZp4TAqpEdBAEeLtm3yIiIiIiIiJSc0p2VeOn3Qf5avgUV4fhMYYunk7THh0uWS8zDyaudUJAlXivL8SHuWbfIiIiIiIiIlJzGsYoIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIYmqBePkPaCmcI9yRi8vDGYvPBt2YEWY2cQFDfY1aGJiIiIiIiIiBOpZ5d4jBZjZ5CwsICu87Jp2L43e2feTnnhaVeHJSIiIiIiIiJOpGSXeByjtw+Nh0zAcqaAM0czXR2OiIiIiIiIiDiRkl3icSwlxZxc/h5G/yB8W8S4OhwRERERERERcSK3SXaVlpYydepUwsPD8fPzY9CgQaSkpGAwGFi8eLGrw5M64MiCqaSOCWH7Q5EUZW0lesqXmPyDXB2WSxSchV25kHYayiyujsZznSmHPbm2nzNlro5GpGasVtibBzt+gpwSV0cjUnPHimzn84+Fro5ERNxFURnszoU9p6G03NXRiEhNuMUE9VarlVGjRpGSksK0adOIjo5mwYIFjBgxAoCEhASnxmMwGbl+2jjajrwBg9HI/v/9wPrJ71FectapcYijFmNeptmIp10dhkv9VAJ/3QP/OwSlPye5GjWAu6LggRjwcpv0dt12pgz+ngafHYDCn5NcDb1geGv4VQfb7yLuwmqF/x6EeRnwY5GtzAiYm8OjsRAZ4NLwRK7YllMwZw9sPnW+rGMIPNwe+jV1WVgiUofln7VdN5YctH2ZCRDkDSMjYWI78DG5NDwRuQpu8ZHs3XffZenSpaSmptKpUycAzGYzUVFRhIaG0rp1a6fG0/WJO2jWpzOLBz1F+dkyBv/zObpNuY+Uqe87NQ6RC+WUwPjVcLQILuzM9VMp/C3N1tNrdg8wGVwVoWc4Uw6PJNt6C1gvKC8sg4/22T5cvdsX/N3i6ioCf9kNH2bChZcGC5B0FNafgPf7Qdv62UlW3NCabHgqxZbEvdDuXHhyPfwxHn7p3NtGEanjCs7CxDWwL9/x3i7vLHyQAdtz4K1e0EAJLxG34hb9PGbNmsXYsWPtiS4Ak8lEVFSUvVdXeno6vXv3pl27dvTu3ZuMjIxaiyfm3sFsf+szio7lUHIqj9TXPiH6LjMGo1s0p3iod3ZXTHRdaFU2LD3k1JA80oK9sP2iRNc5VmxDRz/UcxHETez46fz5evE5bQGKy+DlVCcHJXKVSsrhD5vBYq34Xmj9+Wf6VsgtdUFwIlJnvZdeMdF1oY2nYNF+Z0YkItdCnc/OZGRkkJWVxciRIyusO3TokD3Z9etf/5rf/OY3pKen85vf/IZf/epXtRJPgyB/AlpeR87OLHvZqe1ZNAj0JyD8ulrZp8il5J+Fr36sOtEFtv/sn2RVU0EuqdwKn+6vvo4V+M9+zZUm7uE/+6u/EbAAO3Ih/bRz4hGpie+O2npiVPWBFaDMCl8edFpIIlLHlZTD5weqv24YsN1DX9xjVETqtjo/0Obw4cMANGnSxKF8z549HDhwgISEBI4fP87mzZtZvnw5APfccw+PPfYYJ06c4LrrLp2ACgwMpLS04td8bb0a8WxQP4cyrwA/AEpPF9nLSk/bZj71/nmdVG7gQDN7y366ZD3/9r1pOz3pirbdfsaV1a/KwIFmitKSr8m2nMkvpgfRM1dXW8cC7Mopw8enoXOC8kCmoOvoOPfHS9b7qRRCWrXl7KlL1xVxpZjXt+Ab3vGS9W4Y/RA/JX3ohIhErl7zcX8ibOhvMJiqvr21lp9l2t8XMeGtB5wXmIjUWT4t2tPu/7ZVW8eKbU5Lv+BGWEuKqq0rIteW1WrFy8uLY8eOERR0ZfNq1PmeXWFhYQBkZp4fF2S1WnnuueewWCwkJCRw6NAhWrZsiclkG0htMplo0aIFhw5d+zFbZQXFAHgH+dvLGgTbkgdnf14n4nTll/coQKtFj5WpEcvlP3JRbS3uwKprh3gQ2/l8qYkpDTqfRcTOegX3dujaIeJ0VquV4uJitm/ffsWvrfM9u2JjY4mOjmby5Ml4e3sTEBDAnDlz2LJlC/7+/rRv354tW7bUaB/5+fmVlmen7OGr4VMcykrziig4fILQTpHk7T0CQFjnKErziyg4dKJGcXi6lSuTaNqjwyXrpZ6CiWudEFAlVq5MIj7MNfuuidJyuHmZbfhGVYwG6NvSh80lJc4LzMNYrXBPEuytZl4HA9A6ADYc3Y9BDwOQOu7/dsK/9l56+MbWJe/TzE8PYZG6Lfk4PP5D9XUMJi/+b9JYfvnaWOcEJSJ1WrkVhi2H7DNV1zECnRrBxoI8p8UlIjZr166lX79+l65YiTrfs8vLy4tFixbRvHlzxo0bx6RJkxg6dCgDBgyga9euGI1GwsPDOXz4MOXltmx7eXk5R44cITw8vFZiyvj3t3R9fAR+TRvhExZE/FOjyVyYhNWiSXrENRqYYFRU9XUsVri7jXPi8VQGA4xpW31iwArcE4USXeIWRkZWf64agQHNoJlG6Ysb6HkdhDes+ubWCAR7w5AWzoxKROoykwHuucT9sYVL1xGRuqfOJ7sA4uLiSE5OpqioiLS0NB555BG2bNlin5y+SZMmxMfH89FHHwHw0UcfkZCQcFnzdV2NbW99xrEfdnN70huMXPcXcjN+ZNOMf9XKvkQu18R20PvnU/7Cz67n/pM/1A56N7n4VXKlbguHERG23y+8gJ77/dZWcEekk4MSuUqtGsJLCbbzt7IbgsgAmBLn7KhEro7RAK/1gKAGFQczGgEfE7zR0/aviMg597SFxJ+T4JXd293TRklyEXdU54cxVqa4uJi0tDQmTZpkL/vb3/7GuHHjeOmll2jUqBEfflh7E+layy2kTH2flKka0uEKZfk5ZPxxCGcOp5GwsMBh3U9rP+XY57MxGIy0mvgmAe17kfaC2fa60ycIih9C+MQ3nR+0E3gbbTfxSw7anhiT+fPo3J7X2Xp09W3q2vg8hcEAk7tCj8bwcRZszbGVd2oEd0XBTS3Vq0vcy82tbL1hFuyDb2zPhKG5n63X152REODtyuhErkybQFgwwHZ9XnIQcn9+/tCdUTCmjS3BKyJyIZMBZnSDfk3gk/2wK9dWnhBmu4c2N9O9nYg7cstk17Zt2ygvL7f37ALo0KED69evd2FU4iwmv0BiXlzOvj+NrrDu+NJ3aD9zFWX5ORz6xxMEPL/I/qTGwx/+nsAuA50crXN5GW29iu6IhO5LbGV/6e3KiDyTwQBDWtp+zrXzB/1dG5NITXRqZLvRP5fs+mKIa+MRqYkmfvBER9vPuWv0s11cG5OI1G0mA/yyte3n3HXj731dG5OI1IxbJrt69uyJ1VrdrDniyQxe3ngFhla6zqdJJJYzhZQXna5QJ39HEs3vedEZIYqIiIiIiIiIi7hlskukKsHX38auJxPAUk70H5bay88czaTBdREYvRu4MDoRERERERERqW1uMUG9yOU69tksOr2zmw5/3sCRf0+1l59ev5iQnsNdGJmIiIiIiIiIOIOSXeJRjN6+GBv4YfIPwlJSaC8/vWkpwd1ucWFkIiIiIiIiIuIMSnaJW0qfmkhR1hbSpyZSsGsNxz6bDUDYwPtJe64P6VMH0XT47wAoyzuJweSNqWGwK0MWERERERERESfQnF3iltq9vMJhOaBjPwAa3ziRxjdOdFjnFdSYmGlfOy02EREREREREXEd9ewSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkMT1EudEx0E7/V13b5FRERERERExH0p2SV1ToA3xIe5OgoRERERERERcUcaxihSTyUlJREVFYXZbGbcuHEV1s+YMYOMjIxqt/H444/Tv39/Zs6c6VBeXFzMLbfcwoABAxg/fjwAOTk5dOvWjYCAAHu9lJQU+vbtS58+fZgyZQoAu3fvZtasWTU9PBEREREREamnlOwSqccmTJhAUlISwcHBJCcn28stFgvbtm0jJiamytdu3LgRLy8vVq9ezebNm8nOzravW7ZsGf369eP777/H29ubHTt2EBgYyPLly+nVq5e9XkJCAmvXrmXdunUkJyeTl5dHbGwsmzdvxmq11s5Bi4iIiIiIiEdTsktE6Ny5M4cPH7Yvb926lXbt2lX7mvXr1zNo0CAABgwYwKZNm+zroqKiKCwsBKCgoIDg4GC8vb0JDQ112Ia3tzcA5eXltGjRAn9/fwDatGnDzp07a35gIiIiIiIiUu8o2SUiJCcnEx0dbV/OyMggMjKy2tfk5uYSFGSb0T8wMJDc3Fz7uujoaFavXk1sbCwGg4Hw8PAqt7NgwQJiY2MJCQnBy8s2jWBERATp6elXf0AiIiIiIiJSbynZJVKPzZ07F7PZTMuWLYmPj6+0zq5duzCbzQ4/r776KiEhIeTl5QGQn59PSEiI/TXz5s3jrrvuYvfu3TRu3Jh169ZVGcOYMWPYs2cPR44cYfv27dfy8ERERERERKQe0tMYReqxCRMm2CeGv1BMTAyfffYZAB07diQpKalCnQ0bNvDRRx9x2223sWrVKkaPHm1fZ7FY7EMWQ0NDHXp9XaikpAQfHx+MRiOBgYH4+voCcODAAfr27VvDoxMREREREZH6SD27RKSCuLg40tLSqq1z/fXXU1JSQv/+/YmLi6Np06YcO3aM2bNnM2bMGD744APMZjOpqakMGTIEgMTERLZs2UJiYiI7duxgyZIlmM1mbrjhBlq1amWfED8zM5POnTvX+nGKiIiIiIiI51HPLpF66tyQxMoYjUa6du1KRkZGtU9kfOeddxyWmzVrxjPPPAPYnsh4sRUrVjgsd+7cmVGjRjmU7d69m27dumEwGC7nMEREREREREQcKNklIpWqbHijM8TGxhIbG+uSfYuIiIiIiIj70zBGERERERERERHxGEp2iYiIiIiIiIiIx9AwRqlzCs5CZp5r9h0dBAHertm3iIiIiIiIiNSckl1S52TmwcS1rtn3e30hPsw1+xYRERERERGRmtMwRhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxNEG9eIS0F8wU7knG4OWNweSFb8sOtBg7g6C4wa4OTUREREREREScSD27xGO0GDuDhIUFdJ2XTcP2vdk783bKC0+7OiwRERERERERcSIlu8TjGL19aDxkApYzBZw5munqcERERERERETEiZTsEo9jKSnm5PL3MPoH4dsixtXhiIiIiIiIiIgTuU2yq7S0lKlTpxIeHo6fnx+DBg0iJSUFg8HA4sWLXR2e1AFHFkwldUwI2x+KpChrK9FTvsTkH+TqsFyitPz871ar6+IQuRasVjhWBD8WQkn5peuL1HU/lcDBAig46+pIRMRdnCmHQwVwrFj3duL+LFY48vO93VmLq6MRT+UWE9RbrVZGjRpFSkoK06ZNIzo6mgULFjBixAgAEhISnBZL5G29iZ14C6GdIinJyWdRj0edtm+pXosxL9NsxNOuDsOlCs7C+xnw+YHzZSO+hXvawqhIMBpcFprIFbNa4T8HYMFeOFhoK2voBbe3hgntIKiBa+MTuVIbTtiu0RtO2paNBhjUHCa2g+j6+d2MiFzCTyUwNx2WHISin7/wiQqAsdEwLBwMurcTN1JuhY/32X6OFtvKgr3hjkh4MAb83CI7Ie7CLU6nd999l6VLl5KamkqnTp0AMJvNREVFERoaSuvWrZ0WS8npQva8/zW+1wXT6eFfOm2/IpeSfxYmroF9+XDhF36Hi2D2dtj1E/wxQQkvcQ9WK8zYCv89CBeesoVlsGAfrD0Oc/tBsBJe4ia+/hGmbnY8ny1W+O4IrMmGOb2hS6jLwhOROujUGXhwja0HzIX3dvsL4OVUyMyD33VSwkvcQ7kVJm+Eb486vheePgv/zIAfjsPf+4K/W2QoxB24xTDGWbNmMXbsWHuiC8BkMhEVFWXv1fX0008TFRWFwWBgx44dtRbL0VXbyFq8lsIfT9TaPkSuxl93V0x0wfnl//0Iy484OyqRq5N0zJbogsrP6YMF8NYuZ0clcnV+KoFpW2zn7sWjNSzYhp7/fpPtg4CIyDmv7YCjRVXf2320D9brI4m4iS8O2hJdUPk5vec0/CPN2VGJJ6vzya6MjAyysrIYOXJkhXWHDh2yJ7tuv/12Vq1aRUREhLNDFHG5wjL44lDFN44LGYGF+5wVkUjNfJJV/RuUBfjqR8grdVZEIldv8UEoq+YCbcE2D0/ycaeFJCJ13KkztsRAddMZGQ2wMMtpIYnUyCdZjj26LmbFNhWL5meVa6XOdxI8fPgwAE2aNHEo37NnDwcOHLAnu/r163fV+wgMDKS0tOInprZejXg26Oq3K44GDjSzt+ynS9bzb9+bttOTrmjb7WdcWf2qDBxopigt+Zpsy5n8oq8n+pU11daxAFtPnMXHJ8A5QdUTnT85A4CPj6+LI/Esnf71E0Yf/2rrlFogosdginZXf+7L5dP5XDtaP/MJQd1+icFkqrKO1VLOPc+8yvGFLzkxMs+nc1rcVUD8TUS9sKTaOhYrrMw4ic8NLZ0UVf2g60YtMHnR5ePCS1YrKIPr2idQckjd98XGYrn6JxjU+Z5dYWFhAGRmZtrLrFYrzz33HBaLxamT04vUWdbLvQhojIy4B+vlntN6JJW4A4uFy7r+6nwWkXN0byee5Ere3/ReKNdIne/ZFRsbS3R0NJMnT8bb25uAgADmzJnDli1b8Pf3p3379jXeR35+fqXl2Sl7+Gr4lBpvX2xWrkyiaY8Ol6yXegomrnVCQJVYuTKJ+DDX7LsmzpTBTctswxmrYgS6NWvAppISp8VVH3T/+UvXErXrNfXbHyD5hO1b66r4muDHTd/RsM6/k7kPnc+1Y8FeeH1n9XUMRhP/eX0KPebrvuNa0jkt7iq3FG7+pvoh0Ebg5g7Xkarz+5rSdaN2PLAKduVWPzQ3pAGcykjFu853yRFnWbt27VWP4qvzp5GXlxeLFi2iefPmjBs3jkmTJjF06FAGDBhA165dMRqdewgGoxGTjzcGLy8wGDD5eGNsoE9a4lq+XjAiovpx8BbgrihnRSRSM3e1qT7RZQCGtUaJLnELvwwHH2PV12gj0LohXN/YmVGJSF0W0gCGtrr0vd1o3duJm7i7TfWJLoBRkSjRJdeMW5xKcXFxJCcnU1RURFpaGo888ghbtmxxyRDGtnfewH37P2LgP54ioNV13Lf/I+5Y85bT4xC52K/bQ5dGFcvP/Se/pw0MaObUkESuWp8mcH+07ffK3qg6BMNjsU4NSeSqBTWAV7uDyVDxfDYCDb3hT9eDobpPtSJS7/yuM7QNrJjwOncdebg9/MINRyRI/XRTS7i9te33C98Lz53f1zeG8THOjko8mVskuy5WXFxMWlqaQ7LriSeeoFWrVvz4448kJibSqVOnWtl35idJ/LP5nQ4/i3o8Wiv7korK8nPY/btubLmr4iTr2YtfZ9v4lhz9ZLpDuaX0DFsfaE7BLs+exNrXC/7ax5YAaHrBfJqxITD9F/C7TvogJe7l8VhbgqDTBUnc63zh0Q7wbl/wV68ucSP9m8EH/WFwi/Nlvia4IxL+dQNEB7ksNBGpowK94b1+tqRWqM/58rhQ+PP1tnIRd2EwwAtxMC3e8T2vuT9M6gRv9YIGVT/HReSKueVHhW3btlFeXu6Q7Hrrrbd46y31sPJ0Jr9AYl5czr4/ja6wLnTAWPyi4incs86h/NS3H+AX3tFZIbqUrwkeiLH1iCkss/UiUEJA3JXBAIktbD/n5s/43xDbo9ZF3FFsCLzSHZb/fD4nDQUvt/zaUUScJcAbHmoPE9pBjy9sZf/Qw+LFTRkM8MvWtp9z93aLB+sLeakdbvkxuGfPnlj1lIZ6yeDljVdgaKXrvEOacOaQ46cGa3k5BbvWENCxvzPCqzOMBtu3gSKeRoku8SRKdInI5dL7n3gqJbqktug2SzxazuqPCelzp6vDEBEREREREREnUbJLPJbVaiV3/X8J6Tnc1aGIiIiIiIiIiJMo2SUey1JcQGn2PjJfuoWcpH/x4wdPYyk94+qwRERERERERKQWueWcXVK/pU9NpChrC+lTE2lxzzQK9iTT7I5nOPXdhxz/8v8oLzxNeVEerR74E7GvbwLgyEfTCIpLxNjA9xJbFxERERERERF3pmSXuJ12L69wWA7oaHskTdig+wkbdH+lr2lxz7TaDktERERERERE6gANYxQREREREREREY+hZJeIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQxPUS50THQTv9XXdvkXEvSQlJTF+/HgiIiKIiIhg3rx5Duvnz59P8+bNSUxMpH///mzZsoU9e/bQqlUrh3qrVq3imWeeAWDy5MkMHz6cEydO8PDDD5Obm8s999zDww8/zPjx43n//fcxGAxOO0YREREREbl8SnZJnRPgDfFhro5CRNzJhAkTmDJlCk888QTJycn07t3bvu6LL75g4cKFAHz66ac8//zzlW7jjTfe4PPPPyc0NJRbb72V4cOH89JLL/Hmm28SERFhr9ezZ09WrlzJoEGDavegRERERETkqmgYo4hILUpKSiIqKgqz2cy4ceMqrJ8xYwYZGRnVbuPxxx+nf//+zJw5s9L1f//73xk8eDBms5mzZ88C8Oabb5KYmAjAmjVr6NWrF3369OG1114DYPfu3cyaNasmh1Ynde7cmcOHD9uXc3Jy8PX1tffCatasWZWvjYmJ4fTp0xQWFhIYGAhAeno6zz//PDfeeCNpaWkADBw4kKVLl9biUYiIiIiISE0o2SUiUssmTJhAUlISwcHBJCcn28stFgvbtm0jJiamytdu3LgRLy8vVq9ezebNm8nOznZYf/DgQbZv3863335LUlIS3t7enD17ltTUVHudNm3asGrVKtatW8eXX35JUVERsbGxbN68GavVes2P15WSk5OJjo62L2dmZjr0yqrO8OHDuemmm4iLi+PXv/41YEsUTp8+nXfeeYcXXngBgIiICNLT06998CIiIiIick0o2SUi4iQX9zraunUr7dq1q/Y169evtw+XGzBgAJs2bXJYv2zZMgoLCxk0aBDTpk0DbHNU3XPPPfY6LVq0oEGDBgCYTCaMRtulv02bNuzcubPGx1UXzJ07F7PZTMuWLYmPj7+qbUydOpUNGzY49Hrr1KkTbdu2tff6EhERERGRuk/JLhERJ7m411FGRgaRkZHVviY3N5egINuTEwIDA8nNzXVYf/z4cQwGA9999x1ZWVls3ryZb775hptuuqnCtpYvX07btm3x9fUFPKuH0rnec9OnT3coj46O5sCBA5e1DZPJRFBQEP7+/pSUlAAQGRnJyZMnyc7Oxt/fH4ADBw5U2xtPRERERERcSxPUi4jUsrlz57JixQr69etXZa+jXbt28eijjzqU3XzzzYSEhJCXlwdAfn4+bdu2dagTHBzMgAEDALjhhhvIyMhg2LBhFbb/448/8sorr7BkyZJrcETuIzQ0lKKiIvvy2LFj+e6779i7dy/Tpk1j8ODBPPXUU7z22mtMmjSJgQMHYrVaeeihhwCYMmUKd9xxB2VlZbz11lsArFy5kqFDh7rkeERERERE5NKU7BIRqWXnnhR4sZiYGD777DMAOnbsSFJSUoU6GzZs4KOPPuK2225j1apVjB492mF97969WbBgAQDbt2+nUaNGrFmzhvnz55Oamsp7773HfffdxwMPPMCcOXMICAiwv/bAgQP07dv3Gh6pa5jNZsxmc5Xrhw0bxooVK0hMTORf//pXhfXnJu2/9dZbufXWWx3Wde3alVWrVjmUrV+/nocffrjmgYuIiIiISK3QMEYREReJi4uzP+GvKtdffz0lJSX079+fuLg4mjZtyrFjx5g9ezYAv/jFLygrK8NsNlNUVMQf//hHli9fztdff018fDwTJ05kwYIF7Nq1i1/96leYzWb7vGGZmZl07ty51o/T1e6//377kymvhQ8++MA+75mIiIiIiNQ96tklIlKLqut1ZDQa6dq1KxkZGdXOAfXOO+84LDdr1oxnnnnGvvzmm29W+roVK1YAMH78eMaPH++wbvfu3XTr1g2DwXAZRyEiIiIiIuI+lOwSEXGhyoY3OkNsbCyxsbEu2beIiIiIiEht0jgMERERERERERHxGEp2iYiIiIiIiIiIx9AwRqlzCs5CZp5r9h0dBAHertm3iIiIiIiIiNSckl1S52TmwcS1rtn3e30hPsw1+xYRERERERGRmtMwRhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxNEG9eIS0F8wU7knG4OWNweSFb8sOtBg7g6C4wa4OTUREREREREScSD27xGO0GDuDhIUFdJ2XTcP2vdk783bKC0+7OiwRERERERERcSIlu8TjGL19aDxkApYzBZw5munqcERERERERETEiZTsEo9jKSnm5PL3MPoH4dsixtXhiIiIiIiIiIgTuU2yq7S0lKlTpxIeHo6fnx+DBg0iJSUFg8HA4sWLXR2e1AFHFkwldUwI2x+KpChrK9FTvsTkH+TqsMSDWa2V/y61x6J2FhGpU8oskFsCZ8pcHYmIiFysqAxyS6G8Ht5Du8UE9VarlVGjRpGSksK0adOIjo5mwYIFjBgxAoCEhASnxWJs4EWvmRNp3q8LvmFBFGX/xO73v2LP+185LQapXIsxL9NsxNOuDkPqgXIrfL4fPs46XzbyO7irDYyMAC+3+RqhbrNaYfkRWLD3fNmty2FkJNzbBvzc4h1MRMQznTwDH2bC4oNQWAYGoE8TuC8aujd2dXQiIvXb98fgX5mwJce23KiB7R56bFsI8HZpaE7jFh8V3n33XZYuXUpqaiqdOnUCwGw2ExUVRWhoKK1bt3ZaLEaTieLjuSy7+2XyD2QT2jGCIR9N4cyJXPZ/key0OETENcqtMHkjfHvUdmN/zqFCmL0d1h+HP12vhNe18NYumL/XsQvyiTPwtz3w/VH4W19o6BbvYiIinuVIEUxYY0t4nessYAWST8C64zA1HoY57/ZcREQu8H46/HUPGC/4sPJTKcxNh2+PwD/6QUgD18XnLG7xcWzWrFmMHTvWnugCMJlMREVFkZCQwKlTp7jlllto3749Xbp04Y477uDEiRO1EktZcQlb/vQx+fuPgdVKzs79HFq2kSY9YmtlfyJSt3y235bogvM3+Bf+virbsceXXJ212bZEF4ClkvV7TsPbu5wakoiI/OwPm+HUGcf3QbANNbcC01PhcKELAhMRqee25dgSXVBx+g8rcKAA/rzd6WG5RJ1PdmVkZJCVlcXIkSMrrDt06BAJCQkYDAaeffZZ0tLS2L59O23btuX55593SnwGLxNNe8by0+4DTtmfiLiO1Qof7XPs0XUxA7Bwn+aWqqlPshy/jbqYFfjikG3ojIiIOE9mHqTmVP5FxDlW4DPdGouION0nWdUneSzYpgk5dcZZEblOnR8AcvjwYQCaNGniUL5nzx4OHDhAQkICoaGhmM1m+7pevXoxZ86cy95HYGAgpaWlFcrbejXi2aB+1b6218wJnC0oZu+n31/2/uqrgQPN7C376ZL1/Nv3pu30pCvadvsZV1a/KgMHmilK03BUqZwpMIyO7x+pto4VOFoMgS2iKMupvq5UrdP8HIy+Dautc6YcWnUbRNGetU6KyvN1/sR25+Pj4+viSDyb2tl51NbXXuiNv6LlQ29VW8cK/HXpDzydMMA5QdUTOp+dQ+3sHGrn2tHh7/vxDm1ebZ1yK7QfdAf5m/7npKiunsVS3Vcr1avzPbvCwsIAyMzMtJdZrVaee+45LBZLhcnpLRYLc+bMYdiwYbUe2/XTxnFdt/Ysv3cGlrPqXiDi8QzV9emqULnWwqgXLretr+hvIiIiNXaZ112D3gdFRJxP99B2db5nV2xsLNHR0UyePBlvb28CAgKYM2cOW7Zswd/fn/bt2zvUf/zxxwkICOCxxx677H3k5+dXWp6dsoevhk+pdF2Plx6geb8ufD3qRUpyKn+9OFq5MommPTpcsl7qKZjooo4aK1cmER/mmn1L3WexwvAVcKy44jwlF7rOF9Yf2YfJ899Das0j62DTyeqHyTQwwoGUbwmqBxNsOkv3JbZ/S0pKXBuIh1M7O4/a+trbnQv3raq+jgGYeHNPfve02v1a0vnsHGpn51A7145nN0DSseqnVDECu1b8hyZ+Tgvrqq1du5Z+/aofbVeVOt+zy8vLi0WLFtG8eXPGjRvHpEmTGDp0KAMGDKBr164YjecP4emnnyYjI4OFCxc6lF9rPV5+kOb9u9oSXafyam0/IlK3GA1wV5vqE10AoyJRoquG7oqqPtFlAIa2QokuEREniw2BjiHVz6sItkfci4iIc42OunSiy9wct0h01VSd79kFEBcXR3Ky4zxKb7/9NgMGnJ8HYPLkyWzatIn//e9/+Pj41FosDVs1puPEWyg/U8qd69+xl2ev38OKe2fU2n5FpG64OwrWH7c9Xr0y3cNgbFvnxuSJBjSDERHw+QFbYuvC92wDEBEAT3R0UXAiIvXcSwnw4BooOOv4xYQR2/JTnW3XaRERca7ujeG+tranmld2D93UD57t4qLgnMwtkl0XKy4uJi0tjUmTJgGwc+dOXnnlFdq1a0efPn0AiIqK4vPPP7/m+y788ST/bH7nNd+uXJ6y/Bwy/jiEM4fTSFhY4LAue/HrZP/3Na4b+gjNR0+pskykJryM8HpP+PdeWJgFJ35+kkljH7gzCu5vCw1Mro3RExgMMLkrdAiGBftsj0kGCPCyJcHGx6hXl4iIq0QGwvwbYG4GfPUjnP0549W5ETwQAzc0c218IiL12RMdIToI5mdC5s8zLvmZYHhreLAdhNZe36A6xS2TXdu2baO8vNw+OX2nTp2wWi81sEg8gckvkJgXl7PvT6MrrAsdMBa/qHgK96yrtkykpryNtpv5+6Lh+M/zdzXxtSXC5NoxGGzDYO6IgONnbB+mmvgqmSgiUhe0bAh/iIenO8MNS21l7/d3aUgiIoLtHvrWcLilFVz/ha1s+c3gW8/uod0y2dWzZ08lt+opg5c3XoGhla7zDmnCmUPGS5aJXCsmAzT3d3UUns9gsHW5FhGRusffLT9NiIh4vgsfuFjfEl3gBhPUi4iIiIiIiIiIXC4lu0RERERERERExGMo2SUiIiIiIiIiIh5Do+zF7aRPTaQoawvpUxNpcc80CvYk0+yOZzj13Ycc//L/KC88TXlRHq0e+FOlZSIiIiIiIiLiuZTsErfT7uUVDssBHfsBEDbofsIG3e+wrrIyEREREREREfFcGsYoIiIiIiIiIiIeQ8kuERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIYmqJc6JzoI3uvrun2LiIiIiIiIiPtSskvqnABviA9zdRQiIiIiIiIi4o40jFFEREQuS1JSElFRUZjNZsaNG1dh/YwZM8jIyKh2G48//jj9+/dn5syZFdalpKTQt29f+vTpw5QpU8jJyaFbt24EBARUWQdg9+7dzJo1q4ZHV3fUtJ0ra7eLXfh3qA9tKq5Vm9eOr7/+GrPZjNlsJiwsjNTUVM6ePcvo0aMxm83Mnj0bgOLiYm655RYGDBjA+PHjAZ3nIiKeTMkuERERuWwTJkwgKSmJ4OBgkpOT7eUWi4Vt27YRExNT5Ws3btyIl5cXq1evZvPmzWRnZzusT0hIYO3ataxbt47k5GRMJhPLly+nV69eVdbJy8sjNjaWzZs3Y7Var/0Bu0hN2jkwMLBCu13o4r9DREREvWhTca3aunbcfPPNJCUlsXLlStq0aUNcXByfffYZffr0ISkpiU2bNnHixAmWLVtGv379+P777/H29mbHjh06z0VEPJiSXSIiInLFOnfuzOHDh+3LW7dupV27dtW+Zv369QwaNAiAAQMGsGnTJof13t7eAJSXl9OiRQsaNmxIaGhotXX8/f0BaNOmDTt37qzZQdVBV9PO3t7eFdrtQlX9HepLm4pr1ca1A2DDhg10794dg8FAVlYWXbp0ASA2NpYNGzYQFRVFYWEhAAUFBQQHBwM6z0VEPJWSXSIiInLFkpOTiY6Oti9nZGQQGRlZ7Wtyc3MJCrI9CSQwMJDc3NwKdRYsWEBsbCwhISF4eVU+tWhldSIiIkhPT7+6g6nDrqadL6Wyv0N9alNxrdq6dixevJjhw4cD0L59e77//nusViurV6/m9OnTREdHs3r1amJjYzEYDISHhwM6z0VEPJWSXSIiInLZ5s6di9lspmXLlsTHx1daZ9euXfY5dM79vPrqq4SEhJCXlwdAfn4+ISEhFV47ZswY9uzZw5EjR9i+fXul27+cOu6uJu18KZX9HepDm4pr1fa1Y+XKlfbeX8OGDePEiRMMGTKE6667jiZNmjBv3jzuuusudu/eTePGjVm3bl1tHaqIiNQBehqjiIiIXLYJEybYJzG/UExMDJ999hkAHTt2JCkpqUKdDRs28NFHH3HbbbexatUqRo8e7bC+pKQEHx8fjEYjgYGB+Pr6VthGVXUOHDhA3759r8ER1g01aedL6dGjR6V/B09vU3Gt2rx27Nu3j1atWtGgQQMATCYTc+bMwWq1Mm7cOHr37s2ePXvsw3tDQ0PtvcN0nouIeCb17BIREZEai4uLIy0trdo6119/PSUlJfTv35+4uDiaNm3KsWPH7E9LW7JkCWazmRtuuIFWrVoRExNDYmIiW7ZsITExkR07dlRaByAzM5POnTvX+nG62uW0M1Ch3S5s54v/DqtWrarXbSqudS2uHRcOYQQ4ePAgZrOZwYMHc+edd+Lv78+YMWP44IMPMJvNpKamMmTIEEDnuYiIp1LPLhEREbks54YVVcZoNNK1a1cyMjKqfaraO++847DcrFkznnnmGQBGjRrFqFGjHNavWLHCYblz584V6uzevZtu3bphMBgu91DqtGvRzhe3G2BvZ6j4d/D0NhXXqu1rx5NPPumwrnXr1hV6iDVq1Ihly5Y5lOk8FxHxXEp2iYiIyDVR2RAlZ4iNjSU2NtYl+3YFZ7RzfWtTcS1dO0RE5FrTMEYREREREREREfEYSnaJiIiIiIiIiIjH0DBGqXMKzkJmnmv2HR0EAd6u2beIiIiIiIiI1JySXVLnZObBxLWu2fd7fSE+zDX7FhEREREREZGa0zBGERERERERERHxGEp2iYiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jE0Qb14hLQXzBTuScbg5Y3B5IVvyw60GDuDoLjBrg5NRERERERERJxIPbvEY7QYO4OEhQV0nZdNw/a92TvzdsoLT7s6LBERERERERFxIiW7xOMYvX1oPGQCljMFnDma6epwRERERERERMSJlOwSj2MpKebk8vcw+gfh2yLG1eGIiIiIiIiIiBO5TbKrtLSUqVOnEh4ejp+fH4MGDSIlJQWDwcDixYtdHZ7UAUcWTCV1TAjbH4qkKGsr0VO+xOQf5OqwRERERERERMSJ3GKCeqvVyqhRo0hJSWHatGlER0ezYMECRowYAUBCQoJT4+n1ykTCh3THO8ifswXFHPgymY0v/wvL2TKnxiGOWox5mWYjnnZ1GCIibmfHT7Bg7/nlXy6HkZEwKhICvF0VlefZnw//3nd+ecjXMLw13N0GGvu6Li6Rq5FXCp9kwX8OnC+buhnubQMdQlwWloiICOAmya53332XpUuXkpqaSqdOnQAwm81ERUURGhpK69atnRrP7g++ZuNL8ykrLsEnNBDzu0/R9Yk7SH3tE6fGISIiUlNLD8G0LYDhfNmxYnhnt23dP/pCiI/LwvMYG0/CEz9AmeV82U+lMC8Tvvi5nVsHuC4+kStx8gxMXAM/FjmWf/MjLDsMM7vB4BauiU1ERATcZBjjrFmzGDt2rD3RBWAymYiKirL36rr99tuJi4sjISGB/v37k5qaWmvxnE7/kbLiEtuCwYDVYiWwTfNa25+IiEht+LEQpqWCBbBYK64/UADTtzo7Ks9TWAZPpdgSXZaL1lmxJb2e3QDWSv4GInXRH7fAkaKK5eeuJS9sguPFTg9LRETErs4nuzIyMsjKymLkyJEV1h06dMie7Jo3bx5bt25ly5YtPP300zz44IO1GleXx27n3sz53LPjfUI7RbDr3S9rdX8iIiLX2n/2V59gsQDfH4NjlXyolcv31SFbwuviRNc5Fitk5sPWHKeGJXJV9hfA+hNVn89WoNwKnx+oooKIiIgT1PlhjIcPHwagSZMmDuV79uzhwIED9mRXcHCwfd3p06cxGi8/jxcYGEhpaWmF8rZejXg2qF+lr9n+9n/Z/vZ/CY5pSZs7+lN8/KfL3l99NXCgmb1ll24n//a9aTs96Yq23X7GldWvysCBZorSkq/JtkRE6rro2Rvwi+xabR0rEDf8QXJX/ds5QXmg1k99RND1wzCYqr7tslos3PbbGRz/dLoTI/N8nT85A4CPjyZFu1ZChzxEy4ffrraOxWrlzS9+4Ik4s3OCqid0PjuH2tk51M7O4e7tbLFU9dXKpdX5nl1hYWEAZGZm2susVivPPfccFovFYXL6iRMn0rp1a1544QXmzZvnlPhOZxwmZ+cB+v/lCafsT0RE5FqpLvniUM9oquVIPJzRCwyGS1Syqp3FLVzOdcNgMOh8FhERl6rzPbtiY2OJjo5m8uTJeHt7ExAQwJw5c9iyZQv+/v60b9/eXve9994DYP78+TzzzDMsXbr0svaRn59faXl2yh6+Gj7lkq83epsI0pxdl7RyZRJNe3S4ZL3UUzBxrRMCqsTKlUnEh7lm3yIizvbiFvjfoaqHI52z6pN/0C74H06JyRO9lwZ/S6u+jsFoYt6syQz8cLJzgqonui+x/VtSUuLaQDzIthx4cE31dYzAuCE9eO4ptfu1pPPZOdTOzqF2dg53b+e1a9fSr1/lo+0upc737PLy8mLRokU0b96ccePGMWnSJIYOHcqAAQPo2rVrpcMV77vvPlauXMmpU6eueTzegf5EjzbTIMgfgEaxEcRNGsmRJM3gKyIi7mVkZPWJLiPQpRG0C66mklzS7RFgrKZjlxEI84H+TZ0WkshV69II2gZW/yHCgu36IiIi4ip1vmcXQFxcHMnJjvMovf322wwYMACAgoICfvrpJ8LDwwH44osvCA0NJTQ09NoHY7XSZuQNXD9tHMYGXpw5mceBpetJnb3w2u9LRESkFnVuBOOiYV4mGLDNz3WOEfD3gilxLgrOgzT2hee6wCvbbO16YYLRiC0RNv0X4FXnv4IUsY3IffEX8NAaKCl3PJ/PXUd+3R6ig1wUoIiICG6S7LpYcXExaWlpTJo0CYDCwkJGjRpFYWEhJpOJ0NBQvvjiCwyXnB/jyp0tKGbZXS9d8+2KiIi4wmOxEN7QlvA6VGgrMxpgUDN4JBYiAlwbn6cYGWnrvfVeOuw5fb68x3Xw6w62xKOIu+gQDP/sD3P22J7Yei5RHhEA42Pg1nCXhiciIuKeya5t27ZRXl5un5y+adOm/PDDDy6OSpzl4LuPU5yVStAvhtJ81Pm5TdJeMANQdvoEQfFDCJ/4JkcXvkxe6nIaNI0i8vG5lz0Zs4hIfWEw2IbZDW8N+wuguBya+0EjH1dH5nnMzW0/PxbC6VK4zhea+Lk6KpGr0zYI/twDTp2B7DO2nqARDS/jWQwiIiJO4Jaf/Hv27InVar10RfE4hRkbMRi9aP/Kava+eidnc7PxDrFNctJ+RhIAhz/8PYFdBnI25yhF+7bQ/pVVHP/f2+SmfEGj3iNcGL2ISN1lMEBUoKujqB9aNbT9iHiCMF/bj4iISF2i2SHErRSmryew6yAAAjsPoChzU4U6+TuSCOhspuTEAXxbdwLAL6ILhWnJFeqKiIiIiIiIiGdRskvcSnlhLiZ/24ynRr9AygtzHdafOZpJg+siMHo3wKdpGwrTfsBqsVCwcxXlRacr2aKIiIiIiIiIeBIlu8StmBqGUF6UB4ClOB9TwxCH9afXLyak53AAvEOaENJrBOlTB3E2Nxuv4CbODldEREREREREnEzJLnErDdv1IH/7SgDyd67CP7qbw/rTm5YS3O0W+3KTWx6l/YwkGlwX4VAuIiIiIiIiIp5JyS5xKw1jrsd6toS03/fHPyqOszlHObVyPgBleScxmLwxNQy219/7yh2kT03EUlpEQIfergpbRERERERERJzELZ/GKPVb61+/47Ds3yYeAK+gxsRM+9phXdvff+assERERERERESkDlDPLhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyG5uyqY/q9+RvOFp5h/QtzXR1KBfdmzuer2/9Azo6sWt1PdBC817dWd1HtvkVERMTzJSUlMX78eCIiIoiIiGDevHkO6+fPn0/z5s1JTExk5syZfPXVV8THx/OXv/zFod7dd9/NsWPHyM/PJzw8nP/+97/ceOONFBcXExQUxMKFCwkICGD9+vVMnjwZi8XCrFmziI6OZvr06bz++uvOPGwREbdwra7R48aNY+/evfj4+PDhhx/SsmVLMjMzeeyxxygpKeHJJ5+kR48e3H333QAcOnSIxx9/nPvvv1/XaDenZFctatanE/FPjSasaxsATm3bR+qfP+FY8k4XR2YT/9RowuLa8u39r1xW/X9H31fLEdkEeEN8mFN2JSIiIvXYhAkTmDJlCk888QTJycn07n3+yc1ffPEFCxcuJDs7m82bN7N69WqefPJJNm7cSPfu3e31Pv74YwD+/ve/YzAYAHj33XeJjIxk7ty5LFiwgIceeojXXnuNpUuX4uPjY39tbm4uBQUFBAQEOOmIRUTcx7W4Rr/44otERkby7bff8s477zBz5kxefPFFPv74Y0JCQuz1kpKSALjnnnu45ZZbCA0N1TXazWkYYy1pldiNIQumcGjFJj75xa/45Be/4tCKTQz5aAqtBv+i0tcYTNfuz2HwMl2zbYmIiIh4ss6dO3P48GH7ck5ODr6+vhgMBjZu3MiAAQMAGDRoECkpKZVu44svvuC2224DIDIyEgCTyYTBYGDv3r0UFxczbNgw7r33XgoLCwHo2bOn/QOWiIhUribX6Iuvx6WlpRw6dIj777+f4cOHk52dba979uxZsrKyaNeuHaBrtLtTsquW9Jz+IJmfJrFzzhLO5hdxNr+InXOWsHfR9/SY/iAAd6b8la6TRnLLkhmM3fdvGse1BcC7oS/md5/i3oz53P79G7Qwx11yf816d+LezPm0G5vInRvmMGzFnwFofkNXfvnNLMakzWPYt6/R+ubrAWh98/V0eWIELQfGc2/mfO7NnI+xQfUd/R44uoiwuLYYTEbGpH9ISPtw2777dOKBo4uI+KUt0+7XJIT7D36Md4Df1TWeiIiIiBMlJycTHR1tX87MzCQiIgKw9b4KCrLNcxAYGEhubm6F1xcUFJCfn0/z5s3tZUVFRfzjH/9g9OjRHD9+nL1797JkyRISExP5xz/+AUBERATp6em1eGQiIu6vptdoi8XCzJkzmTBhAidPnmTHjh3MmzePSZMm8cor50c5JSUlYTab7cu6Rrs3JbtqQVDbFgRGNCXrv2srrNv3+RqCIpsR1MZ2MxQ9yszap/7Kv6Pv49TPc2FF3d6PfZ+vZkGHcWz7y+cMev9Z/JuFXnK/Xn4+NI6P5r83TOLLoc8RGNmMxHnPs+Pt//JRx/FsmvEvBsx5ktBOkRz8egPb3/qcwytT+Xf0ffw7+j4spWWXdXzWcgvZ63fTvF8XAJr370Je1lGa9+tsW+7XhVPb9nG2oPiyticiIiLiCnPnzsVsNtOyZUvi4+MrrRMSEkJeXh4A+fn5DsNezvnmm2+4+eabHcp+/etfM23aNIKDgwkODqZnz574+Phwww03kJaWdq0PRUTE41yra/TUqVO5++67adOmDcHBwXTp0oVGjRrRv39/h+vxkiVLGD58eG0ciriAkl21wDc0EIDi7JwK64qP/2SrE2bLPqfNX87pjMNYLRZ7sunYD7s4+FUK1nIL+xat4qddB4i8rXeFbV3MYDSyaea/KSsuoby4lKjhfchev5v9XyRjLbdw+LstHFy2kbajBtT4GI+t2eGQ3Er98yf25Fezvp05unZHjfchIiIiUpsmTJhAUlIS06dPdyiPjo7mwIEDAHTr1o1Vq1YBsHLlSnr06FFhO4sXL3b4gPT666/TsWNHhgwZAkC7du04evQoVquV7du324fVHDhwgJiYmNo4NBERt3ctrtH/+c9/yMnJ4cEHbaOrGjZsiK+vLyUlJezYscN+PQZYv349PXv2tC/rGu3elOyqBWdy8gHwa1qxN5Zfk0a2Oqds2efCwycq1Cn80bGs4NCJy+rZVVZcQsnP+wbwbx5GwcXbOpCNf/Oaz/5+dM12mvbqSIMgf4LatCDrv2sxNfDCv3kozft15ujq7TXeh4iIiIgrhIaGUlRUBECzZs3o2rUr/fv3p6SkhO7du3Ps2DFmz54NQHl5Oenp6XTs2BGA0tJSfv/73/P1119jNpuZO3cu3t7e3Hvvvdxwww3MmTOHhx56CIAffvjBYciMiIhc2pVco3/3u9+xdetWzGYzM2bMAOCpp55i8ODB/Pa3v+XZZ58FYMuWLcTFxWE0nk+R6Brt3vQ0xlqQt/cI+QeziRrWh2MX9XCKGt6H/IPZ5O07CoDVYq3w+oatrnNYDgi/jhObLz1W2GqxOCwXHT1Fs96dLtpWE4qOnqq0/pXI2bkfq8VCx4d+yfENe7BaLBxds4N2YxLxb9KI4xv2XPW2RURERGqb2Wyu9kPMsGHDWLFiBYmJiUydOpWpU6fa1zVr1oxnnnkGsE16/MMPP9jXNWjQgJKSkgrbu++++7jvvvNPts7JySEkJITAwMBrcDQiIp7lWl2jz/UAu1BiYiKJiYkOZQkJCfb5FEHXaE+gnl21JOUP/yT6roF0+tVteAf44R3oT8df/ZLo0QNJmfpBta9t1qsj4Td2x2Ay0uaO/jTqGMH+//1Q7Wsqk7V4HU17xhJxa08MRiMtB8YTflN39i6ydfMsPnmahi0bX/VTII+t20nHh2/l6BpbL66ja7fT8eFbOb4pnfKSs1e1TREREZG64P7776/wYehaCg0N5Y033qi17YuIeDJdo+VS1LOrlhz6ZgMrxs4k7nd3Ev/MaABObdvHirEz7cmhqmT9dw1tRw3ghnd+S+HRU6yc+GeKjpy64hjy9x/juwf/xC9+fy993/gNhT+eYNVjb5Hz80T4+79Ips3t/bh7x/sYDAY+7jrhsiepBzi6ejuRv+zN0TW23mtH1+ygQVBDzdclIiIiIiIiIi6jZFctOrpme7WJrUU9Hq1QtmbSO1e1r2PJO/l39H0Vyg+vTOXwytRKX1OaW8DXI/94Wds3/Dx2+cJkWNqHy0j7cJl9uTj7J/7Z/M4riFpERERERERE5NrSMEa5LI06RWA5W1bphPoiIiIiIiIiInWFena5keFJbxDQqnGF8kPLNrHq0TdrvP3Ef79A054dKpSfLTiD0dvEppkLKM0rqvF+RERERERERERqi5JdbmSx+cla3f6Ke2fU6vZFRERERERERGqbkl1S5xSchcw81+w7OggCvF2zbxERERERERGpOSW7pM7JzIOJa12z7/f6QnyYa/YtIiIiIiIiIjWnCepFRERERERERMRjKNklIiIiIiIiIiIeQ8kuERERERERERHxGJqzSzxC2gtmCvckY/DyxmDywrdlB1qMnUFQ3GBXhyYiIiIiIiIiTqSeXeIxWoydQcLCArrOy6Zh+97snXk75YWnXR2WiIiIiIiIiDiRkl3icYzePjQeMgHLmQLOHM10dTgiIiIiIiIi4kRKdonHsZQUc3L5exj9g/BtEePqcERERERERETEidwi2VVaWsrUqVMJDw/Hz8+PQYMGkZKSgsFgYPHixa4OT+qIIwumkjomhO0PRVKUtZXoKV9i8g9ydVgiIiIiIiIi4kR1foJ6q9XKqFGjSElJYdq0aURHR7NgwQJGjBgBQEJCgkviMvk2YPh3r+HXJIR/R9/nkhjEUYsxL9NsxNOuDsOlLFb49gh8kgVpp8FkgN5N4K42EBfq6ug8S/JxWztvPmVbjguF0VHQtwkYDK6NTeRKZeXDwixYcQTOlEPrhnBHJPwyHHxNro5O5MrklsJn+2HxwfNlf90No6LgOl+XhSUiIsCmk7Z7jnMeWQejImFgc91Dy7VV55Nd7777LkuXLiU1NZVOnToBYDabiYqKIjQ0lNatW7skroRn7qLgx5P4NQlxyf5FLlZmgSmbbR9WjYDl5/IVR2HZEXiyE9zb1pURegarFd7aBfP3OrbzDydg3XG4Owqe6qw3a3Ef3x+D5zbYkuXnzueMPHh1Gyw5CH/tDQHeLg1R5LL9WAgPr4XjZxzLP8iARfthTh9oH+yS0ERE6r256TBnDxgvuE/edBI2nIRbW8EfExzXidREnR/GOGvWLMaOHWtPdAGYTCaioqIq9Op68cUXMRgM7Nixo1ZjCuvahpYD49nxzn9rdT8iV2Jepi3RBec/sILtAyzAGzttbyZSM98ctiW6oPJ2/jgLvjzk9LBErsqxInh+I5RbHc/nn09ndufakl4i7sBqhadS4OSZStYBBWfhtz/AWUvF9SIiUrvWZtsSXXD+vhnO33/870f4eJ/TwxIPVqeTXRkZGWRlZTFy5MgK6w4dOuSQ7Nq8eTM//PADERERtRqTwWSkz59/zQ+T38NSWlar+xK5XGWWS785GNEbyLWwYF/1F04D8O+9tg9dInXdZwds14+qTlcrtp6hlSUPROqaTadgb75j4vZCFuBkCaw86syoREQE4KN9l+61tWCfYyJMpCbq9DDGw4cPA9CkSROH8j179nDgwAF7squkpITf/OY3fPTRR5jN5iveT2BgIKWlpRXK23o14tmgfg5lnR8dzqntWWT/sJtmvTtVeI1UbeBAM3vLfrpkPf/2vWk7PemKtt1+xpXVr8rAgWaK0pKvybacybdNAjGzfqi2jgX49uAZfPpr/MbVMjYModM/s6utYwUy8yGgWWvKcquvK+Jq0bNT8I3oiqGacbcWK3T65QPkrv7IiZGJXLlm986g8bAnMRirnmjOWl7GI68t4Md3HnJiZCLXRudPbN88+Pho8rnapHauBUYjnT8uxGCovq/NsWIIadOVkiNpTgrM87n7+WyxXH137DrdsyssLAyAzMxMe5nVauW5557DYrHYk11/+MMfGDt2LJGRkbUaT2BkM9rffyMbX55fq/sRuVIG0+VNqHO59aRyV9J+Bq8GtRiJyLVhMDWoNtFlr6fzWdyAwcsbrJe+Kdb5LCLiXAaj1yUTXfa6Xvq8ItdGne7ZFRsbS3R0NJMnT8bb25uAgADmzJnDli1b8Pf3p3379iQnJ7Nx40ZeffXVq95Pfn5+peXZKXv4avgU+3LTHh3waxzMHWvfAsDoZcK7oR9373yflRNmk/3D7quOoT5YuTKJpj06XLJe6imYuNYJAVVi5cok4sNcs++ayC2Fm7+Bsmq6/RqA6BATm0pKnBaXpym32tr5p4odQR0EecNPhzLxrtNfJ4jAC5tg+ZFLDxn49qN36dToXecEJXKVlhyEl1Krr2MwefHCQ3cz/k93OyUmkWup+xLbvyW6l6tVaufacfsKOFxU9dQJAD5GOLJ7Ew3rdJbCvbj7+bx27Vr69et36YqVqNMfxby8vFi0aBHNmzdn3LhxTJo0iaFDhzJgwAC6du2K0Wjk+++/Z/fu3URFRREZGcmPP/7ITTfdxLJly655PFlfrOM/fR5jSeLTLEl8mrVP/Y2zRWdYkvg0JzZnXPP9iVyukAYwpGX1/6GtwOgoZ0XkmUwGuDPSljisigEYEYESXeIW7oysPtFlBNoFQccQJwUkUgM3tgB/U/XXaJMBhoU7LSQREfnZqKjqE11G4NZwlOiSa6bOfxyLi4sjOTmZoqIi0tLSeOSRR9iyZYt9COPzzz/PkSNH2L9/P/v376dVq1Z888033Hjjjdc8lvLiUoqO5th/Sk7lgdVK0dEcTVYvLvdYLIT5Vv2funsY3NbaqSF5pLHR0Daw8g9TRiAiAB6IcXZUIlcnPhRGVvFcFyO2pO2UeLiMkY4iLufrBVPjbb9ffMqeW/5dZ9t7pYiIONedkdC1UdX30E394FftnRyUeLQ6n+y6WHFxMWlpaQ5PYnSVY8k7+Xf0fa4OQwSwvUF80B8GNXd80om/Ce5tA//XS72NroWGXvCPfnB7BDS4oD29jbZvo+b2g0BNNSBuwmCA57rCEx0h1MdxXbfGMLe/enWJexnSEt7oCdFBjuXhDWFGN7hLPZxFRFzCxwTv9LaNNPG94DkiJoPt2v1Bf30ZIdeW23US3LZtG+Xl5VUmu/bv3+/cgMTpyvJzyPjjEM4cTiNhYYHDup/Wfsqxz2djMBhpNfFNAtr3Iu0Fs+11p08QFD+E8IlvOj9oJ2nmB69eDyfPwM0/j+T95ibwc7v/6XVboDe8EGdLEAz8ylb29Y0QrDmPxQ0ZDXB/NIxpA72+tJX9dzC0aujauESuVr+m0LcJ7M23vR+GNID2weqhKCLian5e8EwXeDQWdufaplKIDqr4hZvIteB2H4F79uyJ1XqJmXTFo5n8Aol5cTn7/jS6wrrjS9+h/cxVlOXncOgfTxDw/CLaz0gC4PCHvyewy0AnR+sajS/4VkSJrtpzYQ8uJbrE3Xld0FNRiS5xdwaD7QPUxT28RETE9Rp6QffGro5CPJ0GNYnbMXh54xUYWuk6nyaRWM4UUl50ukKd/B1JBHQ2OyFCEREREREREXEV9fkQjxJ8/W3sejIBLOVE/2GpvfzM0UwaXBeB0Vvdb0REREREREQ8mXp2iUc59tksOr2zmw5/3sCRf0+1l59ev5iQnsNdGJmIiIiIiIiIOIOSXeJRjN6+GBv4YfIPwlJSaC8/vWkpwd1ucWFkIiIiIiIiIuIMSnaJW0qfmkhR1hbSpyZSsGsNxz6bDUDYwPtJe64P6VMH0XT47wAoyzuJweSNqWGwK0MWERERERERESfQnF3iltq9vMJhOaBjPwAa3ziRxjdOdFjnFdSYmGlfOy02EREREREREXEd9ewSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEY2jOLqlzooPgvb6u27eIiIiIiDtJSkpi/PjxREREEBERwbx58xzWz58/n+bNmxMeHs6DDz6I0Wike/fuvPHGGw71Pv30U2bPno3RaOTNN9+kV69ePP3008ybN4833niDsWPHAjB+/Hjef/99DAaD046xLrjcdk5MTGTmzJl89dVXxMfH85e//MWh3rhx49i7dy8+Pj58+OGHtGzZkszMTB577DFKSkp48skn6dGjB3fffTcAhw4d4vHHH+f+++9n+vTpvP766047ZhF3pWSX1DkB3hAf5uooRERERETcx4QJE5gyZQpPPPEEycnJ9O7d277uiy++YOHCheTk5PDNN98QEBDAfffdR3p6Ou3atbPXe+edd1i1ahU5OTk88cQTLFq0iGeeeYbOnTs77Ktnz56sXLmSQYMGOe346orLaefs7Gw2b97M6tWrefLJJ9m4cSPdu3e313vxxReJjIzk22+/5Z133mHmzJm8+OKLfPzxx4SEhNjrJSUlAXDPPfdwyy23EBoaSm5uLgUFBQQEBDjrkEXckoYxitRTSUlJREVFYTabGTduXIX1M2bMICMjo9ptPP744/Tv35+ZM2c6lBcXF3PLLbcwYMAAxo8fD0BOTg7dunVzeGNOSUmhb9++9OnThylTpgCwe/duZs2aVdPDExEREamXOnfuzOHDh+3LOTk5+Pr6YjAYCAsLs9+LmUymCj2zIiMjKSws5PTp04SGhgLQtGnTCvsYOHAgS5curcWjqPuqa+eNGzcyYMAAAAYNGkRKSorDayMjI4Hzf4PS0lIOHTrE/fffz/Dhw8nOzrbXPXv2LFlZWfakZM+ePe1JMBGpmpJdIvXYhAkTSEpKIjg4mOTkZHu5xWJh27ZtxMTEVPnajRs34uXlxerVq9m8ebPDm/KyZcvo168f33//Pd7e3uzYsYPAwECWL19Or1697PUSEhJYu3Yt69atIzk5mby8PGJjY9m8eTNWq7V2DlpERETEgyUnJxMdHW1fzszMJCIiwqHOzp07OXnyZIV7vdtuu42EhAQSExP5zW9+U+U+IiIiSE9Pv7aBu5nq2jk3N5egINv8KIGBgeTm5lZ4vcViYebMmUyYMIGTJ0+yY8cO5s2bx6RJk3jllVfs9ZKSkjCbzfZltb3I5VGyS0QqfDO1detWhy7tlVm/fr296/qAAQPYtGmTfV1UVBSFhYUAFBQUEBwcjLe3t/0bwnO8vb0BKC8vp0WLFvj7+wPQpk0bdu7cWfMDExEREakn5s6di9lspmXLlsTHx1dZLy8vj8cee4x33323wrpZs2axe/duNmzYwNSpU2sxWvd1Oe0cEhJCXl4eAPn5+Q5DE8+ZOnUqd999N23atCE4OJguXbrQqFEj+vfvT1pamr3ekiVLGD58eG0ciohHU7JLRCp8M5WRkWHvXl2V6r6xio6OZvXq1cTGxmIwGAgPD69yOwsWLCA2NpaQkBC8vGzTCOobKxEREZErc67H/vTp0x3Ko6OjOXDgAABWq5UHH3yQl156iRYtWlTYhq+vL35+fgQFBdm/uKzMgQMHqh0B4Mkup527devGqlWrAFi5ciU9evRwqPuf//yHnJwcHnzwQQAaNmyIr68vJSUl7Nixw+E+fP369fTs2dO+XJ/bXuRKKNklUo9dzjdTu3btwmw2O/y8+uqr1X5jNW/ePO666y52795N48aNWbduXZUxjBkzhj179nDkyBG2b99+LQ9PREREpN4LDQ2lqKgIsA2J++6775g6dSpms5lNmzZx7NgxZs+eDcD9999Pnz59GDRoEL/73e8AmD17NrNnz+bVV1+1PwVw5cqVDB061DUHVEdd2M7NmjWja9eu9O/fn5KSErp37+7Qzr/73e/YunUrZrOZGTNmAPDUU08xePBgfvvb3/Lss88CsGXLFuLi4jAaz39s/+GHHxyGNYpI5fQ0RpF67NzTZC4WExPDZ599BkDHjh0rnQRzw4YNfPTRR9x2222sWrWK0aNH29dZLBb7kMVzT42pTElJCT4+PhiNRgIDA/H19QVs31j17du3hkcnIiIiUj+c+0KyKsOGDWPFihUkJiaSk5NTYf0zzzwDwMSJE5k4cWKFdefWn7N+/XoefvjhmgfuZq6knadOneowFLRZs2b2djzXA+xCiYmJJCYmOpQlJCTwj3/8w76ck5NDSEgIgYGBNTwSEc+nnl0iUkFcXJzDXAGVuf766ykpKaF///7ExcXRtGlT+zdWY8aM4YMPPsBsNpOamsqQIUMA25v4li1bSExMZMeOHSxZsgSz2cwNN9xAq1at7F2yMzMzKzziWkRERESuzv33318hkVITH3zwgUNvI7G51u18sdDQUN54441a276IJ1HPLpF6qrpvpoxGI127diUjI6PaOQHeeecdh+ULv7FatmxZhforVqxwWO7cuTOjRo1yKNu9ezfdunWr8ChsERERERERkcuhZJeIVKqy4Y3OEBsbS2xsrEv2LSIiIiIiIu5PfU9FRERERERERMRjKNklIiIiIiIiIiIeQ8kuERERERERERHxGJqzS+qcgrOQmeeafUcHQYC3a/YtIiIiIiIiIjWnZJfUOZl5MHGta/b9Xl+ID3PNvkVERERERESk5jSMUUREREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hObvEI6S9YKZwTzIGL28MJi98W3agxdgZBMUNdnVoIiIiIiIiIuJE6tklHqPF2BkkLCyg67xsGrbvzd6Zt1NeeNrVYYmIiIiIiIiIEynZJR7H6O1D4yETsJwp4MzRTFeHIyIiIiIiIiJOpGSXeBxLSTEnl7+H0T8I3xYxrg5HRERERERERJzIbZJdpaWlTJ06lfDwcPz8/Bg0aBApKSkYDAYWL17s6vCkDjiyYCqpY0LY/lAkRVlbiZ7yJSb/IFeHJSIiIiIiIiJO5BYT1FutVkaNGkVKSgrTpk0jOjqaBQsWMGLECAASEhKcFku/N39D1Ih+WM6W2cuSHnqNwytTnRaDVK7FmJdpNuJpV4fhUlYrrD8Bi/afL3t1G9wZCdHK+4kbysqHT/fDmmwos0D7YNv53KcJGAyujk7kyuSWwH8Pwtc/Qm4pNPOH4a1haEvwdYs7MhFxNovV9h74n/3ny17bAaMioXWAq6LyTJtPwadZ55dfSoXRkdAhxEUBiUiNuMWt1bvvvsvSpUtJTU2lU6dOAJjNZqKioggNDaV169ZOjSf9XytY/8Jcp+5T5FIsVnhlG3x+AIwXJAE+22+7QZoSb/tQJeIulh6CaamAFSw/l508A6uz4dZW8IcEMCnhJW4iMw8eWQc/lZ4vO1UCO36Cj/bB3/pAqI/r4hORuqfMAlM2w4ojjsNxPt5nS8rM6AaDW7gsPI9htcJbu2D+Xsd2/vIgLDkIv+sEY9q6LDwRuUpuMYxx1qxZjB071p7oAjCZTERFRdl7dUVGRtKhQwfi4+OJj4/nm2++cVW4Ii7x0T5bogtsia9zLIAVmJ4K23NcEJjIVdhzGqZtsZ3LlgvKz/3+vx9hvp4/IW6itBwe/wFOlzqWn7tU78+H3290elgiUsf9I92W6ALH90IrUG6FyZtsPaClZr44ZEt0QeX3HK/vhB+OOzsqEampOp/sysjIICsri5EjR1ZYd+jQIYchjIsWLSI1NZXU1FRuuummWoupzR39uWfXB9y+6k26/vYODKY634zi4cqt8K+91dcxAB9nVV9HpK5YuO/Sdf691/att0hd9+1ROHHG8UPUhSzAplOQftqZUYlIXXamvPr3Qiu2Hkmf6N6uRqxW25dn1XUUN2K75xAR91LnhzEePnwYgCZNmjiU79mzhwMHDlyT+boCAwMpLS2tUN7WqxHPBvVzKNs1dykbX57PmZx8wrq2YcBfJ2HyacCWP31c4zg83cCBZvaW/XTJev7te9N2etIVbbv9jCurX5WBA80UpSVfk205k29kV2Jmb6i2jgX4al8Rf+7TyDlB1ROdPzkDgI+Pr4sj8SwdPziGKaD6c/WnUmjctT/FGSlOisrz6XyuHeGT5hPc6w4Mpqpvu6xWC4N+/SInPnvViZGJSF3VsLOZNn+sfqSKBViw+Qh/uD7KOUF5IO/rIujw1/Rq61iAdcct+DYMwlp21jmBiVwj7n5vZ7Fc/Tfbdb5LUlhYGACZmefHq1itVp577jksFotDsuvee++la9euPProo+Tm5tZKPDnbszhzKg+sVk5t3cuWPy8kanjfWtmXyOUyNvC7rHoGb00II+7B0ODy3pAv99wXcSVjA79LP1HBYsXoo/NZRGwu+95O74M1ctntbDBi8NJ9tIg7qfM9u2JjY4mOjmby5Ml4e3sTEBDAnDlz2LJlC/7+/rRv3x6A1atXEx4eTklJCZMmTeKxxx7jX//612XtIz+/8sHu2Sl7+Gr4lOpfbLFW3+9V7FauTKJpjw6XrJd6CiaudUJAlVi5Mon4MNfsuyZySuDmZY5zdV3MAEQGmdhUUuK0uOqD7kts/5aoXa+pMUmQkXd+TqPKGIDda5fRVPf514zO59rx1i7bMJlqz2eTib+9/Dy3/PN5p8UlInXXoQIY8V31dYxAt/BGpOqafdWKyiDxayi9ROeRMB8oyj2lJ0GL23H3e7u1a9fSr1+/S1esRJ3v2eXl5cWiRYto3rw548aNY9KkSQwdOpQBAwbQtWtXjEbbIYSHhwPg4+PDo48+ytq1tZMtiRzWB+9AfwAaxUYQ99Qo9n/pfsPexLOE+sDAZtX/h7YCd0Y6KSCRGrozsvrEgBHo1xQlusQtjGh96cRtgBcM0lPVRORn4QHQPaz6ezsLcKdGMNaIvxfcGl59OxuAUZGX7qArInVLne/ZBRAXF0dysmNC6e2332bAgAEAFBYWUlZWRnBwMFarlY8//pj4+PhaiaXDAzfRe9bDGL1NFGfnsnfR92z7y+e1si+RK/F4R9hwEgrKKvbwMgAdQ+D21q6ITOTK/TLc9sTFbTkVkwRGA/ib4LcdXRKayBULD4DxMfBBRsV1Bmzn+PNdwdfk7MhEpC57qjM8uAZKyit/wEWPxjBESfIae6gdrMmGU5U8SMQIRAbA3W1cEZmI1IRbJLsuVlxcTFpaGpMmTQIgOzubkSNHUl5eTnl5OR07duSvf/1rrez76zv+WCvbFampVg3hg/7w6jZb0uscLwMMbQVPdwFft/wfL/VRAxO83cv2uO8vD8HZC+4+40NtiYHIQNfFJ3KlHu0AjRrYEl4/XfBMnJb+8ERH9eoSkYpigmFuP5i1HbbmnC9vYIThreG3ncCrzo/Tqfua+MEH/eCVbbDu+Pkv2YwGWzLx2S4Q4O3SEEXkKrjlR99t27ZRXl5un5y+TZs2bNmyxcVRiTOU5eeQ8cchnDmcRsLCAod12YtfJ/u/r3Hd0EdoPvr8XGuW0jNsfziKts9+SkDHqxvv6y4iAmBOHzhYAOl5tkRXfCiEaD5NcUN+XvBCHDwWC4O/tpUtGmT7hlXE3RgMMKYtjI6CXl/ayt7rC3GhGhojIlVr93PCa1++7cfbCN3ClHy51pr5w//1giNFsDvX1uu2ayg0ds8H2IkIbprs6tmzJ1ZrdbNfiKcy+QUS8+Jy9v1pdIV1oQPG4hcVT+GedQ7lp779AL/w+jXeqXWA7UfEEwQ3OP+7El3i7i7sheGOD0QREddoE2j7kdrVwt/2IyLuTx1fxa0YvLzxCgytdJ13SBMMBsdT2lpeTsGuNQR07O+M8ERERERERETExZTsEo+Ws/pjQvrc6eowRERERERERMRJlOwSj2W1Wsld/19Ceg53dSgiIiIiIiIi4iRKdonHshQXUJq9j8yXbiEn6V/8+MHTWErPuDosEREREREREalFbjlBvdRv6VMTKcraQvrURFrcM42CPck0u+MZTn33Ice//D/KC09TXpRHqwf+ROzrmwA48tE0guISMTbQI1VEREREREREPJmSXeJ22r28wmE5oGM/AMIG3U/YoPsrfU2Le6bVdlgiIiIiIiIiUgdoGKOIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ3N2SZ0THQTv9XXdvkXEvSQlJTF+/HgiIiKIiIhg3rx5Duvnz59P8+bNSUxMpH///mzZsoU9e/bQqlUrh3qrVq3imWeeAWDy5MkMHz6cEydO8PDDD5Obm8s999zDww8/zPjx43n//fcxGAxOO0YRERERkWvpSu6hGzVqRFxcHA0aNGDZsmUO9R566CHS09MpLy/n/fffp127dgwcOBCr1QrAX//6V9q1a8evf/1r3nvvPacdn5JdUucEeEN8mKujEBF3MmHCBKZMmcITTzxBcnIyvXv3tq/74osvWLhwIQCffvopzz//fKXbeOONN/j8888JDQ3l1ltvZfjw4bz00ku8+eabRERE2Ov17NmTlStXMmjQoNo9KBERERGRWnS599DdunVjxYoVlW7jr3/9K97e3qxevZq//e1vvP7665hMpgr1r7vuOvbu3Uvbtm1r74AuoGGMIiK1KCkpiaioKMxmM+PGjauwfsaMGWRkZFS7jccff5z+/fszc+bMStf//e9/Z/DgwZjNZs6ePQvAm2++SWJiIgBr1qyhV69e9OnTh9deew2A3bt3M2vWrJocWp3UuXNnDh8+bF/OycnB19fX3gurWbNmVb42JiaG06dPU1hYSGBgIADp6ek8//zz3HjjjaSlpQEwcOBAli5dWotHISIiIiLiPJe6h966dSv9+/e3f5a4kLe3NwAFBQV07twZAKvVitlsZuLEiZw5cwYAs9nMV199VduHYqdkl4hILZswYQJJSUkEBweTnJxsL7dYLGzbto2YmJgqX7tx40a8vLxYvXo1mzdvJjs722H9wYMH2b59O99++y1JSUl4e3tz9uxZUlNT7XXatGnDqlWrWLduHV9++SVFRUXExsayefNme/diT5GcnEx0dLR9OTMz06FXVnWGDx/OTTfdRFxcHL/+9a8BW6Jw+vTpvPPOO7zwwgsAREREkJ6efu2DFxERERFxgUvdQ6enp5OUlMSaNWvYsWNHhdcPHjyYxx57jOuvvx6ARYsWkZSURGxsLHPnzgWcfw+tZJeIiJNc/I3J1q1badeuXbWvWb9+vX243IABA9i0aZPD+mXLllFYWMigQYOYNm0aYBtff88999jrtGjRggYNGgBgMpkwGm2X/jZt2rBz584aH1ddMHfuXMxmMy1btiQ+Pv6qtjF16lQ2bNjg0OutU6dOtG3b1t7rS0RERETEU1zuPXSjRo0wmUzccsst7Nq1q8L6b7/9ls8++8z+eaRRo0YADBs2zGWfN5TsEhFxkou/McnIyCAyMrLa1+Tm5hIUZHtyQmBgILm5uQ7rjx8/jsFg4LvvviMrK4vNmzfzzTffcNNNN1XY1vLly2nbti2+vr6AZ/VQOtd7bvr06Q7l0dHRHDhw4LK2YTKZCAoKwt/fn5KSEgAiIyM5efIk2dnZ+Pv7A3DgwIFqe+OJiIiIiLiDy7mHLioqory8HLB9nomKinKoe+6+OTg4GD8/PwDy8/Mr1Hf2PbQmqBcRqWVz585lxYoV9OvXr8pvTHbt2sWjjz7qUHbzzTcTEhJCXl4eYHvTuHhCx+DgYAYMGADADTfcQEZGBsOGDauw/R9//JFXXnmFJUuWXIMjch+hoaEUFRXZl8eOHct3333H3r17mTZtGoMHD+app57itddeY9KkSfYnxzz00EMATJkyhTvuuIOysjLeeustAFauXMnQoUNdcjwiIiIiIrXtwnvovXv38sADD+Dn50ePHj24/vrrOXbsGPPnz+eZZ55hxIgRFBcXYzAYeOeddwBITEykQYMGhISE8K9//QuwzWU8YcIEpx2Dkl0iIrXs3FNOLhYTE8Nnn30GQMeOHUlKSqpQZ8OGDXz00UfcdtttrFq1itGjRzus7927NwsWLABg+/btNGrUiDVr1jB//nxSU1N57733uO+++3jggQeYM2cOAQEB9tceOHCAvn37XsMjdQ2z2YzZbK5y/bBhw1ixYgWJiYn2N9sLnZto89Zbb+XWW291WNe1a1dWrVrlULZ+/XoefvjhmgcuIiIiIuIiV3IPffFUKs2aNeOZZ54BqPTBTevXr3dYLisr4/jx4w6jXGqbhjGKiLhIXFyc/Ql/Vbn++uspKSmhf//+xMXF0bRpU44dO8bs2bMB+MUvfkFZWRlms5mioiL++Mc/snz5cr7++mvi4+OZOHEiCxYsYNeuXfzqV7/CbDbb5w3LzMy0PzHFk91///32J1NeCx988IF93jMREREREU90Le+hvby87BPVO4t6domI1KLqvjExGo107dqVjIyMasevn+sOfM6F36QAvPnmm5W+bsWKFQCMHz+e8ePHO6zbvXs33bp1sz9OWERERERExFMo2SUi4kKVDW90htjYWGJjY12ybxERERERkdqkcRgiIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DM3ZJXVOwVnIzHPNvqODIMDbNfsWERERERERkZpTskvqnMw8mLjWNft+ry/Eh7lm3yIiIiIiIiJScxrGKCIiIiIiIiIiHkPJLhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGJqgXj5D2gpnCPckYvLwxmLzwbdmBFmNnEBQ32NWhiYiIiIiIiIgTqWeXeIwWY2eQsLCArvOyadi+N3tn3k554WlXhyUiIiIiIiIiTqRkl3gco7cPjYdMwHKmgDNHM10djoiIiIiIiIg4kdsku0pLS5k6dSrh4eH4+fkxaNAgUlJSMBgMLF682NXhSR1iKSnm5PL3MPoH4dsixtXhiIiIiIiIiIgTucWcXVarlVGjRpGSksK0adOIjo5mwYIFjBgxAoCEhASnx9Rq8C9IeO5ugtq2oKygmB1/+4Kdc5Y4PQ4578iCqRz7dDoGLx98wzsSPeVLTP5Brg5LPNT+AvjP/vPLf9oOd0ZCm0BXReSZsovh8wPnl6dtgZER0LkRGAyui0tE6q6zFvjuKHxxEE6cgZAGcEs43NQCfN3izldERKRmTp6BxQfPL7+wCUZGQkJo/bmHdou3/HfffZelS5eSmppKp06dADCbzURFRREaGkrr1q2dGk+LAXH0nv0r1jzxNseSd+Ll50PDlo2dGoNU1GLMyzQb8bSrw5B64NMsW3LrQouy4JMs+F0nGNPWNXF5mu+PwfMbocxyvmzpIfjyENzTxtbW9eXNWkQuT24J/CYZ0vJswxcs2P7ddAo+SIe/9YFm/i4OUkREpBalnIDfpcCZ8vNly4/AN4fhtnCYEg+menAP7RbDGGfNmsXYsWPtiS4Ak8lEVFSUvVfXmTNneOSRR4iJiaFLly48/PDDtRZPwrN3s+3N/3B0zXas5RbOFhSTm3ao1vYnInXHD8dh1nawYvs551w+5vWdsOqYCwLzMHvz4LkNtkRXZe380T5YmOWKyESkLntuI2Tk2X4/d7049++RInjiB7BYK3uliIiI+ztaBE+uh5Jyx/Jz731fHIL3050flyvU+WRXRkYGWVlZjBw5ssK6Q4cO2ZNdzz77LL6+vqSnp7N9+3ZefvnlWonHy8+HxvFt8bsuhBGr/4+7tr3HoH8+R0B4k1rZn4jULR9mVn/hNP5cR2pmYZbtTbm6z6TzMqFcH1pF5Ge7c209uCxVrLcA+wog+bgTgxIREXGiRfuh1FL9PfSCfRWTYZ6ozg9jPHz4MABNmjgmk/bs2cOBAwdISEigoKCADz/8kB9//BHDz2NamjZtetn7CAwMpLS0tEJ5W69GPBvUz6GsQUhDDEYjEbf2ZPk90yk+dZoeL41n4Nxn+OLGZ6708OqVgQPN7C376ZL1/Nv3pu30pNoOp1IDB5opSkt2yb6l7jP6BtBp/qlq61iA1Bzwb9yC8vzq60rVYt8/ildgaLV1TpyBsE59KN67yUlReb7On5wBwMfH18WReDa1c+1oevc0rhvxLAajqco61vIy7psxj8N/f9SJkYmIiDhHu7d349O0TbV18s9Ci163ULDtWydFdfUslqq+wrq0Ot+zKywsDIDMzPNdJaxWK8899xwWi4WEhAT27t1LWFgYL774It27d8dsNrNmzZpaiedsge0Gddd7Syn48QTlxaVsfmUBYV2iNG+XC7WfkaT5uqTWGX0bXn5dn8uvKxUZfS5vUh2jb0AtRyIi7sLoGwDWS98U67ohIiKeynSZ73FX8rnGXdX5nl2xsbFER0czefJkvL29CQgIYM6cOWzZsgV/f3/at29Pamoq+/btIyEhgdmzZ7N+/Xpuu+02MjMzCQq69NP48vPzKy3PTtnDV8OnOJSdzS+i4NBxsGrszJVauTKJpj06XLJe6imYuNYJAVVi5cok4sNcs2+p+8osMPhrKCyrvp6vCU4ezMC36s4FcgmjvrM98fJSV9qda5bRXJNNXzPdf36ocElJiWsD8XBq59qxMAtmb6++jtHkxe/G38Wjf7rLOUGJiIg40YTVsP2nqof0n7Puy0+JCXZKSDWydu1a+vXrd+mKlajzPbu8vLxYtGgRzZs3Z9y4cUyaNImhQ4cyYMAAunbtitFopHXr1nh5eXHPPfcA0LNnTxo3bkx6eu3MvJb24TJiJ96Kf4swTD7eJDx7Nye37qXw8Mla2Z+I1A1eRhjWGqp7eIkR+GU4SnTV0MjI6hNdRqDXdSjRJSJ2Q1tCg8u4sx3u3Id4i4iIOM0dkdUnuoxAxxDcItFVU3U+2QUQFxdHcnIyRUVFpKWl8cgjj7Blyxb75PSNGzdm4MCBLF++HID09HSOHz9OdHR0rcSz/Z3FHP5uC8OW/YlRm9/Fv2koKyfMrpV9iUjdMi4aGvtWfvE0AiE+MD7G2VF5nuGtoV1Q5YlFI9DABI93dHZUIlKXBTWA38RWX+e+aGjp+SM3RESknrqxJcSHVn4PbQCMBvhdJ2dH5Rpukey6WHFxMWlpafZkF8Df/vY3Zs6cSZcuXbj77ruZP38+ISEhtROA1cqmGf/i484T+LjTeL4bP0u9ukTqica+8H4/+EUlw13jQm3rmvo5Py5P4+cFf+sDA5tXfLNuEwh/7wPt68E3UiJyZe5tC893gSBvx3J/EzzaAR6/RDJMRETEnXkb4a1eMLSVLbF1odYB8Nc+1Jtpe+r8nF2V2bZtG+Xl5Q7JrjZt2pCUlOS6oMQpyvJzyPjjEM4cTiNhYYHDuuzFr5P939e4bugjNB89pcoykZpq7g9/6wtZ+bA1x1bWpRG0vfQUgXIFghrAn66HY8Ww4QSctUC7YOgUAobqxpKKSL12Z5RtyPm64/D0BlvZspvA1y3vekVERK6Mvxe89At4oiP8cBxKLNA20PbFfH26h3bLt/2ePXti1QTx9ZLJL5CYF5ez70+jK6wLHTAWv6h4Cvesq7ZM5FqJCrT9SO1q5ge3aY4dEbkCDUxgbn5+WYkuERGpbxr7wi/r8T20Ww5jlPrL4OWNV2Bopeu8Q5pgMBgvWSYiIiIiIiIinktZABERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGpusUt5M+NZGirC2kT02kxT3TKNiTTLM7nuHUdx9y/Mv/o7zwNOVFebR64E+VlomIiIiIiIiI51KyS9xOu5dXOCwHdOwHQNig+wkbdL/DusrKRERERERERMRzaRijiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkNzdkmdEx0E7/V13b5FRERERERExH0p2SV1ToA3xIe5OgoRERERERERcUcaxigiIiKXJSkpiaioKMxmM+PGjauwfsaMGWRkZFS7jccff5z+/fszc+bMCutSUlLo27cvffr0YcqUKeTk5NCtWzcCAgKqrAOwe/duZs2aVcOjqztq2s6VtdvFLvw71Ic2rUptntNff/01ZrMZs9lMWFgYqampnD17ltGjR2M2m5k9ezYAxcXF3HLLLQwYMIDx48cD9af9RUREaouSXSIiInLZJkyYQFJSEsHBwSQnJ9vLLRYL27ZtIyYmpsrXbty4ES8vL1avXs3mzZvJzs52WJ+QkMDatWtZt24dycnJmEwmli9fTq9evaqsk5eXR2xsLJs3b8ZqtV77A3aRmrRzYGBghXa70MV/h4iIiHrRplWprXP65ptvJikpiZUrV9KmTRvi4uL47LPP6NOnD0lJSWzatIkTJ06wbNky+vXrx/fff4+3tzc7duyoV+0vIiJSG5TsEhERkSvWuXNnDh8+bF/eunUr7dq1q/Y169evZ9CgQQAMGDCATZs2Oaz39vYGoLy8nBYtWtCwYUNCQ0OrrePv7w9AmzZt2LlzZ80Oqg66mnb29vau0G4XqurvUF/atCq1cU4DbNiwge7du2MwGMjKyqJLly4AxMbGsmHDBqKioigsLASgoKCA4OBgoP61v4iIyLWkZJeIiIhcseTkZKKjo+3LGRkZREZGVvua3NxcgoJsTwIJDAwkNze3Qp0FCxYQGxtLSEgIXl6VTy1aWZ2IiAjS09Ov7mDqsKtp50up7O9Qn9q0KrV1Ti9evJjhw4cD0L59e77//nusViurV6/m9OnTREdHs3r1amJjYzEYDISHhwP1r/1FRESuJSW7RERE5LLNnTsXs9lMy5YtiY+Pr7TOrl277HMVnft59dVXCQkJIS8vD4D8/HxCQkIqvHbMmDHs2bOHI0eOsH379kq3fzl13F1N2vlSKvs71Ic2rUptn9MrV6609/4aNmwYJ06cYMiQIVx33XU0adKEefPmcdddd7F7924aN27MunXrautQRURE6g09jVFEREQu24QJE+yTmF8oJiaGzz77DICOHTuSlJRUoc6GDRv46KOPuO2221i1ahWjR492WF9SUoKPjw9Go5HAwEB8fX0rbKOqOgcOHKBv377X4Ajrhpq086X06NGj0r+Dp7dpVWrznN63bx+tWrWiQYMGAJhMJubMmYPVamXcuHH07t2bPXv22IedhoaG2nuH1Zf2FxERqQ3q2SUiIiI1FhcXR1paWrV1rr/+ekpKSujfvz9xcXE0bdqUY8eO2Z9Kt2TJEsxmMzfccAOtWrUiJiaGxMREtmzZQmJiIjt27Ki0DkBmZiadO3eu9eN0tctpZ6BCu13Yzhf/HVatWlWv27Qq1+KcvnAII8DBgwcxm80MHjyYO++8E39/f8aMGcMHH3yA2WwmNTWVIUOGAGp/ERGRmjBY9ZiXKmWn7OGr4RW/6ZOrM3TxdJr26ODqMEREpArdl9j+3Tjs6l4/ffp07rrrrmqfXlcbdu/ezeLFi3n++eedut+r5Q7t7G5tWhV3aOvKeEr7i4iI1MTatWvp168fa9asueLezhrGKCIiItdEZUPBnCE2NpbY2FiX7NsVnNHO9a1Nq6JzWkRExD1pGKOIiIiIiIiIiHgMJbtERERERERERMRjKNklIiIiIiIiIiIeQ3N2SZ1TcBYy81yz7+ggCPB2zb5FREREREREpOaU7JI6JzMPJq51zb7f6wvxYa7Zt4iIiIiIiIjUnIYxioiIiIiIiIiIx1CyS0REREREREREPIaSXSIiIiIiIiIi4jGU7BIREREREREREY+hCerFI6S9YKZwTzIGL28MJi98W3agxdgZBMUNdnVoIiIiIiIiIuJE6tklHqPF2BkkLCyg67xsGrbvzd6Zt1NeeNrVYYmIiIiIiIiIEynZJR7H6O1D4yETsJwp4MzRTFeHIyIiIiIiIiJOpGSXeBxLSTEnl7+H0T8I3xYxrg5HRERERERERJzIbZJdpaWlTJ06lfDwcPz8/Bg0aBApKSkYDAYWL17stDjuzZzv8HP/wY8Z9u1rTtu/VO3Igqmkjglh+0ORFGVtJXrKl5j8g1wdlohInXemDP574PzyjK2w8yfXxeOpyiyw4sj55ambIeUEWK2ui8kTWayQfBxe2HS+bOVRW/uLiIhI/eAWE9RbrVZGjRpFSkoK06ZNIzo6mgULFjBixAgAEhISnBbLv6Pvc1ge9u1rZC1e67T9S9VajHmZZiOednUYIiJuJTMPfpMMp0rOly0+AJ8fgGHh8EI8mAwuC89jHC+2tXNWwfmybw7DVz9Cr+tg9vXg5xZ3ZXVbwVl4cj1syQHjBeftMxsgJgje7gVhvq6LT0RERJzDLW6r3n33XZYuXUpqaiqdOnUCwGw2ExUVRWhoKK1bt3ZJXI3jowlp14rMhStdsn8REZGayD8Lj66D3FLH8nMdYJYcsiUGfhPr9NA8SrkVHvsBDhQ4llt+7tG1/gS8lAqvdHd6aB5nymZIzbH9brmox9zePHgyBeb1B4MSuCIiIh7NLZJds2bNYuzYsfZEF4DJZCIqKgpvb2/279/P7bffbl+Xm5tLXl4eOTk5tRpXzJhBHP5uC8XZGushIiLu58tDkFNafZ2P9sEDMdDQLe4Y6qa12bAvv+r1VmzDG39TCK0aOi0sj5OZB2uyq15vAXblwsaTcP11zopKREREXKHO37pmZGSQlZXFW2+9VWHdoUOHGDlyJJGRkaSmptrLJ02aRFlZ2WXvIzAwkNLSinf7bb0a8WxQv0pf4+XnQ9Twvqx+4u3L3k99N3Cgmb1ll04M+rfvTdvpSbUdTqUGDjRTlJbskn2LiDhbmxnf4x/dA4Ox6ik8z5RD5OC7yfvhcydG5llaPf4+IX3vwmCq+rbLYrXS84EXOLlE84BerSajp9Jk5ORqz2dreRmjX/yAI/94zImRiYiIyNWwWK5+ws06n+w6fPgwAE2aNHEo37NnDwcOHKgwX1dpaSn//ve/+eabb2o1rsjbelNWXMqPKzZdurLUuvYzklwdgoiI2zE1bFRtYsBezz/YCdF4LpN/8KXHzVnKMTXUQ1VqwuQfDNZyqn/+klUPrxEREakH6nyyKywsDIDMzEx69OgB2Casf+6557BYLBWSXUuWLKFly5b84he/uOx95OdXPrYgO2UPXw2fUum6mHsHs/eTJKzlerTP5Vq5MommPTpcsl7qKZjoojn/V65MIj7MNfsWEXG2J36AH46fn6OrKos//Ds9r/u7U2LyRH/aDouyqm9ng8mLN6c9zx3/fN5pcXmaf++FN3ZWX8do8ua3D9zF43+6yzlBiYiIyFXLy8tj+/btdOnS5Ypfe+mvc10sNjaW6OhoJk+ezKeffspXX33F8OHD2bx5M/7+/rRv396h/vvvv8+DDz5YqzEFtW1Bk+7tSf/o21rdj4iISG26vfUlEjBAU1/o3thZEXmm4ZdoZ4AGRrixpVPC8VhDW4HXJTrQWYHbXPNcIxEREblCQUFB9O3bl6CgK++VXeeTXV5eXixatIjmzZszbtw4Jk2axNChQxkwYABdu3bFeMHwi8OHD/P9999z77331mpMMfcMInv9bvKzjtXqfkRERGrTDc0gIdSW1LqYAVti4MnOYNKT62qkfTDc2qr6Or/uAAHezonHU4X6wIPtqq8zMgIiA5wTj4iIiLhOnR/GCBAXF0dysuOk4W+//TYDBgxwKJs3bx633nqrfehjbdk0/V+1un0RERFn8DLCm73g5VT49ogtuXVOkDc80wUSW7gqOs8yNd6WzPrPfii7oKH9TPCrDnBvG1dF5lkeamfr3fV+hu3hCud4GeCeNvBYR9fFJiIiIs7jFsmuixUXF5OWlsakSZMcyv/5z39W+tRG8SwH332c4qxUgn4xlOajJtvL014wA1B2+gRB8UMIn/gmRxe+TF7qcho0jSLy8bnVPglLRKQ+augFr3aHI0Ww6pgtQRDe0Nbry7vO9/92H15GW/JwQjtYeRTyzkITXxjYHPz11nTNGAy23l2jo2ztfLIEQhrY2jmkgaujExEREWdxy9urbdu2UV5eXmFy+vT0dBdFJM5SmLERg9GL9q+sZu+rd3I2NxvvkKbA+ScyHv7w9wR2GcjZnKMU7dtC+1dWcfx/b5Ob8gWNeo9wYfQiInVXC3+4W72Lal2oD4yMdHUUni/AW3NziYiI1Gdu+Z1tz549sVqtdO/e3dWhiJMVpq8nsOsgAAI7D6Aoc1OFOvk7kgjobKbkxAF8W3cCwC+iC4VpyRXqioiIiIiIiIhncctkl9Rf5YW5mPxtT2Iw+gVSXpjrsP7M0UwaXBeB0bsBPk3bUJj2A1aLhYKdqygvOu2CiEVERERERETEmZTsErdiahhCeVEeAJbifEwNQxzWn16/mJCewwHwDmlCSK8RpE8dxNncbLyCmzg7XBERERERERFxMiW7xK00bNeD/O0rAcjfuQr/6G4O609vWkpwt1vsy01ueZT2M5JocF2EQ7mIiIiIiIiIeCYlu8StNIy5HuvZEtJ+3x//qDjO5hzl1Mr5AJTlncRg8sbUMNhef+8rd5A+NRFLaREBHXq7KmwRERERERERcRK3fBqj1G+tf/2Ow7J/m3gAvIIaEzPta4d1bX//mbPCEhEREREREZE6QD27RERERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8RgGq9VqdXUQdVVpfhE/7T7o6jA8RqPY1jQI9L9kvYKzkJnnhIAqER0EAd6u2beIiIiIiIiI1JySXSIiIiIiIiIi4jE0jFFERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIiIiIiHkPJLhERERERERER8RhKdomIiIiIiIiIiMdQsktERERERERERDyGkl0iIiIiIiIiIuIxlOwSERERERERERGPoWSXiIiIiIiIiIh4DCW7RERERERERETEYyjZJSIiIiIi8v/t3Xl8VPW9//HXZGGTNSCrAQIRjCAQsSACMiy1LhW1ihsobtelVS+tW69Kr7UupVarXi2VSmulgj9LtWiLoiipoEhEiCCyBAQEZBEQCRCBJPP7Y0owBkKAMJM5vJ6PRx7kfM93Tj5nPJ45857v+Y4kKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFRkq8C5AkSZIkSUevXQU7+Grh5/EuIzAaZbWmRr068S4jrgy7JEmSJElS3Hy18HNeP+/eeJcRGGdNeoBmPU6Idxlx5W2MkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBgJE3bt2rWLkSNHkp6eTu3atRkwYAC5ubmEQiEmTZoU7/IUUF/vgvHL4Fd5MGoezFgPxZF4VyVJikTg483w6Cdwfx48uxjWFca7KkmSVJVCyUn0+NXVXPbpn7l80V847dGbSK6ZGu+ylABS4l1AZUQiEYYMGUJubi733XcfmZmZjB8/ngsuuACA7OzsOFeoIHp5BTzyCewugeQQRIC/rYD0Y+B3PaFt3TgXKElHqS074fYPIW9z9FO7UAhKIvDMYrgiE27OgqRQvKuUJEmHq8utP6L5aZ2ZNOA2incXMfC5u+h+7xXkjvxTvEtTNZcQI7vGjBnD5MmTmTp1KjfccAMDBw5kzJgxJCcnk5aWRuvWreNdogLmrTXw0Lxo0AXR0Vwl/xnRtWYH3Phe9M2WJCm2ikrg5g9g3ubocgnRc3SE6M/zS+HZJXEsUJIkVZnjhw5k/pMvs2PdZnZu2kreoy+ReUmYUFJCRBmKo4Q4QkaNGsWwYcPo1KlTaVtycjIZGRmlo7qWLFlCr1696NChA7169SI/Pz9e5SrBRSLw+0Wwv0EBJRHYuBNe+TymZUmSiN5OvujraMi1P3/Jh227Y1aSJEk6AmrUr0PdVseyecHy0rZN85dTo14d6qYfG8fKlAiq/W2M+fn5LF++nCeffLLculWrVnHhhRcCcOONN/KTn/yEYcOG8de//pUbbriBd95554Db37p1K82bN6eoqIhQyHseBLXbdyfz1+9X2CcSKeGxt5dxY+fOMapKkgTQ+rYXqf+9cwkl7/8SZmcJtD/nWrb8+68xrEySJB2q9imNuLN+nzJtKXVrA7Dr6x2lbbu+3g5A6n/Wad/69w+zrOireJdRJWrUqEFBQcFBP67aj+xas2YNAE2bNi3TvmjRIlauXEl2djYbNmxgzpw5XHbZZQBcdtllzJkzhy+//PKA258/fz6FhYVEIs46rqiUBk0P2CcUSqpUP0lS1Upp2KzCoKu0n+doSZISWtG26DfPpNavU9pWo8ExAOze5rfSqGLVfmRX48aNAVi6dCk9evQAohPW33XXXZSUlJCdnc2qVato1aoVycnJQPQWx5YtW7Jq1SqOPbZywxtzcnLo3bv3kdkJJZQFX8Hw6Qful9G0AXN3OnGXJMXSHR/Cv9dWfBsjwDOPPcwP//ZwTGqSJEmHZ33uIl4/794ybbu27mDbmi9J69SWrcu+AKBx5wx2Fexg26oDD2w5mk2blkOzHifEu4y4qvZhV1ZWFpmZmdx9992kpqZSt25dRo8ezdy5c6lTpw4dO3Zk7ty58S5TAXJiQ2h9DKzaHp3seH8G+70IkhRz5xwH09ZW3KdWMoSbx6YeSZJ05OS/8DZdbrmA9bMWUlJUTLfbLmbp/8shUnKgj710tKv2YVdKSgoTJ07kxhtvZPjw4aSnpzNixAjq16/PsmXLSEpKIj09nTVr1lBcXExycjLFxcV88cUXpKenx7t8JaBQCH6cBT+fve/1SUDjWnB+m5iWJUkC+jSLfiixaMv+R3ddlQl1U2NYlCRJOiLmPfkyNdPqc37O7wglhVjxzw/46EHn5NSBVfuwC6Br167MnDmzTNtTTz1Fv379gOh8Xt26dWPChAkMGzaMCRMmkJ2dXelbGKXvGtQS7u0Kv5kPu77zbuq4Y+DxntCwRnxqk6SjWUoSPHkq3JELczfvbQ/95+fKTLi2Q7yqkyRJVSlSXELuyD+RO/JP8S5FCSYhwq7vKiwsZPHixYwYMaK07Q9/+APDhw/n/vvvp1GjRjz//PPxK1CBcH4bGNACJq+G334SbXvyVDj1WEjyizslKW4a1oAxvWHBFrjqP3Ms3nQC/DAdmvrlTJIkSUe9hAy75s2bR3FxMdnZ2aVtJ5xwArNmzYpjVQqi+jXg0nZ7w67T/HIvSaoWQiHo3Gjv8jWO5pIkSdJ/JGTY1bNnTyKRiqYOlyRJkiRJ0tEoKd4FSJIkSZIkSVXFsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAVGwoRdu3btYuTIkaSnp1O7dm0GDBhAbm4uoVCISZMmxbs8Sar2SiLwwQZ46lN4YgG8tQZ2l8S7KkkSwFc7YcJn8PgCeHYJrNwW74okKf7antuLsyb9iqFLx3FR7u/jXY4SSEq8C6iMSCTCkCFDyM3N5b777iMzM5Px48dzwQUXAJCdnR3nCiWpelu2Fe74ED7fvvdTjhKgUQ14oDv0PDae1UnS0SsSgTGL4c/5UBSB5FD0w4k/LIKBLeC+bKidEFfsklT1dn69nUV/eoNaxzag0/U/jHc5SiAJ8dI5ZswYJk+eTF5eHp06dQIgHA6TkZFBWloarVu3jnOFklR9rSuE69+Dgt3R5W8P5vp6F/z3B/BsH+jcKC7lSdJRbewS+OOSvcvFkb2/v7MWdhTBk6dCKBT72iQp3ta+Ow+A1md+L86VKNEkxG2Mo0aNYtiwYaVBF0BycjIZGRmlo7puv/12MjIyCIVCfPLJJ/EqVZKqnQnLYOvusiHXHiVERxA8syjWVUmSCnbDn/L3vz4CzPwS5m6OWUmSJAVCtQ+78vPzWb58ORdeeGG5datWrSoNu84//3zeffdd2rRpE+sSJanaikRg0ufRN0z7UwJ88CVs/CZWVUmSAKZ+AbsOMHdiUghe+zw29UiSFBTV/jbGNWvWANC0adMy7YsWLWLlypWlYVefPn0O6++Ew2GSkqp99qc46fxSNAWoWbNWnCuRDk4opQadJxQcsF8EaN+1B9+s+PjIFyVVIc/PSmRNL7qHpkPuJVTBNWhxSYTxr03loVOdq0ZScLVPacSd9Q/vPb326t8/zLKir+JdRpWoUaMGBQUHfj/zXdU+3WncuDEAS5cuLW2LRCLcddddlJSUODm9JFUgUrSLkp07KtW3eJv3yUhSLBVv21xh0AVASTHF2zbFpiBJkgKi2o/sysrKIjMzk7vvvpvU1FTq1q3L6NGjmTt3LnXq1KFjx45V8ndycnLo3bt3lWxLwXPKq9F/d+7cGd9CpEPw4McwaeW+5+yC6KcenRvB7DVL99NDqr48PyuRbfwGzn4rOnfi/oSSU3jutkvp85tLY1eYJMXY+txFvH7eveXaQ0lJJKUmE0pJgVCI5JqpRCIRSnYVxaHKxDFtWg7NepwQ7zLiqtqHXSkpKUycOJEbb7yR4cOHk56ezogRI6hfvz7Lli3z1kNJOoCh7WDyKthdsu/AKwL8V9V8biBJOghNasFFbeGl5ftenwQc3wB6Nd33ekkKuvYXnU6fJ24uXb5ixQS2rdrAxB4/jmNVSgTVPuwC6Nq1KzNnzizT9tRTT9GvX784VSRJiaNtvejX1t+WC9u+8yFYSgju7eYbKUmKl591gu274V+ro+HWtz+UOKEhPN4TkkNxKk6S4mzpSzksfSkn3mUoASXksKjCwkIWL15cZr6uW2+9leOOO47Vq1czaNAgOnXqFMcKJal66d4EXj8D7u26t+3WE+GNM+CH6fGrS5KOdilJ8MuT4cUwXNpub/vTveC5vpBWM26lSZKUsBIy7Jo3bx7FxcVlwq4nn3yS1atXU1RUxLp161iwYEEcK5Sk6qd2CpzfZu/ylZnQ0DdRklQtZNaHn3Xeu9zzWEhyRJckSYckIW5j/K6ePXsSiVQwk6ckSZIkSZKOSgk5skuSJEmSJEnaF8MuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGAkTdu3atYuRI0eSnp5O7dq1GTBgALm5uYRCISZNmhTv8iQdhkgEPvwSnsuHv+TDJ19F26REtWIb/HUZ/GkJ5KyFopJ4VyRJUuwUR+C99fDnfBi3FBZ/He+KlIiSaqRw2m9v5MIPnmZo/jgumPEkJ1xzVrzLUoJIiXcBlRGJRBgyZAi5ubncd999ZGZmMn78eC644AIAsrOz41yhpEO1cAvc8xF8vr1se8cG8HB3aF03LmVJh2TLLvjFHHh/Q9n2tBpwTzfo1zwuZUmSFDNzNkVfC9cVlm3vlgYPdodmteNTlxJPUnIyhRu28Oalv6Jg5XrSTmzD9yfcyzdfbmHFazPjXZ6quYQY2TVmzBgmT57M1KlTueGGGxg4cCBjxowhOTmZtLQ0WrduHe8SJR2Czwrg+vdg9fby6/K3wnUzYENh+XVSdfRNMfz4ffhgQ/l1X+2C23PLh2CSJAXJJ1/BT2bu+/pt3ubotd3Xu2JflxJTUeFO5v7mRQpWrINIhM0LVrDqzdk07ZEV79KUABIi7Bo1ahTDhg2jU6dOpW3JyclkZGSQnZ3Npk2bOPvss+nYsSMnnXQSP/rRj/jyyy/jWLGkyvjjYthZDPu6w6skEg0IXlgW87KkQ/LGaliydd/H8567ch9f4C26kqTg+v1CKC7Zz7UdsLYQJq6IcVEKjFBKMs16ZvHVwpXxLkUJoNqHXfn5+SxfvpwLL7yw3LpVq1aRnZ1NKBTizjvvZPHixcyfP5/27dvz85//PA7VSqqsrbvg7bX7vhjaIwL84/No8CVVd6+shFAF6yNERzMudN4SSVIArdsBuRsrvraD6OuldChOfehadm8rZNnf/h3vUpQAqv2cXWvWrAGgadOmZdoXLVrEypUryc7OJi0tjXA4XLru1FNPZfTo0Qf1d8LhMElJ1T77U5x0fukbAGrWrBXnSoKjZqsT6PD4xwfst70Ijkk7lpIdW2NQ1dHB4/nIyPrjKlIaNj1gv36DL2HrrH8c+YKOEh7PChqPaSWqOh170f6BnAP2W7u9mJo16xz5gpRQ2qc04s76ffa7/nv3DefY7h2ZMuQ+SnYXxbCyxNS/f5hlRV/Fu4wqUaNGDQoKCg76cdU+3WncuDEAS5cuLW2LRCLcddddlJSUlJucvqSkhNGjRzN48OCY1inp4BTvqNzwlkhxESU7dxzhaqTDV7xjC5FK3KNYvN2hXZKk4KnstV1J4cG/adXRrcf9V9Hy9C5MufiX7Nzs8aPKqfYju7KyssjMzOTuu+8mNTWVunXrMnr0aObOnUudOnXo2LFjmf633HILdevW5eabbz6ov5OTk0Pv3r2rsnQFyCmvRv/duXNnfAsJmGumRycy3d9w9yRgYHoKH+3Yxwz2OmQez0fGmMXRn4o0qgHrP3yD1Gr/UVPi8HhW0HhMK1FFInDRNPh82965Kr8rCbioU0N+7vGt71ifu4jXz7u3XHuPX11Diz6deeOi+9i5yTs9KmvatBya9Tgh3mXEVbUPu1JSUpg4cSI33ngjw4cPJz09nREjRlC/fn2WLVtW5tbD22+/nfz8fF577TVvSZQSwDUdYMSsfa8LAaEQDGsf05KkQ/ajNjDhM9i+e/8B7vDjMeiSJAVSKATXdYCRc/azHkhJgkszYlqWEtgxxzXhxOvOpvibXVw06+nS9vWzFjF16INxrEyJoNqHXQBdu3Zl5syZZdqeeuop+vXrV7p8991389FHH/Gvf/2LmjVrxrpESYegTzP4ny4wal70E8BvfwqYkgQPngydGsWrOungNKkFT50Kt34AX+/e255ENPwa1h6GtotXdZIkHXlnHQfrC+GphdFw69vXdrWS4ZHvQdt68apOiWb76o081+KieJehBJWQny8XFhayePHi0vm6FixYwMMPP8wXX3zBaaedRrdu3bjgggviXKWkyriwLbw6KDrKa4+bs+Bf34cBLeNWlnRIOjWCV78fDXH3GJIBL4ZhRKfop96SJAXZVcfDKwPKjs7/Wafotd2pB/4eF0mqEgkxsuu75s2bR3FxcWnY1alTp0pNCiypempeB246AcYuiS5fdXx865EOxzEp0RD34XnR5TtOims5kiTFXHpd+O9OMG5ZdPlyp6WQFGMJGXb17NnTcEuSJEmSJEnlJORtjJIkSZIkSdK+GHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTASJiwa9euXYwcOZL09HRq167NgAEDyM3NJRQKMWnSpHiXF3PFEXh/A/xtOfxrFWzZFe+KJElSEH1TBFO/iF5zvPMF7CyOd0XSoSuJQO6X0eP5n5/Dpm/iXZF0eJZthZdXRH+Wbo13NVXv1IevY8jsP3D5kucZMucZetx/FUmpKfEuSwkgIY6SSCTCkCFDyM3N5b777iMzM5Px48dzwQUXAJCdnR3nCmPrnS/gkU/gy2+9OKeE4Edt4aedIDVhIkxJklRdRSLwl6Xw53zYXrS3vW4KXN8RLmsHoVD86pMO1vsb4OGPYW3h3rbkEJxzHNx5EtRKiHdGUtSa7XDfXJi7uWx7tzS4LxuOOyY+dVW1hX9+g9n3j6OocCc10+oRHnMbXW79EXmPvhTv0lTNJcQpfcyYMUyePJm8vDw6deoEQDgcJiMjg7S0NFq3bh3nCmPn7S/g57PLtxdF4KXlsKEQHvmeF5+SJOnwjF4Ef8ov376tCB5bAN8UwzUdYl+XdCg+2AAjZkVD3G8rjsBrq6IB2P+dCil+aKwE8OU3cO0M2Lyz/Lp5m+Hq6TCuHzSvHfvaqtrXS1bvXQiFiJREqNeuRfwKUsJIiNP5qFGjGDZsWGnQBZCcnExGRkbpqK7zzz+frl27kp2dTd++fcnLy4tTtUdOUQn8dn7098h++uSsg9kbY1aSJEkKoHWF0RFdFRmzeN9vtKTqJhKJ3hURiez7GjoCfLgR3l0X68qkQ/OX/Oj5t2Qf60qAr3fBcwc4hyeSk24+n6FLx3HZJ38irVMbPh3zz3iXpARQ7cOu/Px8li9fzoUXXlhu3apVq0rDrr/85S98/PHHzJ07l9tvv51rrrkm1qUecR98CV/u3H/QBZAUgldWxqwkSZIUQK99fuA+RRGYvOrI1yIdrnlfwcptB7iGBl72GloJYHcJvPr5voOuPUqAf66KjsANgvlP/YMXMq/gldP/m8XPv0nhhq/iXZISQLW/jXHNmjUANG3atEz7okWLWLlyZWnY1aBBg9J1X3/9NUlJB5fjhcPhg35MrDU+88e0vPZ3FfYpicA/ps/h0d69YlTV0aHzS9EJ0mrWrBXnSoLN5zk2fJ5jw+c5Nnyej4zjfvIsDfteSig5db99IkW7Gfm7P3Hts7fGsLLg85iueg1Pv5z0W/5cYZ8S4N1PllMzfEJsijpKeDxXvZSGzcn644GT2W+KoUnrTHZvTIxPJdqnNOLO+n0q7PN1/ho2L1hJ3/+7lSkX3RebwhJU//5hlhUFIxSsUaMGBQUFB/24ah92NW7cGIClS5fSo0cPIDph/V133UVJSUmZyemvu+463nzzTSKRCG+88UZc6j2Sir858H/gSEkxJYUHfyBIkiTtUfLNNuAAE4AmJf2nn1S9lRQe+DiNREoo9hpaCaBk5/bK9/2m8n0TRVJqMvWds0uVUO3DrqysLDIzM7n77rtJTU2lbt26jB49mrlz51KnTh06duxY2vfZZ58FYNy4cdxxxx1Mnjy50n8nJyeH3r17V3n9VWnzTjj7zehtA/sTSkrm/sv6cfHdTqJRlU55Nfrvzp0+r0eSz3Ns+DzHhs9zbPg8Hxkffgk3zay4TygpmX/99jY6j70tNkUdJTymq972IvjBlIpv6QqFkvjZmV249laf96rk8Xxk/Pj96DzN+7uVMSkEXRvB7E1rY1rX4Vifu4jXz7u3TFtqvTq0OasHn7+Ry66tO2iU1YauIy7ki5yP41Rl4pg2LYdmPY7ukarV+749ICUlhYkTJ9KiRQuGDx/OiBEjOOuss+jXrx9dunTZ562HV1xxBdOmTWPTpk1xqPjISasJgyv44smkEDSqAWcfF7uaJElS8JzSBDo22P+FYhLRr7fv1DCGRUmH6JgUuCRj/+uT/tPn/KPnC96V4K7MPMCcXREYfnzMyjlyIhHaXXg6F37wNEOXjmPAn+9k9dtzmXXP2HhXpgRQ7Ud2AXTt2pWZM8t+vPjUU0/Rr18/ALZt28ZXX31Feno6AK+99hppaWmkpaXFvNYj7bbOsOEbmLE+Gm6VfGuUV/1UeKoX1N3/9BqSJEkHFArB4z3hpvdhxbfuAEsi+garfX34zfei/aREcNMJsLYQ3lxT/hq6dgo8eSo0dlopJYhTm8LPu8CoedHlPYfznlPybZ2hT7N4VFa1dm8r5M1L7o93GUpQCRF2fVdhYSGLFy9mxIgRAGzfvp0hQ4awfft2kpOTSUtL47XXXiMUwCuwmsnwWA/I/TL6jTHv/Gdk6u2d4Zx0qGfQJUmSqsCxteCFfvD2F/CLudG2nsfCD1vDgBaQWu3vD5D2SkmCB0+GH7WJfnP5lOh3YPHfJ8K5raFhjfjWJx2si9rC95rA31fA+M+ibZe2gwvbQNt68axMqh4SMuyaN28excXFpZPTN2vWjA8++CDOVcVOUiia5p/adO998Je2i29NkiQpeGomw9npe8Ou//PLnpXAQqHoLbqnNNkbdl2RGd+apMPRpi78rPPesOu2zvGtR6pOEjLs6tmzJ5FIBbO0S5IkSZIk6ajkAHRJkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJOqr0efwn9Hzw2niXsU9Dl44jrXNGvMtIaCnxLkCSJEmSJOlQNT+tE91uu5jGXdoBsGneZ+T99iXWzVwQ58qiut12MY27tuftKx+uVP8XMq84whUFnyO7JCWMnJwcMjIyCIfDDB8+vNz6Bx98kPz8/P0+fvPmzXTv3p26detW+Hcef/xxBg0axIoVK2jRogXhcJgrr7wSgIULFzJq1KjD2xFJCqDDPUcD3HLLLfTt25eHHnqoTPuMGTM49dRTOe2003j00UcByM3NpXfv3px22mnce++9pX2feeYZBg4cSDgcZvfu3Z63JSngjhvUne+Pv5dVUz/ipZNv4KWTb2DV1I/4/oR7OW7gyft8TCi56qKQUEpylW1LVcewS1JCufbaa8nJyaFBgwbMnDmztL2kpIR58+Zx/PHH7/ex9erV46233uLUU0/db5/du3eTl5dXunzOOeeQk5PD888/D0BWVhZz5swhEokc/s5IUsAczjl69uzZpKSkMH36dObMmcP69etL17Vr1453332X999/n3/+85/s2LGD7Oxs3nvvPd5//31mzpzJ1q1b+fzzz5k/fz5vv/02OTk5pKamet6WpIDr+cA1LP1bDgtGv8rugh3sLtjBgtGvsmziv+nxwDUAXJT7e7qMuJCzX32QYZ+9QJOu7QFIPaYW4TG3MTR/HOf/+3e0DHc94N9r3qsTQ5eOo8OwQVz04WgGT/0tAC1O78IPp4zi8sV/YfDbj9L6zO8B0PrM73HSrRfQqn83hi4dx9Cl40iqUfFNdletnUjjru0JJSdx+ZLnadgxPfq3T+vEVWsn0uaHvQCo3bQhV37+Iql1ax/akxdghl2SElLnzp1Zs2ZN6fLHH39Mhw4dKnxMamoqaWlpFfYZN24cl112WenylClT6Nu3Ly+88EJpW7t27ViwoHoMiZak6uhQztGzZs1iwIABAPTr14+PPvqodF3Lli2pUaMGAMnJySQlJZGamgpAcXExLVu2pE6dOrz55pts376dAQMGcN9995U+3vO2JAVT/fYtqdemGcv/8V65dZ+9MoP6bZtTv10LADKHhHnvtt/zQuYVbPpkOQAZ5/fhs1emM/6E4cz7v1cY8Kc7qdO84vcLACm1a9KkWyb/OH0E/zzrLuq1bc6gv/ycT576BxNOvJqPHvwr/Ub/lLRObfn8jQ+Z/+QrrJmWxwuZV/BC5hWU7Cqq1P5FiktYP2shLfqcBECLviexdflaWvTpHF3ucxKb5n3G7m2Fldre0cSwS1JCmjlzJpmZmaXL+fn5tG3b9rC2WVJSwpQpU/jBD34AQIsWLVi8eDFvvvkmzzzzDJs2bQKgTZs2LFmy5LD+liQF2aGco7ds2UL9+vWB6EjcLVu2lOvz1ltv0b59e2rVqgXA+PHjycrKomHDhqSkpLBhwwZCoRDvvPMOy5cvLx2p63lbkoKpVlo9AArXby63rnDDV9E+jaOvLYvHvcXX+WuIlJSUhk3rPviUz1/PJVJcwmcT3+WrT1fS9txeB/y7oaQkPnroBYoKd1JcuIuM805j/ayFrHhtJpHiEta8M5fP35xN+yH9Dnsf1834pEy4lffbl0rDr+a9O7P2vU8O+28EkWGXpIQyduxYwuEwrVq1olu3bvvs8+mnnxIOh8v8/PrXvz7gtl9++WUGDx5culyzZk3q1KlD7dq16du3L8uWLauq3ZCkQDqcc3TDhg3ZunUrAAUFBTRs2LDM41avXs3DDz9cOmcXwOWXX86iRYv44osvmD9/Pg0aNKBfv+gbi9NPP53Fixcfkf2UJFUP32wuAKB2s/KjsWo3bRTtsyn62rJ9zZfl+mxfXbZt26ovKzWyq6hwJzv/87cB6rRozLbvbmvleuq0aHzAbR3I2hnzaXbqidSoX4f67Vqy/B/vkVwjhTot0mjRpzNrp88/7L8RRH4bo6SEcu2115aZiHiP448/npdffhmAE088kZycnIPe9uLFi8nJyWHcuHHk5eXx1FNPcfPNNxOJRJg9ezY333wzACtXrqR3796HtR+SFESHc47+8MMPmTBhAueeey7vvvsuF198cem6nTt3ctVVVzF69OjSLxnZuXMnNWvWJCkpiXr16lGrVi169erF+PHjAZg/f37pbemetyUpmLYu+4KCz9eTMfg01n1nhFPGeadR8Pl6tn62FoBISfm5G4857tgyy3XTj+XLOQceCRwpKSmzvGPtJpr36vSdbTVlx9pN++x/MDYvWEGkpIQT/+uHbPhwEZGSEtbO+IQOlw+iTtNGbPhw0SFvO8gc2SUpELp27VqpT/AHDRrE3LlzGTRoEJ988gnr1q3jkUceAeCee+7hrbfe4o033qBbt2506NCBU045hdNOO40zzjiDFi2i9/svXbqUzp07H9H9kaQgqcw5+nvf+x47d+6kb9++dO3alWbNmpWeo8ePH8+nn37KDTfcQDgcZs2aNbz66quEw2FOP/10jjvuOI4//nhOPvlkioqKCIfD7Nixg549ewKetyUpyHJ/8RyZl/Sn0w3nklq3Nqn16nDiDT8k8+L+5I78c4WPbX7qiaSfcQqh5CTa/agvjU5sw4p/fXDQNSyf9D7NembR5pyehJKSaNW/G+k/OIVlE98FoHDj1xzTqskhfwvkuvcXcOL157B2RnQU19r35nPi9eew4aMlFO/cfUjbDDpHdklKGHtud9mXpKQkunTpQn5+foXf9jV16tRybXfcccd++51xxhll2hcuXEj37t0JhUIHUbkkBV9VnKOffvrpMsvNmzcvPUdfffXVZdYNGTKEIUOGlNvG448/XmbZ87YkBduqKR8yddhDdP3ZRXS7IzoqeNO8z5g67KHScGh/lv9jBu2H9OP0p/+b7Ws3Me2637Lji00HXUPBinW8c81vOPl/htL7dz9h++oveffmJ9n8n4nwV7w2k3bn9+HST/5EKBTixS7XVnqSeoC10+fT9oe9WDsjOnpt7YxPqFH/GOfrqoBhl6TA2NetM1UtKyuLrKysI/53JCloYnGO3hfP25IUfGtnzK8w2JrY48fl2maMeHofPQ9s3cwFvJB5Rbn2NdPyWDMtb5+P2bVlG29c+L+V2n4oKTr669th2OLn32Tx82+WLheu/4rnWlx0EFUffbyNUZIkSZIkqRpo1KkNJbuL9jmhvirPkV2SJEmSJEn/cV7O76h7XJNy7ave/Ih3f/z4YW9/0Av30KznCeXad2/7hqTUZD56aDy7tu447L9zNDPskiRJkiRJ+o9J4Z8e0e1PHfrgEd2+vI1RkiRJkiRJAWLYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYGREGHXrl27GDlyJOnp6dSuXZsBAwaQm5tLKBRi0qRJ8S5PUhVYvX3v719+E786JEllFZXs/X32RiiOxK8WSdLRKblWDX70/v8xdOm4eJeiBFHtw65IJMKQIUN49tlnuffee/nnP/9JRkYGF1xwAQDZ2dlxrlDS4Vi7A26ZCRe8vbftnDfh57Nhy8741SVJgpdXwDlv7V2+8X344Vvwz8/jVpIk6SiUfcclbFu9Md5lKIGkxLuAAxkzZgyTJ08mLy+PTp06ARAOh8nIyCAtLY3WrVvHuUJJh2pDIVw9HTbvhG8PFCgB3vkClm6FP/eFeqnxqlCSjl5/yYf/W1i+/ctv4L482F4Ml2TEvCxJ0lGmcZd2tOrfjQ9/+Tz9x94e73KUIKr9yK5Ro0YxbNiw0qALIDk5mYyMjHKjun75y18SCoX45JNPYl2mpEPwxyXRoKtkH+tKgBXbYMJnsa5KkrTxG3h6UcV9Hl8AW3fFph5J0tEplJzEab+9kQ/ufpaSXUXxLkcJpFqHXfn5+SxfvpwLL7yw3LpVq1aVCbvmzJnDBx98QJs2bWJZoqRDtKMI/rVq30HXt01cARHnh5GkmHptFZQc4Ny7uwQmr45NPZKko1PnH5/HpvnLWf/BPoYaSxWo1rcxrlmzBoCmTZuWaV+0aBErV64sDbt27tzJT37yEyZMmEA4HD6kvxUOh0lKqtbZ3z51fik6k3fNmrXiXEmw+TxXvZotO9LhiXkH7Ld5J9Rp1ISSwoIYVHV08HiODZ/n2PB5PjKO+8kfadjnMkIp+7+PPFK0m/959E8Mf/bWGFYWfB7TseHzHBs+z7ERhOe5fUoj7qzfp0xbvbbN6XjlGbz6/TviVFXi6t8/zLKir+JdRpWoUaMGBQUH/16wWoddjRs3BmDp0qX06NEDiE5Yf9ddd1FSUlIadv3iF79g2LBhtG3bNl6lSjpIJbsKK9UvEikhstuvZ5SkWCrZ9Q2EQhV3CoUo2bkjNgVJko46zXqcQO0mDfjRe08CkJSSTOoxtbl0wZ+Ydu0jjvZShap12JWVlUVmZiZ33303qamp1K1bl9GjRzN37lzq1KlDx44dmTlzJrNnz+bXv/71Yf2tnJwcevfuXUWVx84pr0b/3bnTr607knyeq14kApfkwPKCspPTf1sS0LNpEh9t3xbDyoLP4zk2fJ5jw+f5yHhvPfz3rIr7hJJTeGXUTzn52Z/GpqijhMd0bPg8x4bPc2wE4Xlen7uI18+7t0zb8tfe54vpe+8EObZ7R/o88RNeHXQ732zaGusSE8q0aTk063FCvMuIq2p9315KSgoTJ06kRYsWDB8+nBEjRnDWWWfRr18/unTpQlJSEv/+979ZuHAhGRkZtG3bltWrV/ODH/yAN998M97lS6pAKARXZu4/6ILofF5D28eqIknSHr2aQtu6+79QTAI6NoDstFhWJUk6mhQX7mLH2s2lPzs3bYVIhB1rNztZvQ6oWoddAF27dmXmzJns2LGDxYsXc9NNNzF37tzSWxh//vOf88UXX7BixQpWrFjBcccdx5QpUzjjjDPiXLmkAznnOLj6+Ojv3z4Z7fn99s5watPvPkqSdKQlheCJntC0dnR5zw2Ne/5tdQw81uPAdzpKklRV1s1cwAuZV8S7DCWIan0b474UFhayePFiRowYEe9SJB2mUAh+kgW9m8LfVsC8zdG2nsfCRW2jowYkSfHR6hh4MQz/XBX99txNO+HYWnBuOpyVDsck3FWkJEk6WiTcZcq8efMoLi4uHdn1XStWrIhtQZIOW7fG0R9JUvVSNxUubRf9kSRJShQJF3b17NmTSKSiWX4kSZIkSZJ0tKr2c3ZJkiRJkiRJlWXYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJUhzk5OSQkZFBOBxm+PDh5daPGzeOqVOnAvDQQw/Rt29fbrnllnL9Lr30UsLhMN27d+f8888HIBwOEw6H6dSpEyNGjCjtm5eXR2pqKgBFRUVcd911Vb9jkpTgKnt+Xrx4Mb1796Zv37789Kc/Ldfvscceo1WrVjzwwAOlbVdddRW9evUiHA7zzjvvAHD11VcTiUSO3A5J0lHIsEuSpDi59tprycnJoUGDBsycObPMutdee42BAweyfv165syZw/Tp00lJSWH27Nll+r344ovk5ORw/fXXc/bZZwPRN2o5OTkMHjy4tA1g9OjRnHzyyQCkpKRw7LHHsmzZsiO8l5KUeCpzfm7SpAlTpkxh+vTpbNy4kSVLlpTpN2zYMMaNG1du23/729/IyclhwIABAPTs2ZNp06YduZ2RpKOQYZckSXHWuXNn1qxZU7q8efNmatWqRSgUYvbs2fTr1w+AAQMGkJubu89tvPbaa5x77rll2nJycgiHwwDk5+dz7LHHUq9evdL14XCY119/vYr3RpKCo6Lzc+PGjalbty4AycnJhEKhMo9t2rQpSUll326FQiEuueQSLr74YjZv3gxA//79mTx58hHeE0k6uhh2SZIUZzNnziQzM7N0eenSpbRp0waALVu2UL9+fQDq1avHli1byj1+27ZtFBQU0KJFi3LbqFGjBgBPPPEEN998c5nHtWnTptxIBEnSXhWdn/dYsGABGzdu5Pjjjz/g9h577DHee+89LrnkEh5++GHAc7EkHQmGXZIkxcnYsWMJh8O0atWKbt267bNPw4YN2bp1KwAFBQU0bNiwXJ8pU6Zw5plnlmmbNGkS5513HgBffPEFAM2bN6+64iUpwCpzfgbYunUrN998M2PGjKnUdhs1agTA4MGDWbBgQVWUKknaB8MuSZLiZM+cMN+evBggMzOTlStXAtC9e3feffddAKZNm0aPHj3KbefbwdYekydPLp2v69NPPyUvL48zzzyTvLw8br31VgBWrlxZqZEIknS0qcz5ORKJcM0113D//ffTsmXLSm23oKAAiI4Yy8jIADwXS9KRkBLvAiRJUllpaWns2LEDiI7G6tKlC3379qVLly6ccsoprFu3jnHjxnHHHXdQXFzMkiVLOPHEE0sfv3HjRlJTU2nQoAEAgwYNYtCgQaW/P/nkk0B0Tq9rr702xnsnSYnr2+fnnJwc3nnnHTZu3AjAo48+SqtWrUrPz88//zxPPPEEX3/9NVu3buU3v/kNV155JV9++SU1a9bkueeeA6IfZJx11lnx2iVJCiTDLkmS4iAcDpdOHr8vgwcPZurUqQwaNIiRI0cycuTI0nXNmzfnjjvuAKKTIn/wwQdlHtukSRPeeOONfW536tSpABQVFbFhw4Yyc9FIkg7u/Lxnkvlv23N+vvLKK7nyyivLrHvllVfK9Z81axbXX3/94RUtSSrDsEuSpGrou2+QqlpKSgpjx449on9DkoKoqs/Pf/7zn6t0e5Ik5+ySJEmSJElSgBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICI2HCrl27djFy5EjS09OpXbs2AwYMIDc3l1AoxKRJk+JdniRJpXYW7/197Y741SFJKm/19r2/7y6JXx2SKtbn8Z9wxcoJDF06rvSnVf9u8S5LCSIl3gVURiQSYciQIeTm5nLfffeRmZnJ+PHjueCCCwDIzs6Oc4WSJEFRCYxdAi8u39s2eCr0PBZ+1hna1YtfbZJ0tFvyNfxuAXy4cW/bmVPg8vZw1fGQHIpfbZL2bclfpzLrnrHxLkMJKCHCrjFjxjB58mTy8vLo1KkTAOFwmIyMDNLS0mjdunWcK5QkHe1KInDvHJj6Rdn2CJD7JVw9Hf7UB9rXj0t5knRUW/Q1XDcDdhWXbf96N4xeBJ9vg/uyIWTgJUmBkBC3MY4aNYphw4aVBl0AycnJZGRklI7qatu2LSeccALdunWjW7duTJkyJV7lSpKOQu+uKx907VECFBbDI/NjWpIk6T8e/jgadO3vrsV/rYbcjftZKSlu2v2oL5d9+mfOf/dxuvz3jwglJ0SEoWqg2o/sys/PZ/ny5Tz55JPl1q1atYoLL7ywdHnixIl07tw5luVJkgTAxBWQFIqO8NqXkgjM3gQrt0GbujEtTZKOaku+hgVbKu6TFIKJy6O3nUuqHj4dO5nZvxrHN5sLaNylHf1+P4LkmjWY+5sX412aEkC1D7vWrFkDQNOmTcu0L1q0iJUrV1bZfF3hcJikpMRLiTu/9A0ANWvWinMlwebzrCDxeD4yTvjj56Q2bHbAfqecNYStua/GoKKjg8ezgsZjuuo17HsZ6bc+V2Gfkgi8kfcZT/bNik1RRwmP59gIwvPcPqURd9bvU6Zt8/y9k6Bu+ngZc3/7/8i+/RLDrkro3z/MsqKv4l1GlahRowYFBQUH/bhqn+40btwYgKVLl5a2RSIR7rrrLkpKSsqEXUOHDqVLly78+Mc/ZsuWLbEuVZJ0FIvs3lm5fkW7j3AlkqRvK6n0+bly/STFSUkEnFdPlVTtR3ZlZWWRmZnJ3XffTWpqKnXr1mX06NHMnTuXOnXq0LFjRwCmT59Oeno6O3fuZMSIEdx888389a9/rfTfycnJoXfv3kdqN46YU/4zOGDnTl+cjySfZwWJx/ORMWoe/H3F/ueDAaiZBCve/Qd1U2NVVfB5PCtoPKar3padcOabULSf28wh+v75+nAWt/q8VymP59gIwvO8PncRr593b5m2toNPY820PHYX7KBRVhu63jaEFf+cGacKE8u0aTk063FCvMuIq2ofdqWkpDBx4kRuvPFGhg8fTnp6OiNGjKB+/fosW7as9NbD9PR0AGrWrMmPf/xjBg8eHM+yJUlHmSEZ8PeVRL9+cR9CwAVtMOiSpBhrWBPOSYdXP9/3KToEJIfgR21iXZmkipxw1Q/oNep6klKTKVy/hWUT/828/3sl3mUpQVT7sAuga9euzJxZNsF96qmn6NevHwDbt2+nqKiIBg0aEIlEePHFF+nWrVscKpUkHa3a1YP7s+EXc4HI3hFeSUR//14TuOXE+NUnSUez2ztHvyAkb/Pe8zJEf08KwcOnwHHHxLFASeW88aP/jXcJSmAJEXZ9V2FhIYsXL2bEiBEArF+/ngsvvJDi4mKKi4s58cQT+f3vfx/fIiVJR50zj4P29eClFTBtLewqiYZgF7WFM1tBSrWfKVOSgql2Cvy+F7y+JnrL+YptUCsJBrSEizOi52pJUnAkZNg1b948iouLSyenb9euHXPnzo1zVZIkwfEN4J6u0R9JUvVRIxnOax39kSQFW0KGXT179iQSqWCGSUmSJEmSJB2VvKFCkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJKiMnJ4eMjAzC4TDDhw8vt37cuHFMnToVgIceeoi+fftyyy23lOt36aWXEg6H6d69O+effz4A4XCYcDhMp06dGDFiRGnfvLw8UlNTASgqKuK6666r+h2TJEk6ClXVtd0bb7xBr169OOOMM/jiiy+AfV/bzZo1i4EDB9K/f39yc3PZvHkzP/vZz47cDkr7YNglSSrn2muvJScnhwYNGjBz5swy61577TUGDhzI+vXrmTNnDtOnTyclJYXZs2eX6ffiiy+Sk5PD9ddfz9lnnw1EL7ZycnIYPHhwaRvA6NGjOfnkkwFISUnh2GOPZdmyZUd4LyVJko4OVXFtN2rUKKZNm8Zjjz3GqFGjgPLXdpFIhEcffZTJkyczbdo0evToQVpaGlu2bGHbtm0x21/JsEuqAgf6tOTBBx8kPz9/v4/fvHkz3bt3p27duhX+nccff5xBgwaxYsUKWrRoQTgc5sorrwRg4cKFpS86UlXp3Lkza9asKV3evHkztWrVIhQKMXv2bPr16wfAgAEDyM3N3ec2XnvtNc4999wybTk5OYTDYQDy8/M59thjqVevXun6cDjM66+/XsV7I0mSdHQ7nGu7lJQUatWqRadOncqt23Ntt2zZMgoLCxk8eDBDhw5l+/btAPTs2ZOcnJwju3PStxh2SVVkf5+WlJSUMG/ePI4//vj9PrZevXq89dZbnHrqqfvts3v3bvLy8kqXzznnHHJycnj++ecByMrKYs6cOUQikcPfGek/Zs6cSWZmZuny0qVLadOmDQBbtmyhfv36QPQY3rJlS7nHb9u2jYKCAlq0aFFuGzVq1ADgiSee4Oabby7zuDZt2rBkyZKq3h1JkqSj2uFc2+3evZtNmzYxY8YMNm/eXG4bNWrUYMOGDSxbtoxXX32VQYMG8cc//hHw2k6xZ9glVbHvflry8ccf06FDhwofk5qaSlpaWoV9xo0bx2WXXVa6PGXKFPr27csLL7xQ2tauXTsWLFhwiJVLe40dO5ZwOEyrVq3o1q3bPvs0bNiQrVu3AlBQUEDDhg3L9ZkyZQpnnnlmmbZJkyZx3nnnAZTO99C8efOqK16SJEllVMW13QMPPMBFF13EhAkTOPHEE0vbv31t16BBA3r27EnNmjU5/fTTWbx48RHZH+lADLukKvbdT0vy8/Np27btYW2zpKSEKVOm8IMf/ACAFi1asHjxYt58802eeeYZNm3aBPiJiarOnpGKDzzwQJn2zMxMVq5cCUD37t159913AUrnZPiub1/87DF58uTS+bo+/fRT8vLyOPPMM8nLy+PWW28FYOXKlRWOhpQkSVLlVcW1XZ8+fZg2bRpXXXUVPXv2LG3/9rVdhw4dWLt2LZFIhPnz55e+D/LaTrFm2CVVkcp8WvLpp5+WfmPJnp9f//rXB9z2yy+/zODBg0uXa9asSZ06dahduzZ9+/Z1Im/FTFpaGjt27ACio7G6dOlC37592blzJ6eccgrr1q3jkUceAaC4uJglS5aU+eRv48aNpKam0qBBAwAGDRrEjBkzeOONN+jWrRtPPvkkEJ334ayzzorx3kmSJB1dDuba7v7772fAgAH83//9X+kHlN+9tktNTWXo0KGcfvrpjB49mv/6r/8C4IMPPiidr1WKhZR4FyAFxbXXXsu9995brv3444/n5ZdfBuDEE088pIkZFy9eTE5ODuPGjSMvL4+nnnqKm2++mUgkwuzZs0vnO1q5ciW9e/c+rP2Q9gSx+zN48GCmTp3KoEGDGDlyJCNHjixd17x5c+644w4AkpOT+eCDD8o8tkmTJrzxxhv73O6er7wuKipiw4YNZUZISpIk6dBU1bXdL37xC37xi1+Ueey+ru2uuOIKrrjiitLlzZs307BhwzJfRiQdaY7sko6wrl27Vupe9UGDBjF37lwGDRrEJ598UuZTlHvuuYe33nqrdPRLhw4dOOWUUzjttNM444wzSif/Xrp0KZ07dz6i+yNdeeWVDBo06IhtPyUlhbFjxx6x7UuSJGmvI31tl5aWxu9+97sjtn1pXxzZJVWBij4tSUpKokuXLuTn51d4n/qeUS3ftudTlH31O+OMM8q0L1y4kO7duxMKhQ6ickmSJEmSgsWwS4qBfd3eWNWysrLIyso64n9HkiRJkqTqzNsYJUmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgIjYcKuXbt2MXLkSNLT06lduzYDBgwgNzeXUCjEpEmT4l2eAuzrXXt/LyqJXx1SVdhVvPf37UXxq0OSJEmH75tvXdt947WdVCol3gVURiQSYciQIeTm5nLfffeRmZnJ+PHjueCCCwDIzs6Oc4UKonWF8PuF8OaavW3nvgWXtYdh7SEpFL/apIO1qxjG5sPflu9tO+MN+GE6/DgLGtSIX22SJEk6OIVF8MxieGXl3rYzpsB5beCmE6BOQrzTr5zjBp5M9l2XUr99S4q2FfLJH15jwehX412WqrmE+F9gzJgxTJ48mby8PDp16gRAOBwmIyODtLQ0WrduHecKFTTrdsDw6fDVTvj2YK4vd8KTn8LSrfDLbAgZeCkBFJXAT3Nh1pdl23eWwMsrYfYm+FMfAy9JkqRE8E0R3PQ+LNgCkW+17yiGFz+DvE3wTO9gBF4t+3Wl1yM3MOPWp1g3cwEptWtyTKsm8S5LCSAhbmMcNWoUw4YNKw26AJKTk8nIyCgd1fXNN99w0003cfzxx3PSSSdx/fXXx6tcBcBvPykfdH3b5NXw73UxLUk6ZK+sLB907REBPt8Gf1gU05IkSZJ0iP76GXyypWzQtUcEWPQ1PL80xkUdIdl3Xsq8x//O2hnziRSXsHtbIVsWr4p3WUoA1T7sys/PZ/ny5Vx44YXl1q1atao07LrzzjupVasWS5YsYf78+fzqV7+KdakKiA2F0SCroum5kkLwtxWxqkg6PC8th4oGIUaA11ZFh8NLkiSp+iqOwMTlFfeJAH9fkfjzDafUrkmTbu2pfWxDLpj+BJfMe5YBz91F3fSm8S5NCaDaD2xcsyY6YVLTpmUP6EWLFrFy5Uqys7PZtm0bzz//PKtXryb0n/vKmjVrdlB/JxwOk5RU7bO/cjq/9A0ANWvWinMlwVG32w/IuKfie8BLIvDeZ5upGW4Ro6qkQ5Scwkkvbj9gt2+KoXlWd775/JMYFCVVHV8HFTQe0woSj+eql9KgKVnPHnhk01e7oEGrdhRtXnPAvtVB+5RG3Fm/T5m2Gg2PIZSURJtzevLWZQ9QuOlretx/Nf3H3sFrZ9wRp0oTQ//+YZYVfRXvMqpEjRo1KCgoOOjHVft0p3HjxgAsXbp3HGYkEuGuu+6ipKSE7Oxsli1bRuPGjfnlL3/JKaecQjgcZsaMGfEqWYmupJLDW0qKD9xHirdICZFI5T7Wi3hMS5IkVWuR4oMYip/g13a7t0XD0k+fncy21V9SXLiLOQ+Pp/FJGc7bpQOq9iO7srKyyMzM5O677yY1NZW6desyevRo5s6dS506dejYsSN5eXl89tlnZGdn88gjjzBr1izOPfdcli5dSv369Sv1d3Jycujdu/cR3puqd8p/BiDt3LkzvoUEyLbd8IMp0cm79ycJGNzpWPJ83pUAbngP5m6q+NbcJjXhg/w8Uqr9RyBSWb4OKmg8phUkHs9VLxKBy3JgWcG+5+yC6PQVberCh+tWJswXaq3PXcTr591bpm13wQ62rdoQ3WkdlGnTcmjW44R4lxFX1f5tTUpKChMnTqRFixYMHz6cESNGcNZZZ9GvXz+6dOlCUlISrVu3JiUlhcsuuwyAnj170qRJE5YsWRLn6pWI6qZGv7K3oteFEuDijFhVJB2ey9pVHHQBXNIOgy5JkqRqLhSCy9vvP+iC6LrL2gXjm+MXP/8mWdedQ52WjUmumUr2nZey8eNlbF+zMd6lqZqr9iO7ALp27crMmTPLtD311FP069cPgCZNmtC/f3/eeustzjjjDJYsWcKGDRvIzMyMR7kKgFuzYMnXkLc5GnrteTFJCkXn67q9M3RuFM8KpcoLt4CrMuG5pdFPOPYEX3t+DzeHK9rHrz5JkiRV3rnpMP+r6Ddu7+va7tx0uKBN/OqrSvOfnkSNBnUZ/OZvIJTEhtxFTLv2kXiXpQSQEGHXdxUWFrJ48WJGjBhR2vaHP/yBa665httuu43U1FTGjRtHw4YN41ajElutFHi6F0z6PPpNdiu3QXII+jSDS9vBKd4irgRz84nQJQ3+33KYvTEa2nZoEB2heE569PiWJElS9RcKwd1doEeT6LXdvM3R9s6NoqP1z2gZjFFdAEQifPTgX/nowb/GuxIlmIQMu+bNm0dxcTHZ2dmlbe3atSMnJyd+RSlwaiZHg4CLM6LBQIgAvWjoqHR68+hPJBIdrZjk8SxJkpSQQiH4fqvoz54prXyvIu2VkGFXz549iThJnWLIUEBBEgpVPCedJEmSEochl1Se0xFLkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuwIsJyeHjIwMwuEww4cPL7d+3LhxTJ06lVWrVnHaaadx+umnc/XVVxOJRMr0Gz58OH369GHgwIGsWbMGgCeeeIJTTz2VPn36sHTpUoqKirjuuutisl+SJElHo8pe2y1evJjevXvTt29ffvrTn5br99hjj9GqVSseeOCB0rarrrqKXr16EQ6HeeeddwD2eV0oVZXKHs8ADz30EH379uWWW24p1++NN96gV69enHHGGXzxxRcAhMNhwuEwnTp1YsSIEQDMmjWLgQMH0r9/f3Jzc9m8eTM/+9nPjtwOSoorw66Au/baa8nJyaFBgwbMnDmzzLrXXnuNgQMH0rJlS9577z3effddkpKSmD9/fpl+v/zlL5kxYwZ33303Tz/9NAATJkxg5syZ/OY3v+EPf/gDKSkpHHvssSxbtixm+yZJknS0qcy1XZMmTZgyZQrTp09n48aNLFmypEy/YcOGMW7cuHLb/tvf/kZOTg4DBgwAoGfPnkybNu3I7YyOepU5ntevX8+cOXOYPn06KSkpzJ49u0y/UaNGMW3aNB577DFGjRoFRIO0nJwcBg8ezNlnn00kEuHRRx9l8uTJTJs2jR49epCWlsaWLVvYtm1bzPZXUuwYdh0lOnfuXDoqC2Dz5s3UqlWLUChEcnIyoVAIgJo1a9KyZcsyj23bti1AmX7p6ens3LmTr7/+mrS0NCD6Ccrrr78eg72RJKlyDjRy4MEHHyQ/P7/Cbdxyyy307duXhx56qEz7jBkzOPXUUznttNN49NFHAcjNzaV3796cdtpp3HvvvaV9n3nmGQYOHEg4HGb37t0sXLiw9E2ZdCgqurZr3LgxdevWBcpev+3RtGlTkpLKvg0IhUJccsklXHzxxWzevBmA/v37M3ny5CO8J1LFx/Ps2bPp168fAAMGDCA3N7fMY1NSUqhVqxadOnUqty4nJ4dwOMyyZcsoLCxk8ODBDB06lO3btwPRQDcnJ+fI7pykuDDsOkrMnDmTzMzM0uWlS5fSpk2b0uV33nmHLl26sG7dOho0aFDu8SUlJTz00ENce+21APTp04esrCxuuukmrrrqKgDatGlT7pNDSZLibX8jB0pKSpg3bx7HH3/8fh87e/ZsUlJSmD59OnPmzGH9+vWl69q1a8e7777L+++/zz//+U927NhBdnY27733Hu+//z4zZ85k69atfP7558yfP5+3336bnJwcUlNTycrKYs6cOd4ipkN2oGs7gAULFrBx48YKj/E9HnvsMd577z0uueQSHn74YcBrO8VORcfzli1bqF+/PgD16tVjy5YtZR67e/duNm3axIwZM0qD2m9vo0aNGmzYsIFly5bx6quvMmjQIP74xz8CHuNSkBl2BdzYsWMJh8O0atWKbt267bffgAEDmDdvHm3atOGNN94ot37kyJFceumltGvXjq1bt/L3v/+d/Px8XnnlFe67774jtwOSJFWR744c+Pjjj+nQoUOFj5k1a1bpLV39+vXjo48+Kl3XsmVLatSoAURHzyQlJZGamgpAcXExLVu2pE6dOrz55pts376dAQMGlHnNbNeuHQsWLKiq3dNRorLXdlu3buXmm29mzJgxldpuo0aNABg8eLDHpWKmMsdzw4YN2bp1KwAFBQU0bNiwzPoHHniAiy66iAkTJnDiiSeWtk+aNInzzjsPgAYNGtCzZ09q1qzJ6aefzuLFi4/I/kiqPgy7Am7Pp9nfnoAUIDMzk5UrVwKwa9eu0vYGDRpQq1atMn3//ve/s3nzZq655hogOsz9mGOOISUlpfRed4CVK1dW6pNDSZLi4bsjB/Lz80tv1d+fA40oAHjrrbdo37596evn+PHjycrKomHDhqSkpLBhwwZCoRDvvPMOy5cvJy8vD3BEgQ5NZa7tIpEI11xzDffff3+56Sn2p6CgAIj+f5KRkQF4bacjrzLHc/fu3Xn33XcBSufb+rY+ffowbdo0rrrqKnr27FnaPnnyZM4++2wAOnTowNq1a4lEIsyfP7/03O8xLgVXSrwLUHykpaWxY8cOIDq/yN13301SUhKZmZkMHDiQdevWMW7cOO644w5+9rOf0apVK8LhMN///ve555576NWrF71796a4uJgnn3wSiN4Tv+c2R0mSqouxY8cydepU+vTps9+RA59++ik//vGPy7SdeeaZ5UYUtG/fvkyf1atX8/DDD/Pqq6+Wtl1++eVceumlDBkyhPnz59OgQYPS+Wb2jCioaESOdCi+fW2Xk5PDO++8w8aNGwF49NFHadWqVem13fPPP88TTzzB119/zdatW/nNb37DlVdeyZdffknNmjV57rnngGiwcNZZZ8Vrl3QU+/bx3Lx5c7p06ULfvn3p0qULp5xySpn3Kvfffz85OTm0atWKZ555BoCNGzeSmppaOj1LamoqQ4cO5fTTT6dOnTpMmDABgA8++KD0vYykYAlFjvLJIt577z369OnDjBkz6N27d7zLOWin/Ofaevbgg3/s888/T8uWLRk0aNBh11FUVMQNN9zA2LFjD3tbkiRV1oFeB3NycpgxY0aZyeL3mDt3Li+//DK/+tWv9rv9Dz/8kAkTJvDYY48xZMgQnnrqKZo1awbAzp07Oeecc3j66afp2LFjaVvNmjUBuOqqq7jnnnsoKChg/Pjx/Pa3v2XEiBFcdtll9OzZk//5n//h8ssv56STTjqMZ0BBU12u7QCuvvpqxo4dW24ye6myqtPx/F2bN2/mV7/6Fb/73e+OyPZ1cNbnLuL188q/VuvQnDXpAZr1OCHeZcSVI7uOYldeeWWVbSslJcWgS5KUULp27Vo6Eff+fO973+O5556jb9++/OAHP6BZs2alIwqaNGnCp59+yg033ADACy+8wPvvv8/TTz9NSUkJp59+euntMc8//zzhcJgOHTqU3mazdOlSOnfufGR3UkeVqry2A/jzn/9cpduTDkZVH8/flZaWZtAlBZhhlyRJCqxwOEw4HN7nuqSkJLp06UJ+fn6Fc7Y8/fTTZZabN2/OHXfcAURHvnzbkCFDGDJkSLltPP7442WWFy5cSPfu3QmFQpXYC0mSJB0Mwy5JknTU2tftjbGQlZVFVlZWXP62JElS0HkDviRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgJEzYtWvXLkaOHEl6ejq1a9dmwIAB5ObmEgqFmDRpUrzLi4vtRfGuQJKk6mHb7nhXIB0+j2MFya7ivb+XROJXh6SjU0q8C6iMSCTCkCFDyM3N5b777iMzM5Px48dzwQUXAJCdnR3nCmNr9XYYuwTeWLO37ap34arjIdwifnVJkhQr09fBn/P3Lg96A77fCv6rA7SuG7+6pEPxWQE8uxjeXru37foZcE0HOLVp/OqSDsW23dH3Kq+s3Nt2wdtweXsY0haSQnErTQlm6NJxZZaTa6SyJX8Nrw68LU4VKZEkRNg1ZswYJk+eTF5eHp06dQIgHA6TkZFBWloarVu3jnOFsbO8AK6dEX0RKflW+6db4PYP4aedYGj7eFUnSdKR97flMGp+2eHpRRGYsiYagj3bBzLrx6086aB8ugVueA92Fpe9tsvbDLd8AL/oBucePZe6SnAFu6PvVZYXwLcHc32xAx6ZD59+Bf+bbeClynkh84oyy4PffpTlk96LUzVKNAlxG+OoUaMYNmxYadAFkJycTEZGBtnZ2axYsYJu3bqV/rRt25a0tLQ4Vnzk/O9c2FZU9mII9i7/bgGsKIh1VZIkxcbq7fCb+dHfy70WRmBHEdzzEUS8ZUYJoCQCd88uH3RBdDkC/Opj+PKbOBQnHYKnF5YPumDv8r9Ww1tfxLoqBUGTbpk07HAcS//ftHiXogRR7cOu/Px8li9fzoUXXlhu3apVq8jOzqZt27bk5eWV/px//vlcfvnlcaj2yFq4JfrpX0X3vIeAv6/c/3pJkhLZywd4jSsBlhXAvK9iUo50WHK/hNU7ygdd31YSgX94bacEsG03vPZ5+aDr25KAl5bHqiIFyfGXD2DNO3MpXO8LvCqn2t/GuGZNdGKqpk3LTliwaNEiVq5cWW6+rl27dvHCCy8wZcqUg/o74XCYpKTqnf2lnXEDrf7ryQr7RICxU3K5u3vf2BQlSVIMZdz3FnU7nX7Afmdddweb/lXxa6YUb8f+6Oc0u/R/CYX2fw0aKSnhkQlTuPnh82NXmHQIah/fg8yHplfYpwTI27CLmjXrxaYoJYz2KY24s36ffa5LqV2TjPN6M/3Wp2JcVeLq3z/MsqJgBIM1atSgoODgb1+r3ukO0LhxYwCWLl1a2haJRLjrrrsoKSkpF3a9+uqrtGrVipNPPjmmdcZEpKLP/b7dz3s3JEkBFSkhUpnXOV8LlQi8tlOQVPJ49nDWwWp7bi+KCnexeupH8S5FCSQUqdQVY/wUFRWRlZXF7t27eeSRR6hbty6jR49m7ty5bN68mYKCgjIjss4++2zOPPNMbr311kptf+vWrcyfP5+TTjqJ+vWr92y2y7bCJTkV9wkBwzPh5hNjUZEkSbH1zCJ4dknFt8kA/PV0OKFhLCqSDl3eJriuEnMt33oiXJl55OuRDsc3RfCDN2F70f77JIXge03g6V6xq0uJYX3uIl4/7959rjtr0q/YMGsRHz30QoyrSlxnTXqAZj1OiHcZcVXtR3alpKQwceJEWrRowfDhwxkxYgRnnXUW/fr1o0uXLmWCrjVr1vDvf/+boUOHVnr79evXp3fv3tU+6AJoXx9Oblzxf7QQcEGbWFUkSVJsXdCm4m/xSgI6NzToUmLomgbt6+3/mA4BNZJgcHpMy5IOSa2U6Dm6oi9aLInAxRkxK0kBUL99S5qe0pElE96OdylKMNU+7ALo2rUrM2fOZMeOHSxevJibbrqJuXPnlruF8S9/+QvnnHNO6a2PQXR/NjSpVf5FJIlo2y+6QatjYl+XJEmx0LQ2/DI7+rr33YAgBDSqCQ90j0dl0sELhWDUKVA/dR/XdqHoz0PdoWHNuJQnHbQbO8JJjcq373nTObQdnN4spiUpwR1/2QDWz1pIwfJ18S5FCabaT1C/L4WFhSxevJgRI0aUaX/uued48slgT0bbvA6MOx3+ugxeWQnbiqIXR72bwRWZ0ZFfkiQF2ZnHQYs6MG4p/Htd9JbGY1LgvNbR18Jja8W7Qqny2taL3nY7bhm8+jkUFkdDrgHNYVgmdN5HcCBVV7VS4Penwf/7DP62AtYVRttPbASXt4Pvt4yGvFJlffTAX+NdghJUtZ+za19mzZrFqaeeyocffsgpp5wS73LipjgC23dDzeTojyRJR5tdxfBNMRyTCsm+gVKCKyqJzndUOxlqeG2nBBeJRI/n5BDUTsghFoqliubs0sFzzq4EHdnVs2fPyn0TU8Alh6B+jXhXIUlS/NQwFFCApCRBA6/tFBChENRNjXcVko5WCTFnlyRJkiRJklQZhl2SJEmSJEkKDMMuSZIkSZIkBYZhlyRJkiRJkgLDsEuSJEmSJEmBYdglSZIkSZKkwDDskiRJkiRJUmAYdkmSJEmSJCkwDLskSZIkSZIUGKFIJBKJdxGSJEmSJOnotKtgB18t/DzeZQRGo6zW1KhXJ95lxJVhlyRJkiRJkgLD2xglSZIkSZIUGIZdkiRJkiRJCgzDLkmSJEmSJAWGYZckSZIkSZICw7BLkiRJkiRJgWHYJUmSJEmSpMAw7JIkSZIkSVJgGHZJkiRJkiQpMAy7JEmSJEmSFBiGXZIkSZIkSQoMwy5JkiRJkiQFhmGXJEmSJEmSAsOwS5IkSZIkSYFh2CVJkiRJkqTAMOySJEmSJElSYBh2SZIkSZIkKTAMuyRJkiRJkhQYhl2SJEmSJEkKDMMuSZIkSZIkBcb/B0VGH732kVYdAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAAMkCAYAAABQkSLjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADWoElEQVR4nOzde1xUdf7H8dfMgCACInhDRS6ihhfANM1bjkZmFzU1u1pmuu12Xduy2pLW3VXLbWtbd83qp5VRltXamq1aapCXULyR5gXBC3nFK3IHYeb3x+QogeAFZpjh/Xw85hHne77nnM85Hc+c+Zzv93sMVqvVioiIiIiIiIiIiBswOjsAERERERERERGRmqJkl4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbHs4OoC4ryS3g9M6fnR2G22gS1ZYGfj7V1ss7Cxk5DgioEpH+4OvpnG2LiIiIiIiIyNVTsqsKp3f+zNLhk50dhtu4ZdFUWvS8ptp6GTkwYa0DAqrEnL4QG+ScbYuIiIiIiIjI1VM3RhERERERERERcRtKdomIiIiIiIiIiNtQsktERERERERERNyGkl0iIiIiIiIiIuI2NEC9uIW0l8zk70rG4OGJweSBd+traDVmGv4xNzo7NBERERERERFxILXsErfRasw0ui3II3peFo069mbP9Dsoyz/j7LBERERERERExIGU7BK3Y/T0oulN47EU5VF0JMPZ4YiIiIiIiIiIAynZJW7HUlzIieVzMPr4492qvbPDEREREREREREHcplkV0lJCfHx8YSEhNCwYUMGDRpESkoKBoOBRYsWOTs8qQMOz48n9b4Atv0mjIJ9PxI5+WtMPv7ODssp8s7CjmxIOwOlFmdH476KymBXtu1TVOrsaESujtUKe3Lgp9NwqtjZ0YhcvaMFtvP5YL6zIxERV1FQCjuzYdcZKClzdjQicjVcYoB6q9XK6NGjSUlJYcqUKURGRjJ//nxGjBgBQLdu3Rwaj8Fk5LopY2k36gYMRiP7/7eO9S/Ooaz4rEPjkPJa3fdXWo541tlhONXpYnhrF/zvAJT8kuRq0gDuDoeH2oOHy6S367aiUngnDRZmQv4vSa5GHjC8Lfz2GtvfIq7CaoX//gzz0uFgga3MCJiD4bEoCPN1angil23LSZi9CzafPF/WKQAe6Qj9WjgtLBGpw3LP2q4bX/1se5gJ4O8Jo8JgQgfwMjk1PBG5Ai7xk+zdd99lyZIlpKam0rlzZwDMZjPh4eEEBgbStm1bh8YT/dRIWvbpwqJBz1B2tpQbP3ie7pMfICX+PYfGIXKhU8UwbjUcKYALG3OdLoG302wtvV7rCSaDsyJ0D0Vl8GiyrbWA9YLy/FL4ZK/tx9W7fcHHJa6uIvCvnfBhBlx4abAASUdg/XF4rx+0q5+NZMUFrcmCZ1JsSdwL7cyGp9fDn2LhdsfeNopIHZd3Fiasgb255e/tcs7C++mw7RTMvB4aKOEl4lJcop3HjBkzGDNmjD3RBWAymQgPD7e36tq9eze9e/emQ4cO9O7dm/T09FqLp/39N7Jt5kIKjp6i+GQOqa9/RuTdZgxGlzic4qZm7ayY6LrQqixYcsChIbml+Xtg268SXedYsXUd/VDvRRAX8dPp8+frr89pC1BYCn9NdXBQIleouAxe3gwWa8XvQusvn6k/QnaJE4ITkTprzu6Kia4LbTwJX+x3ZEQiUhPqfHYmPT2dffv2MWrUqArzDhw4YE92/e53v+Pxxx9n9+7dPP744/z2t7+tlXga+Pvg27oZp7bvs5ed3LaPBn4++IY0q5VtilQn9ywsPXjxRBfY/rF/tq+KClKtMit8vr/qOlbgP/s1Vpq4hv/sr/pGwAL8lA27zzgmHpGr8d0RW0uMi/1gBSi1wtc/OywkEanjisvgy8yqrxsGbPfQv24xKiJ1W53vaHPo0CEAmjdvXq58165dZGZm0q1bN44dO8bmzZtZvnw5APfeey9PPPEEx48fp1mz6hNQfn5+lJRUfMzXzqMJz/n3K1fm4dsQgJIzBfaykjO2kU89f5knlRs40Mye0tPV1vPp2Jt2U5Mua90dp11e/YsZONBMQVpyjazLkRq270nk9NVV1rEAO06V4uXVyDFBuSGTfzM6zT1Ybb3TJRDQph1nT1ZfV8SZ2r+xBe+QTtXWu+Gu33A66UMHRCRy5YLH/o2gWx7HYLr47a217CxT3vmC8TMfclxgIlJnebXqSId/bq2yjhXbmJYNGzfBWlxQZV0RqVlWqxUPDw+OHj2Kv//ljatR51t2BQUFAZCRcb5fkNVq5fnnn8disdCtWzcOHDhA69atMZlsHalNJhOtWrXiwIGa77NVmlcIgKe/j72sQWNb8uDsL/NEHK7s0l4FaLXotTJXxXLpr1zUsRZXYNW1Q9yI7XyubmBKg85nEbGzXsa9Hbp2iDic1WqlsLCQbdu2Xfaydb5lV1RUFJGRkbz44ot4enri6+vL7Nmz2bJlCz4+PnTs2JEtW7Zc1TZyc3MrLc9K2cXS4ZPLlZXkFJB36DiBncPI2XMYgKAu4ZTkFpB34PhVxeHuEhOTaNHzmmrrpZ6ECWsdEFAlEhOTiA1yzravRkkZDPnW1n3jYowG6Nvai83FxY4LzM1YrXBvEuypYlwHA9DWFzYc2Y9BLwOQOu6f2+GjPdV33/jxq/do2VAvYZG6LfkYPLmu6joGkwf/nDiG218f45igRKROK7PCsOWQVXTxOkagcxPYmJfjsLhExGbt2rX069ev+oqVqPMtuzw8PPjiiy8IDg5m7NixTJw4kVtuuYUBAwYQHR2N0WgkJCSEQ4cOUVZmy7aXlZVx+PBhQkJCaiWm9I9XEv3kCBq2aIJXkD+xz9xFxoIkrBYN0iPO0cAEo8OrrmOxwj0RjonHXRkMcF+7qhMDVuDecJToEpcwKqzqc9UIDGgJLdVLX1xAr2YQ0ujiN7dGoLEn3NTKkVGJSF1mMsC91dwfW6i+jojUPXU+2QUQExNDcnIyBQUFpKWl8eijj7Jlyxb74PTNmzcnNjaWTz75BIBPPvmEbt26XdJ4XVdi68yFHF23kzuS/sGoH/5FdvpBNk37qFa2JXKpJnSA3r+c8hf+dj33j/w3HaB3818vJZdraAiMCLX9feEF9Nzft7WBkWEODkrkCrVpBH/pZjt/K7shCPOFyTGOjkrkyhgN8HpP8G9QsTOjEfAywT962f4rInLOve0g7pckeGX3dvdGKEku4orqfDfGyhQWFpKWlsbEiRPtZW+//TZjx47lL3/5C02aNOHDD2tvIF1rmYWU+PdIiVeXDmfK353CgblPg9WKX/QgWo+Zap+XMXUoZQU5GEweRExagId/UydG6hieRttN/Fc/294Yk/FL79xezWwtuvq2cG587sJggBejoWdT+HQf/HjKVt65CdwdDje3VqsucS1D2thaw8zfC9/Y3glDcENbq687w8DX05nRiVyeCD+YP8B2ff7qZ8j+5f1Dd4bDfRG2BK+IyIVMBpjWHfo1h8/2w45sW3m3INs9tLml7u1EXJFLJru2bt1KWVmZvWUXwDXXXMP69eudGJU4mk9EN66ZYRvca3f8jZQV5GDysb2hod0LCzF4eHIyMYFT38+n+dCnnBmqw3gYba2KRoZBj69sZf/q7cyI3JPBADe1tn3OHef3+zs3JpGr0bmJ7Ub/XLJr8U3OjUfkajRvCE91sn3OXaOf6+rcmESkbjMZ4Pa2ts+568Y7fZ0bk4hcHZdMdvXq1QurtapRc6Q+MHjYmhtYy8rwDGyF0cunwjzL2SK8Q6KcEp+IiIiIiIiIOJ5LjNklcjGnvp/P9ieiMDUKwGA6n7stzT3Fruf6cOzrmXi3UbJLREREREREpL5QsktcWuCA++g8axdnTx2mcP82e7mHXyDX/O0HWt8/layv/uHECEVERERERETEkZTsEpdlOVsMgMFoxNTQD0MDbwCsFgvWslIATD6NMXp6Oy1GEREREREREXEslxyzSwTgTMpXHFsyCywWfDvfgKUon5OJCQT0uoOMqbeDwYjR04uw33/g7FBFRERERERExEGU7BKX1aTvaJr0HV2uzCciFoCO0793QkQiIiIiIiIi4mzqxigiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchgaolzon0h/m9HXetkVERERERETEdSnZJXWOryfEBjk7ChERERERERFxRerGKFJPJSUlER4ejtlsZuzYsRXmT5s2jfT09CrX8eSTT9K/f3+mT59eYd7+/fsJDg7GbDbz4IMPsmzZMsxmM2azmaCgIFJTUyvUAdi5cyczZsyomZ0UERERERGRekfJLpF6bPz48SQlJdG4cWOSk5Pt5RaLha1bt9K+ffuLLrtx40Y8PDxYvXo1mzdvJisrq0Kd2267jaSkJD788EOGDBlCUlISiYmJREREEBMTU6EOQFRUFJs3b8Zqtdbw3oqIiIiIiEh9oGSXiNClSxcOHTpkn/7xxx/p0KFDlcusX7+eQYMGATBgwAA2bdpUoc4333xD//79+fjjj+1lGzZsoEePHhgMhovWiYiIYPv27Ve1TyIiIiIiIlI/KdklIiQnJxMZGWmfTk9PJywsrMplsrOz8fe3jejv5+dHdnZ2ufnBwcGkpaXx7bff8s4773Dy5EkAFi1axPDhw6usExoayu7du2to70RERERERKQ+0QD1IvXY3LlzWbFiBf369SM2NrbSOjt27OCxxx4rVzZkyBACAgLIyckBIDc3l3bt2pWr4+XlZf+7f//+7Nmzh6CgIBITE/nTn/5UZR0RERERERGRK6WWXSL12Lkxu6ZOnVquvH379uzfvx+ATp06kZSUVO7zwgsv0LNnTxITEwFYtWoV3bt3L7eOvLw8AKxWKxs3biQkJIS9e/fSpk0bGjRocNE6AJmZmVWOFyYiIiIiIiJyMUp2iUgFMTExpKWlVVnnuuuuo7i4mP79+xMTE0OLFi04evQor732GgA//PADPXr0oE+fPgwePJjg4OByXRgvVgcgIyODLl261N4OioiIiIiIiNtSN0aRespsNmM2myudZzQaiY6OJj09vcoWVrNmzSo33bJlSyZNmgTA4MGDGTx4cLn5Tz/9dLnpyurs3LmT7t272wewFxEREREREbkcSnaJSKUmT57slO1GRUURFRXllG2LiIiIiIiI61M3RhERERERERERcRtKdomIiIiIiIiIiNtQN0apc/LOQkaOc7Yd6Q++ns7ZtoiIiIiIiIhcPSW7pM7JyIEJa52z7Tl9ITbIOdsWERERERERkaunbowiIiIiIiIiIuI2lOwSERERERERERG3oWSXiIiIiIiIiIi4DSW7RERERERERETEbWiAenELaS+Zyd+VjMHDE4PJA+/W19BqzDT8Y250dmgiIiIiIiIi4kBq2SVuo9WYaXRbkEf0vCwadezNnul3UJZ/xtlhiYiIiIiIiIgDKdklbsfo6UXTm8ZjKcqj6EiGs8MREREREREREQdSskvcjqW4kBPL52D08ce7VXtnhyMiIiIiIiIiDuQyya6SkhLi4+MJCQmhYcOGDBo0iJSUFAwGA4sWLXJ2eFIHHJ4fT+p9AWz7TRgF+34kcvLXmHz8nR2WU5SUnf/banVeHCI1wWqFowVwMB+Ky6qvL1LXnS6Gn/Mg76yzIxERV1FUBgfy4Gih7u3E9VmscPiXe7uzFmdHI+7KJQaot1qtjB49mpSUFKZMmUJkZCTz589nxIgRAHTr1s1hsYQN7U3UhFsJ7BxG8alcvuj5mMO2LVVrdd9faTniWWeH4VR5Z+G9dPgy83zZiJVwbzsYHQZGg9NCE7lsViv8JxPm74Gf821ljTzgjrYwvgP4N3BufCKXa8Nx2zV6wwnbtNEAg4JhQgeIrJ/PZkSkGqeLYe5u+OpnKPjlgU+4L4yJhGEhYNC9nbiQMit8utf2OVJoK2vsCSPD4OH20NAlshPiKlzidHr33XdZsmQJqampdO7cGQCz2Ux4eDiBgYG0bdvWYbEUn8ln13vL8G7WmM6P3O6w7YpUJ/csTFgDe3Phwgd+hwrgtW2w4zT8qZsSXuIarFaY9iP892e48JTNL4X5e2HtMZjbDxor4SUuYtlBiN9c/ny2WOG7w7AmC2b3hq6BTgtPROqgk0Xw8BpbC5gL7+3258FfUyEjB/7QWQkvcQ1lVnhxI6w8Uv678MxZ+CAd1h2Dd/qCj0tkKMQVuEQ3xhkzZjBmzBh7ogvAZDIRHh5ub9X17LPPEh4ejsFg4Keffqq1WI6s2sq+RWvJP3i81rYhciXe2lkx0QXnp/93EJYfdnRUIlcm6agt0QWVn9M/58HMHY6OSuTKnC6GKVts5+6ve2tYsHU9/+Mm2w8BEZFzXv8JjhRc/N7uk72wXj9JxEUs/tmW6ILKz+ldZ+D/0hwdlbizOp/sSk9PZ9++fYwaNarCvAMHDtiTXXfccQerVq0iNDTU0SGKOF1+KSw+UPGL40JGYMFeR0UkcnU+21f1F5QFWHoQckocFZHIlVv0M5RWcYG2YBuHJ/mYw0ISkTruZJEtMVDVcEZGAyzY57CQRK7KZ/vKt+j6NSu2oVg0PqvUlDrfSPDQoUMANG/evFz5rl27yMzMtCe7+vXrd8Xb8PPzo6Sk4i+mdh5NeM7/ytcr5Q0caGZP6elq6/l07E27qUmXte6O0y6v/sUMHGimIC25RtblSA0jryPylTVV1rEAPx4/i5eXr2OCqie6fFYEgJeXt5MjcS+dPzqN0cunyjolFgjteSMFO6s+9+XS6XyuHW0nfYZ/99sxmEwXrWO1lHHvpFc5tuAvDozM/emcFlflG3sz4S99VWUdixUS00/gdUNrB0VVP+i6UQtMHnT9NL/aanml0KxjN4oPqPm+2FgsV/4GgzrfsisoKAiAjIwMe5nVauX555/HYrE4dHB6kTrLeqkXAfWREddgvdRzWq+kEldgsXBJ11+dzyJyju7txJ1czvebvgulhtT5ll1RUVFERkby4osv4unpia+vL7Nnz2bLli34+PjQsWPHq95Gbm5upeVZKbtYOnzyVa9fbBITk2jR85pq66WehAlrHRBQJRITk4gNcs62r0ZRKdz8ra0748UYge4tG7CpuNhhcdUHPX556Fqs41qjfr8Oko/bnlpfjLcJDm76jkZ1/pvMdeh8rh3z98Ab26uuYzCa+M8bk+mZoPuOmqRzWlxVdgkM+abqLtBGYMg1zUjV+V2jdN2oHQ+tgh3ZVXfNDWgAJ9NT8azzTXLEUdauXXvFvfjq/Gnk4eHBF198QXBwMGPHjmXixInccsstDBgwgOjoaIxGx+6CwWjE5OWJwcMDDAZMXp4YG+iXljiXtweMCK26H7wFuDvcURGJXJ27I6pOdBmAYW1Roktcwu0h4GW8+DXaCLRtBNc1dWRUIlKXBTSAW9pUf293l+7txEXcE1F1ogtgdBhKdEmNcYlTKSYmhuTkZAoKCkhLS+PRRx9ly5YtTunC2O7OG3hg/ycM/L9n8G3TjAf2f8LINTMdHofIr/2uI3RtUrH83D/yeyNgQEuHhiRyxfo0hwcjbX9X9kV1TWN4IsqhIYlcMf8G8GoPMBkqns9GoJEn/O06MFT1q1ZE6p0/dIF2fhUTXueuI490hGtdsEeC1E83t4Y72tr+vvC78Nz5fV1TGNfe0VGJO3PJZ+KFhYWkpaUxceJEe9lTTz3FwoULOXr0KHFxcQQFBbF9ezV9Bq5AxmdJZHyWVOPrler9/O6TFO5Lxf/aWwge/aK9/OD7z3Lyu3m0Gf8PgsxjAEh7yQxA6Znj+MfeRMiEN9n+eBQeAS0AaPfCQjz8Ah2+D7XJ2wPe6gOf7oXP90GWbWxNogJsia6bW+uHlLiWJ6OgUwB8vAe2/fJui2betqd+90ZAQ5f8BpP6qn9LeL8/fJgByw/byrxNtlZfD7SD1o2cG5+I1D1+njCnH3yyFz7fD6d+6VUXEwj3twNzsFPDE7ksBgO8FAOxgTB/L+zOsZUH+9haKN4drlZdUrNc8qfC1q1bKSsrK9eya+bMmcycqRZW7io/fSMGowcdX1nNnlfv5Gx2Fp6/JK5ajJiEd9su5eqfezvjoQ//iF/XgQB4Bramw19XODRuR/M2wUPtbS1i8kttrQh8XPJfuYjtpiiule1zbvyM/91ke9W6iCuKCoBXesDyX87npFvAQzf2IlIFX0/4TUcY3wF6LraV/Z9eFi8uymCA29vaPufu7RbdqAfyUjtc8harV69eWK1WevTo4exQxEHyd6/HL3oQAH5dBlCQsck+71zSqzK5PyXh28UMwNkzWaT98QYOfvAcVjd/y4fRYHsaqESXuBslusSdKNElIpdK33/irpToktqi2yxxCWX52Zh8/AEwNvSjLD+72mWKjmTQoFkoRs8GAHScvoqOr6zCUlJEzqYltRmuiIiIiIiIiDiJkl3iEkyNAigrsHXsthTmYmoUUO0yZ9YvIqDXcPu0h69t9PaAnkMp/Lnmx3MTEREREREREedTsktcQqMOPcndlghA7vZV+ER2r3aZM5uW0Lj7rQBYS89iOWsb1TNvVzJeLfSeZhERERERERF3pGSXuIRG7a/DeraYtD/2xyc8hrOnjnAyMQGAowtfI+vL1zj6n1fJWvQGAKU5JzCYPDE1agxAWcEZ0p7vQ9ofb6D4UBoB149w2r6IiIiIiIiISO3R8NXiMtr+bla5aZ+IWABajpxEy5GTys3z8G9K+ynLyk1HvbEJEREREREREXFvatklIiIiIiIiIiJuQ8kuERERERERERFxG0p2iYiIiIiIiIiI21CyS0RERERERERE3IYGqJc6J9If5vR13rZFakpSUhLjxo0jNDSU0NBQ5s2bV25+QkICwcHBxMXFMX36dJYuXUpsbCz/+te/ytU7fvw4jzzyCNnZ2dx777088sgjDB06lJycHDw8PFiwYAFGo5GRI0disVho06YNCQkJnDlzhqlTp/LGG284crdFREREREScSskuqXN8PSE2yNlRiNSM8ePHM3nyZJ566imSk5Pp3bu3fd7ixYtZsGABWVlZbN68mdWrV/P000+zceNGevToYa/3l7/8hTfffJPQ0FB72cKFC/H09CQhIYH58+czYcIEPv/8c5o1a0Z8fDwrV65k8ODBZGdnk5eXh6+vr0P3W0RERERExFnUjVFExAG6dOnCoUOH7NOnTp3C29sbg8HAxo0bGTBgAACDBg0iJSWl3LK7d+/mhRdeYPDgwaSlpQHg6ekJQFFREVFRUfj4+NCsWTMATCYTBoMBgF69epGUlFTbu+d0SUlJhIeHYzabGTt2bIX506ZNIz09vcp1PPnkk/Tv35/p06dftM6bb75JXFxcpfWXLVuG2WzGbDYTFBREamoqO3fuZMaMGVexZyIiIiIicrmU7BIRcYDk5GQiIyPt0xkZGfaWWtnZ2fj72/rQ+vn5kZ2dXW7ZNWvWMHXqVGbNmsVLL70E2JJlffr0YebMmURFRdnrZmVlsXLlSgYNGgRAaGgou3fvrs1dqzPGjx9PUlISjRs3Jjk52V5usVjYunUr7du3v+iyGzduxMPDg9WrV7N582aysrIq1Dl79iypqakXrT9kyBCSkpJITEwkIiKCmJgYoqKi2Lx5M1artcb3V0REREREKqdkl4hILZo7dy5ms5nWrVsTGxtbaZ2AgABycnIAyM3NJSAgoNz8zp07065dO9q3b8+ZM2cACAwM5IcffmDq1Kn84x//AKC0tJSHH36Yt956C5PJVGv7VNf9uhXdjz/+SIcOHapcZv369fYE4YABA9i0aVOFOgkJCdx7773V1t+wYQM9evSwt66LiIhg+/btV7dTIiIiIiJyyZTsEhGpRedaG02dOrVceWRkJJmZmQB0796dVatWAZCYmEjPnj3L1Q0LC+PEiRNkZWXh4+ODxWKhtLQUgMaNG+Pt7Q3AH/7wBx544AG6du1qXzYzM7PKFk3u6Net6NLT0wkLC6tymepa11ksFr755htuvvnmausvWrSI4cOH26frU+s6EREREZG6QAPUi4g4QWBgIAUFBQC0bNmS6Oho+vfvT3R0ND169ODo0aMkJCQwadIkJk+ezMiRIyktLWXmzJnk5+dz++23YzQa8fLy4oMPPmDv3r3MmTOHrVu38vbbbzNp0iRuu+021q1bx8yZM528t44xd+5cVqxYQb9+/S7aim7Hjh089thj5cqGDBlSoXVdu3btytVZuHAhw4YNs09XVT8xMZE//elPNbFLIiIiIiJyBZTsEhGpJecGK7+YYcOGsWLFCuLi4oiPjyc+Pt4+r2XLlkyaNAmA6Ohoe8uvc77//vsK6zuXPDvn1KlTBAQE4OfndxV74TrOvfny19q3b8/ChQsB6NSpU6UD9m/YsIFPPvmEoUOHsmrVKu66665y89PS0khKSiIhIYHU1FRuvvlmEhMTK9Tfu3cvbdq0oUGDBvZlMzMz6du3bw3uqYiIiIiIVEXdGEVEnOTBBx+0v9mvNgQGBtrH86rPYmJi7G+xvJjrrruO4uJi+vfvT0xMDC1atODo0aO89tprALz00kssX76cZcuWERsby6RJkyrUh4pdGMH2MoIuXbrUzs6JiIiIiEgFatklIiIur6pWdEajkejoaNLT06scv2zWrFnlpi9sXXehFStWVFof4Omnny43vXPnTrp3724frF5ERERERGqfkl0iIuL2Kuve6AhRUVFERUU5ZdsiIiIiIvWVujGKiIiIiIiIiIjbULJLRERERERERETchroxSp2TdxYycpyz7Uh/8PV0zrZFRERERERE5Oop2SV1TkYOTFjrnG3P6QuxQc7ZtoiIiIiIiIhcPXVjFBERERERERERt6Fkl4iIiIiIiIiIuA0lu0RERERERERExG0o2SUiIiIiIiIiIm5DA9SLW0h7yUz+rmQMHp4YTB54t76GVmOm4R9zo7NDExEREREREREHUssucRutxkyj24I8oudl0ahjb/ZMv4Oy/DPODktEREREREREHEjJLnE7Rk8vmt40HktRHkVHMpwdjoiIiIiIiIg4kJJd4nYsxYWcWD4Ho48/3q3aOzscEREREREREXEgl0l2lZSUEB8fT0hICA0bNmTQoEGkpKRgMBhYtGiRs8OTOuDw/HhS7wtg22/CKNj3I5GTv8bk4+/ssMSNWa2V/y21x6LjLCJSp5RaILsYikqdHYmIiPxaQSlkl0BZPbyHdokB6q1WK6NHjyYlJYUpU6YQGRnJ/PnzGTFiBADdunVzWCzGBh5cP30Cwf264h3kT0HWaXa+t5Rd7y11WAxSuVb3/ZWWI551dhhSD5RZ4cv98Om+82WjvoO7I2BUKHi4zGOEus1qheWHYf6e82W3LYdRYXB/BDR0iW8wERH3dKIIPsyART9DfikYgD7N4YFI6NHU2dGJiNRv3x+FjzJgyynbdJMGtnvoMe3A19OpoTmMS/xUePfdd1myZAmpqal07twZALPZTHh4OIGBgbRt29ZhsRhNJgqPZfPtPX8lNzOLwE6h3PTJZIqOZ7N/cbLD4hAR5yizwosbYeUR2439OQfy4bVtsP4Y/O06JbxqwswdkLCnfBPk40Xw9i74/gi83RcaucS3mIiIezlcAOPX2BJe5xoLWIHk4/DDMYiPhWGOuz0XEZELvLcb3toFxgt+rJwugbm7YeVh+L9+ENDAefE5ikv8HJsxYwZjxoyxJ7oATCYT4eHhdOvWjZMnT3LrrbfSsWNHunbtysiRIzl+/HitxFJaWMyWv31K7v6jYLVyavt+Dny7keY9o2pleyJStyzcb0t0wfkb/Av/XpVVvsWXXJm1WbZEF4Clkvm7zsC/dzg0JBER+cXLm+FkUfnvQbB1NbcCU1PhUL4TAhMRqee2nrIluqDi8B9WIDMP/r7N4WE5RZ1PdqWnp7Nv3z5GjRpVYd6BAwfo1q0bBoOB5557jrS0NLZt20a7du144YUXHBKfwcNEi15RnN6Z6ZDtiYjzWK3wyd7yLbp+zQAs2Kuxpa7WZ/vKP436NSuw+ICt64yIiDhORg6knqr8QcQ5VmChbo1FRBzus31VJ3ks2IYJOVnkqIicp853ADl06BAAzZs3L1e+a9cuMjMz6datG4GBgZjNZvu866+/ntmzZ1/yNvz8/CgpKalQ3s6jCc/596ty2eunj+dsXiF7Pv/+krdXXw0caGZP6elq6/l07E27qUmXte6O0y6v/sUMHGimIE3dUaVyJr8gOr13uMo6VuBIIfi1Cqf0VNV15eI6J5zC6N2oyjpFZdCm+yAKdq11UFTur8tntjsfLy9vJ0fi3nScHUfHuuYFDv4trX8zs8o6VuCtJet4ttsAxwRVT+h8dgwdZ8fQca4d17yzH8/A4CrrlFmh46CR5G76n4OiunIWS1WPVqpW51t2BQUFAZCRkWEvs1qtPP/881gslgqD01ssFmbPns2wYcNqPbbrpoylWfeOLL9/Gpazal4g4vYMVbXpqlC51sKoFy71WF/W/xMREblql3jdNeh7UETE8XQPbVfnW3ZFRUURGRnJiy++iKenJ76+vsyePZstW7bg4+NDx44dy9V/8skn8fX15YknnrjkbeTm5lZanpWyi6XDJ1c6r+dfHiK4X1eWjf4zxacqX17KS0xMokXPa6qtl3oSJjipoUZiYhKxQc7ZttR9FisMXwFHCyuOU3KhZt6w/vBeTO7/HVJrHv0BNp2ouptMAyNkpqzEvx4MsOkoPb6y/be4uNi5gbg5HWfH0bGueTuz4YFVVdcxABOG9OIPz+q41ySdz46h4+wYOs6147kNkHS06iFVjMCOFf+heUOHhXXF1q5dS79+Vfe2u5g637LLw8ODL774guDgYMaOHcvEiRO55ZZbGDBgANHR0RiN53fh2WefJT09nQULFpQrr2k9//owwf2jbYmukzm1th0RqVuMBrg7oupEF8DoMJToukp3h1ed6DIAt7RBiS4REQeLCoBOAVWPqwi2V9yLiIhj3RVefaLLHIxLJLquVp1v2QUQExNDcnL5cZT+/e9/M2DA+XEAXnzxRTZt2sT//vc/vLy8ai2WRm2a0mnCrZQVlXDn+ln28qz1u1hx/7Ra266I1A33hMP6Y7bXq1emRxCMaefYmNzRgJYwIhS+zLQlti78zjYAob7wVCcnBSciUs/9pRs8vAbyzpZ/MGHENv1MF9t1WkREHKtHU3igne2t5pXdQ7doCM91dVJwDuYSya5fKywsJC0tjYkTJwKwfft2XnnlFTp06ECfPn0ACA8P58svv6zxbecfPMEHwXfW+Hqlej+/+ySF+1Lxv/YWgke/WG7e2dNH2fZIOF1mp9OgaRtOrHiPE9/OwSOgOeETEzD5+AFQsDeVnc9eR/eFZ52xC+IGPIzwRi/4eA8s2AfHf3mTSVMvuDMcHmwHDUzOjdEdGAzwYjRc0xjm77W9JhnA18OWBBvXXq26REScJcwPEm6Auemw9CCc/SXj1aUJPNQebmjp3PhEROqzpzpBpD8kZEDGLyMuNTTB8LbwcAcIrL22QXWKSya7tm7dSllZmX1w+s6dO2O1VtexSFxZfvpGDEYPOr6ymj2v3snZ7Cw8A1rY5x/7+l806tALAGtZKSe/m0fHV9dwZtMSTiyfQ4vhTwNwfNlsfCKudco+iPvwNNpu5h+IhGO/jN/V3NuWCJOaYzDYusGMDIVjRbYfU829lUwUEakLWjeCl2Ph2S5wwxJb2Xv9nRqSiIhgu4e+LQRubQPXLbaVLR8C3vXsHtolf5r16tULq9VKjx49nB2KOEj+7vX4RQ8CwK/LAAoyNtnnleZlU5p7Aq/mYbbpnBM0aNYWg9FIw9Cu5KfZusAWHU7Hw78ZpoZ+Do9f3JPJAME+0MpHia7aZDDYmly3aaREl4hIXePjko/ORUTc34UvXKxviS5w0WSX1D9l+dmYfPwBMDb0oyw/2z7v+JJZNBvyO/u0h38zio9kYCkpIm/7KsryzwBwbPE/aX7bpb+lU0RERERERERcj5Jd4hJMjQIoK7C9+dJSmIupUYDt7+JCig7swCeim72uwWSixYhJpP95CIX7f8QjoAUlJw8D4NlEg0iIiIiIiIiIuDMlu8QlNOrQk9xtiQDkbl+FT2R3AIqP7af46B7SpwwhJ3U5P7/zOABNeo+k47QkGnXoRePut1B0YAcF+1JJnzKEgn2p/PzuU07bFxERERERERGpPeplLy6hUfvrOLnyA9L+2B//bjdz9tQRcrZ8S9DAB7jmtXUA7P/nQ7S6fyoAP7/9GEWH0vAO6UTI+DcxmEz4x8YBsDs+jraPzHTavoiIiIiIiIhI7VGyS1xG29/NKjftExFbbjrs9x9cUPeti66nw19X1GRYIiIiIiIiIlKHqBujiIiIiIiIiIi4DSW7RERERERERETEbSjZJSIiIiIiIiIibkPJLhERERERERERcRsaoF7qnEh/mNPXedsWERFxpqSkJMaNG0doaCihoaHMmzev3PyEhASCg4OJi4tj+vTpLF26lNjYWP71r3+Vq3fPPfdw9OhRcnNzCQkJ4b///S9msxmA48ePc9NNN/Hyyy8zcuRILBYLbdq0ISEhgTNnzjB16lTeeOMNR+2yiIiISI1SskvqHF9PiA1ydhQiIiLOM378eCZPnsxTTz1FcnIyvXv3ts9bvHgxCxYsICsri82bN7N69WqefvppNm7cSI8ePez1Pv30UwDeeecdDAYDYEukAfzxj39k4MCBeHt78/nnn9OsWTPi4+NZuXIlgwcPJjs7m7y8PHx9fR230yIiIiI1RN0YRURE5JIkJSURHh6O2Wxm7NixFeZPmzaN9PT0iy6/Zs0arr/+evr06cPrr79ebt6yZcswm82YzWaCgoJITU2lsLCQW2+9lQEDBjBu3DgAdu7cyYwZM2p2x+qwLl26cOjQIfv0qVOn8Pb2xmAwsHHjRgYMGADAoEGDSElJqXQdixcvZujQoeXKkpKSMJvN+Pj40KxZMwBMJpM9KdarVy97YkzkatXmtaOyeadOnaJ79+7lkrX17dohIlLfKdklIiIil2z8+PEkJSXRuHFjkpOT7eUWi4WtW7fSvn37iy4bERHBqlWr+OGHH/j6668pKCiwzxsyZAhJSUkkJiYSERFBTEwM3377Lf369eP777/H09OTn376iaioKDZv3ozVaq3V/awrkpOTiYyMtE9nZGQQGhoKQHZ2Nv7+tv73fn5+ZGdnV1g+Ly+P3NxcgoODK6yjQYMG9rKsrCxWrlzJoEGDAAgNDWX37t21sUtST9XWtaOyeX5+fixfvpzrr7/eXq++XTtEROo7JbtERETksv26xdGPP/5Ihw4dqlymVatW9gSLyWTCaKx4G7JhwwZ69OiBwWAgPDyc/Px8wJa0ady4MWD7cbt9+/aa2pU6ae7cuZjNZlq3bk1sbGyldQICAsjJyQEgNzeXgICACnW++eYbhgwZUq5s0aJFDB8+3D5dWlrKww8/zFtvvYXJZKqxfRCpTE1fOyqb5+npSWBgYIX11Idrh4iI2CjZJSIiIpft1y2O0tPTCQsLu6Rlly9fTrt27fD29q4w78JETGRkJKtXryYqKgqDwUBISAhQP1odnWsFM3Xq1HLlkZGRZGZmAtC9e3dWrVoFQGJiIj179qywnl8ntgCWLFnCrbfeap/+wx/+wAMPPEDXrl3tZZmZmVW2tBG5UrV17ahq3jn14dohIiI2SnaJiIjIJbuUFkc7duywj7917vPqq68CcPDgQV555ZUK4+6ck5iYaO9KN2/ePO6++2527txJ06ZN+eGHH2pln1xJYGCgvQtXy5YtiY6Opn///hQXF9OjRw+OHj3Ka6+9BkBZWRm7d++mU6dO9uVPnDiBp6envZXc3r17mTNnDm+//TZms5n//e9/AKxbt87+5kaRmlCb147qrisiIlL/6G2MIiIicsnOvSXw19q3b8/ChQsB6NSpU6WDmxcXF/PQQw8xe/bsSt/yt3fvXtq0aWPvkmSxWOxdkQIDA+1jUmVmZtK3b98a2qO659yP/IsZNmwYK1asIC4ujvj4eOLj4+3zWrZsyaRJkwBbl65169aVW7Zp06YsW7bMPh0REVFu/COwDe4dEBCAn59fDeyNiE1tXTuqu65cyN2vHSIicp5adomIiMhVi4mJIS0trco68+fPZ8eOHfz2t7/FbDZz6NChci2Rft3l7r777uP999/HbDaTmprKTTfdBNgGWO/SpUvt7Uwd9+CDDxIXF1dr6w8MDOQf//hHra1f5EJXe+2obB5AXFwcW7ZsIS4ujp9++gnQtUNEpD5Ryy4RERG5JFW1ODIajURHR5Oenn7RsZ7GjRvHuHHjKpSfa4n09NNPlytv0qQJ3377bbmynTt30r17dwwGwxXsgYg4Q21fOyqbt2LFinLTunaIiNQvSnaJiIhIjaisi1JNi4qKIioqqta3IyKOo2uHiIjUNHVjFBERERERERERt6Fkl4iIiIiIiIiIuA11Y5Q6J+8sZOQ4Z9uR/uDr6Zxti4iIiIiIiMjVU7JL6pyMHJiw1jnbntMXYoOcs20RERERERERuXrqxigiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchgaoF7eQ9pKZ/F3JGDw8MZg88G59Da3GTMM/5kZnhyYiIiIiIiIiDqSWXeI2Wo2ZRrcFeUTPy6JRx97smX4HZflnnB2WiIiIiIiIiDiQkl3idoyeXjS9aTyWojyKjmQ4OxwRERERERERcSAlu8TtWIoLObF8DkYff7xbtXd2OCIiIiIiIiLiQC6T7CopKSE+Pp6QkBAaNmzIoEGDSElJwWAwsGjRImeHJ3XA4fnxpN4XwLbfhFGw70ciJ3+Nycff2WGJiIiIiIiIiAO5xAD1VquV0aNHk5KSwpQpU4iMjGT+/PmMGDECgG7dujk0nutfmUDITT3w9PfhbF4hmV8ns/GvH2E5W+rQOKS8Vvf9lZYjnnV2GCIiLuen0zB/z/np25fDqDAYHQa+ns6Kyv3sz4WP956fvmkZDG8L90RAU2/nxSVyJXJK4LN98J/M82Xxm+H+CLgmwGlhiYiIAC6S7Hr33XdZsmQJqampdO7cGQCz2Ux4eDiBgYG0bdvWofHsfH8ZG/+SQGlhMV6BfpjffYbop0aS+vpnDo1DRETkai05AFO2AIbzZUcLYdZO27z/6wsBXk4Lz21sPAFPrYNSy/my0yUwLwMW/3Kc2/o6Lz6Ry3GiCCasgYMF5cu/OQjfHoLp3eHGVs6JTUREBFykG+OMGTMYM2aMPdEFYDKZCA8Pt7fquuOOO4iJiaFbt27079+f1NTUWovnzO6DlBYW2yYMBqwWK34RwbW2PRERkdpwMB+mpIIFsFgrzs/Mg6k/Ojoq95NfCs+k2BJdll/Ns2JLej23AayV/D8QqYv+tAUOF1QsP3cteWkTHCt0eFgiIiJ2dT7ZlZ6ezr59+xg1alSFeQcOHLAnu+bNm8ePP/7Ili1bePbZZ3n44YdrNa6uT9zB/RkJ3PvTewR2DmXHu1/X6vZERERq2n/2V51gsQDfH4WjlfyolUu39IAt4fXrRNc5Fitk5MKPpxwalsgV2Z8H649f/Hy2AmVW+DLzIhVEREQcoM53Yzx06BAAzZs3L1e+a9cuMjMz7cmuxo0b2+edOXMGo/HS83h+fn6UlJRUKG/n0YTn/PtVusy2f/+Xbf/+L43btyZiZH8Kj52+5O3VVwMHmtlTWv1x8unYm3ZTky5r3R2nXV79ixk40ExBWnKNrEtEpK6LfG0DDcOiq6xjBWKGP0z2qo8dE5QbavvMJ/hfNwyD6eK3XVaLhaG/n8axz6c6MDL31+WzIgC8vDQoWk0JvOk3tH7k31XWsVitvLl4HU/FmB0TVD2h89kxdJwdQ8fZMVz9OFssF3u0Ur0637IrKCgIgIyMDHuZ1Wrl+eefx2KxlBucfsKECbRt25aXXnqJefPmOSS+M+mHOLU9k/7/esoh2xMREakpVSVfytUzmmo5Ejdn9ACDoZpKVh1ncQmXct0wGAw6n0VExKnqfMuuqKgoIiMjefHFF/H09MTX15fZs2ezZcsWfHx86Nixo73unDlzAEhISGDSpEksWbLkkraRm5tbaXlWyi6WDp9c7fJGTxP+GrOrWomJSbToeU219VJPwoS1DgioEomJScQGOWfbIiKO9uct8L8DF++OdM6qz/6PDo3/zyExuaM5afB2WtV1DEYT82a8yMAPX3RMUPVEj69s/y0uLnZuIG5k6yl4eE3VdYzA2Jt68vwzOu41SeezY+g4O4aOs2O4+nFeu3Yt/fpV3tuuOnW+ZZeHhwdffPEFwcHBjB07lokTJ3LLLbcwYMAAoqOjK+2u+MADD5CYmMjJkydrPB5PPx8i7zLTwN8HgCZRocRMHMXhJI3gKyIirmVUWNWJLiPQtQl0aFxFJanWHaFgrKJhlxEI8oL+LRwWksgV69oE2vlV/SPCgu36IiIi4ix1vmUXQExMDMnJ5cdR+ve//82AAQMAyMvL4/Tp04SEhACwePFiAgMDCQwMrPlgrFYiRt3AdVPGYmzgQdGJHDKXrCf1tQU1vy0REZFa1KUJjI2EeRlgwDY+1zlGwMcDJsc4KTg30tQbnu8Kr2y1HdcLE4xGbImwqdeCR51/BCli65H752vhN2uguKz8+XzuOvK7jhDp76QARUREcJFk168VFhaSlpbGxIkTAcjPz2f06NHk5+djMpkIDAxk8eLFGKodH+Pync0r5Nu7/1Lj6xUREXGGJ6IgpJEt4XUg31ZmNMCglvBoFIT6Ojc+dzEqzNZ6a85u2HXmfHnPZvC7a2yJRxFXcU1j+KA/zN5le2PruUR5qC+Maw+3hTg1PBEREddMdm3dupWysjL74PQtWrRg3bp1To5KHCFvxxoOvv8sGIw06TOKFnc8Y593YsV7nPh2Dh4BzQmfmIC17Cx7Xh0JFgueTdsQPjEBg0mDpYqIXMhgsHWzG94W9udBYRkEN4QmXs6OzP2Yg22fg/lwpgSaeUPzhs6OSuTKtPOHv/eEk0WQVWRrCRra6BLexSAiIuIALpns6tWrF1artfqK4nYatIigw/RVGD0bkPbSQJrd8ihGLx+sZaWc/G4eHV9dw5lNSzixfA7NhvyWiOc+x7NxMw59HE/u1pX4dxvs7F0QEamTDAYI93N2FPVDm0a2j4g7CPK2fUREROoSjQ4hLqVBUCuMng0A25urMNhO4dKcEzRo1haD0UjD0K7kpyVj9PLBs3GzC+rqUaOIiIiIiIiIu1OyS1xSTupyvILbYWxge5To4d+M4iMZWEqKyNu+irL88wOinM3OInfrSvy6DnJWuCIiIiIiIiLiIEp2icspOXGQo1+8Qptxr9vLDCYTLUZMIv3PQyjc/yMeAbb3t1vLStk/82Ha/vYtjdclIiIiIiIiUg+45JhdUn9Zzhaz/58P0fZ3szE1LP+KsCa9R9Kk90hOr/0ca1kpAAfm/oEg8wM0DOvqjHBFRERERERExMGU7BKXcur7+RQd2EHm7N8C0HrMNIqP7iVo4AP8/PZjFB1KwzukEyHj36T46F5OLJ9DYeZWjn/zNi1HTKJxj9ucvAciIiIiIiIiUpuU7BKX0jRuHE3jxpUr843qC0Db371VrtyrZQTXfl7gsNhERERERERExPk0ZpeIiIiIiIiIiLgNJbtERERERERERMRtKNklIiIiIiIiIiJuQ2N21TH93nycs/lFrH9prrNDqeD+jASW3vEyp37aV6vbifSHOX1rdRNVbltERETcX1JSEuPGjSM0NJTQ0FDmzZtXbn5CQgLBwcHExcUxffp0li5dSmxsLP/617/K1fv888957bXXMBqNvPnmm1x//fUMHDgQq9UKwFtvvUWnTp0ASE1N5brrruPs2bOUlpbyu9/9jjlz5jhmh0VEXMTlXJ/79+/Pli1b2LVrF23atKl0fd26deOZZ55hzJgxvPzyy3z//fcUFxfzxhtv0KdPHx5//HH+9re/0ahRI0fsnjiIWnbVopZ9OjPkP3/m/vQE7k9PYMh//kzL3p2dHZZd7DN3ceOHf7zk+h9HPlDriS4AX0+IDXLOx9ez1ndPRERE6ojx48eTlJRE48aNSU5OLjdv8eLF3HjjjWRlZbF582ZWr16Nh4cHGzduLFdv1qxZrFq1ioULF/L3v/8dAJPJRFJSEklJSfZEF8Ds2bO59tprAfDw8KBZs2bs2bOnlvdSRMT1XMr1GWwPHO68886Lrmfp0qUEBgbap+Pj4/n+++/5/PPP7dfsoUOHsmDBglrYC3EmJbtqSZu47tw0fzIHVmzis2t/y2fX/pYDKzZx0yeTaXPjtZUuYzDV3P8Og4epxtYlIiIi4s66dOnCoUOH7NOnTp3C29sbg8HAxo0bGTBgAACDBg0iJSWl3LJhYWHk5+dz5swZ+w8qq9WK2WxmwoQJFBUVAZCenk6zZs3w8/OzL2s2m1m6dGlt756IiMuq6voM0LJlyyqX//jjj7n33nvt056ettYNeXl5dO3aFYAbbriBb775pqZDFydTsquW9Jr6MBmfJ7F99leczS3gbG4B22d/xZ4vvqfn1IcBuDPlLaInjuLWr6YxZu/HNI1pB4BnI2/M7z7D/ekJ3PH9P2hljql2ey17d+b+jAQ6jInjzg2zGbbClqUOviGa27+ZwX1p8xi28nXaDrkOgLZDrqPrUyNoPTCW+zMSuD8jAWODqnu1PnTkC4Ji2mEwGblv94cEdAyxbbtPZx468gWht/cGoGHzAB78+VM8fRte2cETERERcaDk5GQiIyPt0xkZGYSGhgKQnZ2Nv79tnAM/Pz+ys7PLLTt06FC6detGXFwcjz/+OABffPEFSUlJREVFMXeubWiKf/7znzzxxBPllg0NDWX37t21tVsiIi6vqutzddauXUuPHj3w8Cj/O/eBBx7gpptuYuDAgQD4+Phw+vTpmgta6gQlu2qBf7tW+IW2YN9/11aYt/fLNfiHtcQ/IhiAyNFm1j7zFh9HPsDJX7oIht/Rj71frmb+NWPZ+q8vGfTec/i0DKywrl/zaOhF09hI/nvDRL6+5Xn8wloSN+8Ffvr3f/mk0zg2TfuIAbOfJrBzGD8v28C2mV9yKDGVjyMf4OPIB7CUlF7S/lnLLGSt30lwP1smPLh/V3L2HSG4XxfbdL+unNy6l7N5hZe0PhERERFnmDt3LmazmdatWxMbG1tpnYCAAHJycgDIzc0lICCg3PwZM2awc+dONmzYQHx8PABNmjQBYNiwYWzfvp3Dhw8D1bdAEBERm0u5PlfnnXfeYcKECRXKExISSElJ4eWXX77KKKUuU7KrFngH2pqnF2adqjCv8JgtY+wdZHtCmJawnDPph7BaLPZk09F1O/h5aQrWMgt7v1jF6R2ZhA3tXe12DUYjm6Z/TGlhMWWFJYQP70PW+p3sX5yMtczCoe+28PO3G2k3esBV7+PRNT+VS26l/v0ze/KrZd8uHFn701VvQ0RERKQ2nRsTZurUqeXKIyMjyczMBKB79+6sWrUKgMTERHr27Fmurre3Nw0bNsTf35/8/HzAlhQDW4uE8PBwduzYQWpqKkOGDCE1NZWnnnoKgMzMTNq3b1+r+ygi4oou5fpcnb1793LnnXfy+uuv89prr5GZmUlxcTEAvr6+9gHpCwoKKjzIENentzHWgqJTthuchi0COZNxuNy8hs1tT/qKTtqeEOYfOl5h+fyD5cvyDhy/pJZdpYXFFP+ybQCf4CDyfr2uzCx8Q1tcwl5U7ciabURPHEUDfx/8I1qx779rufaFe/EJDiS4Xxd+eObtq96GiIiIiDMEBgZSUFAA2FpjRUdH079/f6Kjo+nRowdHjx4lISGBSZMm8eCDD9KnTx8sFgt/+tOfAIiLi6NBgwYEBATw0Ucf0bhxY+Li4uzzZs6cCdjeODZ+/Hjn7KSIiAu68PoMMGbMGL777jv27NnDlClTuPHGG3nmmWd4/fXXWbNmDQAffPABHh4ehIaG8vDDD7N3717Kysp45ZVXAFi1ahWDBw92yv5I7VGyqxbk7DlM7s9ZhA/rw9FftXAKH96H3J+zyNl7BACrxVph+UZtmpWb9g1pxvHN1Y/nYLVYyk0XHDlZ4e2PviHNKThystL6l+PU9v1YLRY6/eZ2jm3YhdVi4cian+hwXxw+zZtwbMOuK163iIiISG0zm82YzeaLzh82bBgrVqwgLi6O+Ph4exdFsCXAJk2aBMCECRMqdJNZv379Rde7YsUKAEpLSzl27Fi5sWhEROTyrs8fffRRhfmvv/56uemHHnrI/vd7771Xof7ixYuZMWPGFccrdZO6MdaSlJc/IPLugXT+7VA8fRvi6edDp9/eTuRdA0mJf7/KZVte34mQwT0wmIxEjOxPk06h7P/fusuOYd+iH2jRK4rQ23phMBppPTCWkJt7sOcLW1P8whNnaNS66RW/BfLoD9vp9MhtHFmzDYAja7fR6ZHbOLZpN2XFZ69onSIiIiJ1wYMPPmhvjVUbPDw87IPXi4jIpavp6/OsWbPw9fWtsfVJ3aCWXbXkwDcbWDFmOjF/uJPYSXcBcHLrXlaMmW5PDl3Mvv+uod3oAdww6/fkHzlJ4oS/U3D45GXHkLv/KN89/Deu/eP99P3H4+QfPM6qJ2Zy6peB8PcvTibijn7c89N7GAwGPo0ef8mD1AMcWb2NsNt7c2SNrfXakTU/0cC/kcbrEhERERERERGnUbKrFh1Zs63KxNYXPR+rULZm4qwr2tbR5O18HPlAhfJDiakcSkytdJmS7DyWjfrTJa3fYLS1/rowGZb24bekffitfbow6zQfBN95GVGLiIiIiIiIiNQsdWOUS9KkcyiWs6WVDqgvIiIiIiIiIlJXqGWXCxme9A982zStUH7g202seuzNq15/3Mcv0aLXNRXKz+YVYfQ0sWn6fEpyCipZUkRERERERESkblCyy4UsMj9dq+tfcf+0Wl2/iIiIiIiIiEhtU7JL6py8s5CR45xtR/qDr6dzti0iIiIiIiIiV0/JLqlzMnJgwlrnbHtOX4gNcs62RUREREREROTqaYB6ERERERERERFxG0p2iYiIiIiIiIiI21CyS0RERERERERE3IbG7BK3kPaSmfxdyRg8PDGYPPBufQ2txkzDP+ZGZ4cmIiIiIiIiIg6kll3iNlqNmUa3BXlEz8uiUcfe7Jl+B2X5Z5wdloiIiIiIiIg4kJJd4naMnl40vWk8lqI8io5kODscEREREREREXEgJbvE7ViKCzmxfA5GH3+8W7V3djgiIiIiIiIi4kAukewqKSkhPj6ekJAQGjZsyKBBg0hJScFgMLBo0SJnhyd1xOH58aTeF8C234RRsO9HIid/jcnH39lhiYiIiIiIiIgD1fkB6q1WK6NHjyYlJYUpU6YQGRnJ/PnzGTFiBADdunVzSlwm7wYM/+51GjYP4OPIB5wSg5TX6r6/0nLEs84Ow6ksVlh5GD7bB2lnwGSA3s3h7giICXR2dO4l+ZjtOG8+aZuOCYS7wqFvczAYnBubyOXalwsL9sGKw1BUBm0bwcgwuD0EvE3Ojk7k8mSXwML9sOjn82Vv7YTR4dDM22lhiYgIsOmE7Z7jnEd/gNFhMDBY99BSs+p8suvdd99lyZIlpKam0rlzZwDMZjPh4eEEBgbStm1bp8TVbdLd5B08QcPmAU7ZvsivlVpg8mbbj1UjYPmlfMUR+PYwPN0Z7m/nzAjdg9UKM3dAwp7yx3ndcfjhGNwTDs900Ze1uI7vj8LzG2zJ8nPnc3oOvLoVvvoZ3uoNvp5ODVHkkh3Mh0fWwrGi8uXvp8MX+2F2H+jY2CmhiYjUe3N3w+xdYLzgPnnTCdhwAm5rA3/qVn6eyNWo890YZ8yYwZgxY+yJLgCTyUR4eHiFVl1//vOfMRgM/PTTT7UaU1B0BK0HxvLTrP/W6nZELse8DFuiC87/YAXbD1iAf2y3fZnI1fnmkC3RBZUf50/3wdcHHB6WyBU5WgAvbIQya/nz+ZfTmZ3ZtqSXiCuwWuGZFDhRVMk8IO8s/H4dnLVUnC8iIrVrbZYt0QXn75vh/P3H/w7Cp3sdHpa4sTqd7EpPT2ffvn2MGjWqwrwDBw6US3Zt3ryZdevWERoaWqsxGUxG+vz9d6x7cQ6WktJa3ZbIpSq1VP/lYERfIDVh/t6qL5wG4OM9th9dInXdwkzb9eNip6sVW8vQypIHInXNppOwJ7d84vZCFuBEMSQecWRUIiIC8Mne6lttzd9bPhEmcjXqdDfGQ4cOAdC8efNy5bt27SIzM9Oe7CouLubxxx/nk08+wWw2X/Z2/Pz8KCkpqVDezqMJz/n3K1fW5bHhnNy2j6x1O2nZu3OFZeTiBg40s6f0dLX1fDr2pt3UpMtad8dpl1f/YgYONFOQllwj63Ik74hutJ+xrso6FmDlz0V49Vf/jStlbBRA5w+yqqxjBTJywbdlW0qzq64r4myRr6XgHRqNoYp+txYrdL79IbJXf+LAyEQuX8v7p9F02NMYjBcfaM5aVsqjr8/n4KzfODAykZrR5TPbkwcvLw0+V5t0nGuB0UiXT/MxGKpua3O0EAIioik+nOagwNyfq5/PFsuVN8eu0y27goKCAMjIyLCXWa1Wnn/+eSwWiz3Z9fLLLzNmzBjCwsJqNR6/sJZ0fHAwG/+aUKvbEblcBtOlDahzqfWkcpdz/AweDWoxEpGaYTA1qDLRZa+n81lcgMHDE6zV3xTrfBYRcSyD0aPaRJe9rod+r0jNqNMtu6KiooiMjOTFF1/E09MTX19fZs+ezZYtW/Dx8aFjx44kJyezceNGXn311SveTm5ubqXlWSm7WDp8sn26Rc9raNi0MSPXzgTA6GHCs1FD7tn+HonjXyNr3c4rjqE+SExMokXPa6qtl3oSJqx1QECVSExMIjbIOdu+GtklMOQbKK2i2a8BiAwwsam42GFxuZsyq+04n67YELQcf084fSADzzr9OEEEXtoEyw9X32Vg5Sfv0rnJu44JSuQKffUz/CW16joGkwcv/eYexv3tHofEJFKTenxl+2+x7uVqlY5z7bhjBRwquPjQCQBeRji8cxON6nSWwrW4+vm8du1a+vXrV33FStTpn2IeHh588cUXBAcHM3bsWCZOnMgtt9zCgAEDiI6Oxmg08v3337Nz507Cw8MJCwvj4MGD3HzzzXz77bc1Hs++xT/wnz5P8FXcs3wV9yxrn3mbswVFfBX3LMc3p9f49kQuVUADuKl11f+grcBd4Y6KyD2ZDHBnmC1xeDEGYEQoSnSJS7gzrOpElxHo4A+dAhwUkMhVGNwKfExVX6NNBhgW4rCQRETkF6PDq050GYHbQlCiS2pMnf85FhMTQ3JyMgUFBaSlpfHoo4+yZcsWexfGF154gcOHD7N//372799PmzZt+Oabbxg8eHCNx1JWWELBkVP2T/HJHLBaKThySoPVi9M9EQVB3hf/R90jCIa2dWhIbmlMJLTzq/zHlBEI9YWH2js6KpErExsIoy7yXhcjtqTt5Fi4hJ6OIk7n7QHxsba/f33Knpv+Qxfbd6WIiDjWnWEQ3eTi99AtGsJvOzo4KHFrdT7Z9WuFhYWkpaWVexOjsxxN3s7HkQ84OwwRwPYF8X5/GBRc/k0nPia4PwL+eb1aG9WERh7wf/3gjlBocMHx9DTankbN7Qd+GmpAXITBAM9Hw1OdINCr/LzuTWFuf7XqEtdyU2v4Ry+I9C9fHtIIpnWHu9XCWUTEKbxMMKu3raeJ9wXvETEZbNfu9/vrYYTULJdrJLh161bKysoumuzav3+/YwMSp8nfncKBuU+D1Ypf9CBaj5lqn5cxdShlBTkYTB5ETFqAh39TJ0bqOC0bwqvXwYkiGPJLT95vboaGLvcvvW7z84SXYmwJgoFLbWXLBkNjjXksLshogAcj4b4IuP5rW9l/b4Q2jZwbl8iV6tcC+jaHPbm278OABtCxsVooiog4W0MPmNQVHouCndm2oRQi/Ss+cBOpCS73E7hXr15YrdWMpCv1gk9EN66ZYRvJfnf8jZQV5GDysT3KbffCQgwenpxMTODU9/NpPvQpZ4bqcE0veCqiRFftubAFlxJd4uo8LmipqESXuDqDwfYD6tctvERExPkaeUCP+tEWQZxInZrEZZ17La21rAzPwFYYvXwqzLOcLcI7JMop8YmIiIiIiIiI4ynZJS7t1Pfz2f5EFKZGARhM55swleaeYtdzfTj29Uy82yjZJSIiIiIiIlJfKNklLi1wwH10nrWLs6cOU7h/m73cwy+Qa/72A63vn0rWV/9wYoQiIiIiIiIi4khKdonLspwtBsBgNGJq6IehgW2gKqvFgrWsFACTT2OMnnqth4iIiIiIiEh9oaGrxWWdSfmKY0tmgcWCb+cbsBTlczIxgYBed5Ax9XYwGDF6ehH2+w+cHaqIiIiIiIiIOIiSXeKymvQdTZO+o8uV+UTEAtBx+vdOiEhEREREREREnE3dGEVERERERERExG0o2SUiIiIiIiIiIm5DyS4REREREREREXEbGrNL6pxIf5jT13nbFhERERFxJUlJSYwbN47Q0FBCQ0OZN29eufkJCQkEBwcTFxfHV199xZtvvonFYuHDDz+kbdu29noPPfQQaWlpeHl58fLLLzNo0CD++c9/8sknn+Dh4cEHH3xAWFgYv/vd75gzZ46jd9PpLuc49+/fny1btrBr1y7atGlT6fq6devGM888w5gxY3j55Zf5/vvvKS4u5o033qBPnz48/vjj/O1vf6NRo0aO2D0Rt6Jkl9Q5vp4QG+TsKEREREREXMf48eOZPHkyTz31FMnJyfTu3ds+b/HixSxYsID8/Hw+/fRTVq5cicFgqHQ9n3/+ebnkzCeffEJycjLJycm8/fbb/P3vf6dZs2bs2bOHdu3a1fp+1TWXcpzBdhxfeOGFi65n6dKlBAYG2qfj4+P5y1/+woEDB/j973/PwoULGTp0KAsWLODhhx+uvR0ScVPqxihSTyUlJREeHo7ZbGbs2LEV5k+bNo309PQq1/Hkk0/Sv39/pk+fXmHe/v37CQ4Oxmw28+CDD7Js2TLMZjNms5mgoCBSU1Mr1AHYuXMnM2bMqJmdFBEREalnunTpwqFDh+zTp06dwtvbG4PBQHJyMhaLhZtuuonHH38ci8VSblmDwcDdd9/NXXfdxalTpwAICQmhuLiYM2fO2JMzZrOZpUuXOm6n6qCqjjNAy5Ytq1z+448/5t5777VPe3p6ApCXl0fXrl0BuOGGG/jmm29qOnSRekHJLpF6bPz48SQlJdG4cWOSk5Pt5RaLha1bt9K+ffuLLrtx40Y8PDxYvXo1mzdvJisrq0Kd2267jaSkJD788EOGDBlCUlISiYmJREREEBMTU6EOQFRUFJs3b8Zqtdbw3oqIiIi4v+TkZCIjI+3TGRkZhIaGAnDs2DFOnDjBt99+S9OmTfnqq6/KLfvGG2+wdu1a7r77bl555RUA+vXrR1RUFI8++igPPfQQAKGhoezevdsxO1RHVXWcq7N27Vp69OiBh0f5jlYPPPAAN910EwMHDgTAx8eH06dP11zQIvWIkl0iUuHJ1I8//kiHDh2qXGb9+vUMGjQIgAEDBrBp06YKdb755hv69+/Pxx9/bC/bsGEDPXr0sD/1qqxOREQE27dvv6p9EhEREalP5s6di9lspnXr1sTGxlZap3HjxvTv3x+j0cgNN9xAWlpauflNmjQBYNiwYWzfvp2cnBz+85//kJ6ezpdffsmUKVNqeS/qvks5ztV55513mDBhQoXyhIQEUlJSePnll68yShHRmF0iQnJyMr///e/t0+np6YSFhVW5THZ2Nl26dAHAz8+P7OzscvODg4NJS0vDYDBw8803M2TIEIKCgli0aBHDhw+vss65p4Xn1i8iIiIiVTs3ltSvRUZGkpmZCcB1111nb02/bdu2Cvd7ubm5+Pn5kZycTHh4OAaDgUaNGuHh4UFgYKD9fi8zM7PKHgDu7FKOc3X27t3LnXfeyaFDhzAajfTv35+WLVvi5eWFr6+vfUD6goICAgICajJ8kXpDyS6Remzu3LmsWLGCfv36XfTJ1I4dO3jsscfKlQ0ZMoSAgABycnIA243Rrwco9fLysv/dv39/9uzZQ1BQEImJifzpT3+qso6IiIiI1IzAwEAKCgoAaN68Oddeey0DBgygWbNmzJ8/n6NHj5KQkMCkSZN48MEHOX78OF5eXnzwwQf4+fnRu3dv+vbtS1lZGTNnzgRsY7+OHz/embtV51x4nAHGjBnDd999x549e5gyZQo33ngjzzzzDK+//jpr1qwB4IMPPsDDw4PQ0FAefvhh9u7dS1lZmb0L6apVqxg8eLBT9kfE1SnZJVKPXezJVPv27Vm4cCEAnTp1IikpqUKdDRs28MknnzB06FBWrVrFXXfdVW5+Xl4evr6+WK1WNm7cyBNPPMHevXtp06YNDRo0uGgdsD0t7Nu3bw3vrYiIiIh7OvcSoIsZNmwYK1asIC4ujueff57nn3/ePq9ly5ZMmjQJgC+//LLCsi+//HK5bnWlpaUcO3as3HhV9cXlHOePPvqowvzXX3+93PS5MdAA3nvvvQr1Fy9erBc3iVwhjdklIhXExMRUGMPh16677jqKi4vp378/MTExtGjRgqNHj/Laa68B8MMPP9CjRw/69OnD4MGDCQ4OLteF8WJ1wDbAp7owioiIiNSMBx98kLi4uBpZl4eHB3Pnzq2RdbmbmjzOALNmzcLX17fG1idSn6hll0g9VdWTKaPRSHR0NOnp6VWOxzBr1qxy0xc+GRw8eHCFZtdPP/10uenK6uzcuZPu3bvbB7AXERERERERuRxKdolIpSrr3ugIUVFRREVFOWXbIiIiIiIi4vrUjVFERERERERERNyGkl0iIiIiIiIiIuI2lOwSERERERERERG3oTG7pM7JOwsZOc7ZdqQ/+Ho6Z9siIiIiIiIicvWU7JI6JyMHJqx1zrbn9IXYIOdsW0RERERERESunroxioiIiIiIiIiI21CyS0RERERERERE3IaSXSIiIiIiIiIi4jY0Zpe4hbSXzOTvSsbg4YnB5IF362toNWYa/jE3Ojs0EREREREREXEgtewSt9FqzDS6Lcgjel4WjTr2Zs/0OyjLP+PssERERERERETEgZTsErdj9PSi6U3jsRTlUXQkw9nhiIiIiIiIiIgDKdklbsdSXMiJ5XMw+vjj3aq9s8MREREREREREQdymWRXSUkJ8fHxhISE0LBhQwYNGkRKSgoGg4FFixY5OzypAw7Pjyf1vgC2/SaMgn0/Ejn5a0w+/s4OS0REREREREQcyCUGqLdarYwePZqUlBSmTJlCZGQk8+fPZ8SIEQB069bNYbH0e/Nxwkf0w3K21F6W9JvXOZSY6rAYpHKt7vsrLUc86+wwnMpqhfXH4Yv958te3Qp3hkGk8n7igvblwuf7YU0WlFqgY2Pb+dynORgMzo5O5PJkF8N/f4ZlByG7BFr6wPC2cEtr8HaJOzIRcTSL1fYd+J/958te/wlGh0FbX2dF5Z42n4TP952f/ksq3BUG1wQ4KSARuSoucWv17rvvsmTJElJTU+ncuTMAZrOZ8PBwAgMDadu2rUPj2f3RCta/NNeh2xSpjsUKr2yFLzPBeEESYOF+2w3S5FjbjyoRV7HkAExJBaxg+aXsRBGszoLb2sDL3cCkhJe4iIwcePQHOF1yvuxkMfx0Gj7ZC2/3gUAv58UnInVPqQUmb4YVh8t3x/l0ry0pM6073NjKaeG5DasVZu6AhD3lj/PXP8NXP8MfOsN97ZwWnohcIZfoxjhjxgzGjBljT3QBmEwmwsPD7a26wsLCuOaaa4iNjSU2NpZvvvnGWeGKOMUne22JLrAlvs6xAFZgaipsO+WEwESuwK4zMGWL7Vy2XFB+7u//HYQEvX9CXERJGTy5Ds6UlC8/d6nenwt/3OjwsESkjvu/3bZEF5T/LrQCZVZ4cZOtBbRcncUHbIkuqPye443tsO6Yo6MSkatV55Nd6enp7Nu3j1GjRlWYd+DAgXJdGL/44gtSU1NJTU3l5ptvrrWYIkb2594d73PHqjeJ/v1IDKY6fxjFzZVZ4aM9VdcxAJ/uq7qOSF2xYG/1dT7eY3vqLVLXrTwCx4vK/4i6kAXYdBJ2n3FkVCJSlxWVVf1daMXWIukz3dtdFavV9vCsqobiRmz3HCLiWup8N8ZDhw4B0Lx583Llu3btIjMzs0bG6/Lz86OkpKRCeTuPJjzn369c2Y65S9j41wSKTuUSFB3BgLcmYvJqwJa/fXrVcbi7gQPN7Ck9XW09n469aTc16bLW3XHa5dW/mIEDzRSkJdfIuhzJOyya9q9tqLKOBVi6t4C/92nimKDqiS6fFQHg5eXt5EjcS6f3j2LyrfpcPV0CTaP7U5ie4qCo3J/O59oRMjGBxtePxGC6+G2X1Wph0O/+zPGFrzowMhGpqxp1MRPxp6p7qliA+ZsP8/J14Y4Jyg15Ngvlmrd2V1nHAvxwzIJ3I3+spWcdE5hIDXH1ezuL5cqfbNf5JklBQUEAZGSc769itVp5/vnnsVgs5ZJd999/P9HR0Tz22GNkZ2fXSjyntu2j6GQOWK2c/HEPW/6+gPDhfWtlWyKXytig4SXVM3hqQBhxDYYGl/aFfKnnvogzGRs0rP6NChYrRi+dzyJic8n3dvoevCqXfJwNRgweuo8WcSV1vmVXVFQUkZGRvPjii3h6euLr68vs2bPZsmULPj4+dOzYEYDVq1cTEhJCcXExEydO5IknnuCjjz66pG3k5lbe2T0rZRdLh0+uemGLtep2r2KXmJhEi57XVFsv9SRMWOuAgCqRmJhEbJBztn01ThXDkG/Lj9X1awYgzN/EpuJih8VVH/T4yvbfYh3XGnVfEqTnnB/TqDIGYOfab2mh+/wao/O5dszcYesmU+X5bDLx9l9f4NYPXnBYXCJSdx3IgxHfVV3HCHQPaUKqrtlXrKAU4pZBSTWNR4K8oCD7pN4ELS7H1e/t1q5dS79+/aqvWIk637LLw8ODL774guDgYMaOHcvEiRO55ZZbGDBgANHR0RiNtl0ICQkBwMvLi8cee4y1a2snWxI2rA+efj4ANIkKJeaZ0ez/2vW6vYl7CfSCgS2r/gdtBe4Mc1BAIlfpzrCqEwNGoF8LlOgSlzCibfWJW18PGKS3qonIL0J8oUdQ1fd2FuBO9WC8Kj4ecFtI1cfZAIwOq76BrojULXW+ZRdATEwMycnlE0r//ve/GTBgAAD5+fmUlpbSuHFjrFYrn376KbGxsbUSyzUP3UzvGY9g9DRRmJXNni++Z+u/vqyVbYlcjic7wYYTkFdasYWXAegUAHe0dUZkIpfv9hDbGxe3nqqYJDAawMcEv+/klNBELluIL4xrD++nV5xnwHaOvxAN3iZHRyYiddkzXeDhNVBcVvkLLno2hZuUJL9qv+kAa7LgZCUvEjECYb5wT4QzIhORq+ESya5fKywsJC0tjYkTJwKQlZXFqFGjKCsro6ysjE6dOvHWW2/VyraXjfxTraxX5Gq1aQTv94dXt9qSXud4GOCWNvBsV/B2yX/xUh81MMG/r7e97vvrA3D2grvP2EBbYiDMz3nxiVyux66BJg1sCa/TF7wTp7UPPNVJrbpEpKL2jWFuP5ixDX48db68gRGGt4XfdwaPOt9Pp+5r3hDe7wevbIUfjp1/yGY02JKJz3UFX0+nhigiV8Alf/pu3bqVsrIy++D0ERERbNmyxclRSW37+d0nKdyXiv+1txA8+kV7+cH3n+Xkd/NoM/4fBJnHAJD2khmA0jPH8Y+9iZAJb7L98Sg8AloA0O6FhXj4BTp8H2pbqC/M7gM/58HuHFuiKzYQAjSeprighh7wUgw8EQU3LrOVfTHI9oRVxNUYDHBfO7grHK7/2lY2py/EBKprjIhcXIdfEl57c20fTyN0D1Lypaa19IF/Xg+HC2Bntq3VbXQgNHXNF9iJCC6a7OrVqxdWa1WjX4i7yU/fiMHoQcdXVrPn1Ts5m52F5y+JqxYjJuHdtku5+h2nJQFw6MM/4td1IACega3p8NcVDo3bWdr62j4i7qBxg/N/K9Elru7CVhiu+EIUEXGOCD/bR2pXKx/bR0Rcnxq+ikvI370ev+hBAPh1GUBBxib7vHNJr8rk/pSEbxczAGfPZJH2xxs4+MFzSpaKiIiIiIiIuCklu8QllOVnY/LxB8DY0I+y/Oxqlyk6kkGDZqEYPW3NQjpOX0XHV1ZhKSkiZ9OS2gxXRERERERERJxEyS5xCaZGAZQV5ABgKczF1Cig2mXOrF9EQK/h9mkP3yYABPQcSuHP22slThERERERERFxLiW7xCU06tCT3G2JAORuX4VPZPdqlzmzaQmNu98KgLX0LJazxQDk7UrGq0V47QUrIiIiIiIiIk6jZJe4hEbtr8N6tpi0P/bHJzyGs6eOcDIxAYCjC18j68vXOPqfV8la9AYApTknMJg8MTVqDEBZwRnSnu9D2h9voPhQGgHXj3DavoiIiIiIiIhI7XHJtzFK/dT2d7PKTftExALQcuQkWo6cVG6eh39T2k9ZVm466o1NiIiIiIiIiIh7U8suERERERERERFxG0p2iYiIiIiIiIiI21CyS0RERERERERE3IbG7JI6J9If5vR13rZFakpSUhLjxo0jNDSU0NBQ5s2bV25+QkICwcHBxMXFMX36dJYuXUpsbCz/+te/ytU7fvw4jzzyCNnZ2dx777088sgjDB06lJycHDw8PFiwYAFGo5GRI0disVho06YNCQkJnDlzhqlTp/LGG284crdFRERERKSOu9TfKk2bNmXixIkApKenM2vWLO64445ydYuKiggPD+fzzz+nX79+/OY3v2H37t2UlZXx3nvv0aFDB8aNG8d7772HwWBwyP4p2SV1jq8nxAY5OwqRmjF+/HgmT57MU089RXJyMr1797bPW7x4MQsWLCArK4vNmzezevVqnn76aTZu3EiPHj3s9f7yl7/w5ptvEhoaai9buHAhnp6eJCQkMH/+fCZMmMDnn39Os2bNiI+PZ+XKlQwePJjs7Gzy8vLw9fV16H6LiIiIiEjddim/VQwGA0lJSQCYzWZuvPHGCut5//336dSpk336rbfewtPTk9WrV/P222/zxhtv0KtXLxITExk0aFCt7xeoG6OIiEN06dKFQ4cO2adPnTqFt7c3BoOBjRs3MmDAAAAGDRpESkpKuWV3797NCy+8wODBg0lLSwPA09MTsD1FiYqKwsfHh2bNmgFgMpnsT0x69epl/3JyZ0lJSYSHh2M2mxk7dmyF+dOmTSM9Pb3KdTz55JP079+f6dOnX7TOm2++SVxcXKX1ly1bhtlsxmw2ExQURGpqKjt37mTGjBlXsWciIiIiIrWrqt8q5xw9epRGjRrh5+dXbtmysjLWrFlD//797WXnfqvk5eXRpUsXAAYOHMiSJUtqczfKUbJLRMQBkpOTiYyMtE9nZGTYW2plZ2fj72/rQ+vn50d2dna5ZdesWcPUqVOZNWsWL730EmD7AurTpw8zZ84kKirKXjcrK4uVK1fan5iEhoaye/fu2ty1OmP8+PEkJSXRuHFjkpOT7eUWi4WtW7fSvn37iy67ceNGPDw8WL16NZs3byYrK6tCnbNnz5KamnrR+kOGDCEpKYnExEQiIiKIiYkhKiqKzZs3Y7Vaa3x/RURERERqQlW/Vc5ZvHgxQ4cOrbDsp59+yp133lmh/MYbb+SJJ57guuuuAxz/u0TJLhGRWjR37lzMZjOtW7cmNja20joBAQHk5OQAkJubS0BAQLn5nTt3pl27drRv354zZ84AEBgYyA8//MDUqVP5xz/+AUBpaSkPP/wwb731FiaTqdb2qa779ZOpH3/8kQ4dOlS5zPr16+0JwgEDBrBp06YKdRISErj33nurrb9hwwZ69OhhfxIWERHB9u3br26nRERERERq2KX8Vjln8eLFDBs2rFyZ1Wrlv//9L8OHD69Qf+XKlSxcuJApU6bUYMSXTskuEZFadK610dSpU8uVR0ZGkpmZCUD37t1ZtWoVAImJifTs2bNc3bCwME6cOEFWVhY+Pj5YLBZKS0sBaNy4Md7e3gD84Q9/4IEHHqBr1672ZTMzM6ts0eSOfv1kKj09nbCwsCqXqa51ncVi4ZtvvuHmm2+utv6iRYvKfeHXp9Z1IiIiIuI6LuW3CkB+fj5nzpyhVatW5erl5eWxd+9ebr31Vj766COeffZZioqKKC4uBmy/VRo2bAg4/neJBqgXEXGCwMBACgoKAGjZsiXR0dH079+f6OhoevTowdGjR0lISGDSpElMnjyZkSNHUlpaysyZM8nPz+f222/HaDTi5eXFBx98wN69e5kzZw5bt27l7bffZtKkSdx2222sW7eOmTNnOnlvHWPu3LmsWLGCfv36XfTJ1I4dO3jsscfKlQ0ZMqRC67p27dqVq7Nw4cJyT7Kqqp+YmMif/vSnmtglERERERGHu/C3CsC3337L4MGD7dMX/lY518NhypQpxMXF4e3tza233kphYSEGg4FZs2YBtnvkW265xWH7oGSXiEgtOTdY+cUMGzaMFStWEBcXR3x8PPHx8fZ5LVu2ZNKkSQBER0fbW36d8/3331dY34VfSGAb1ysgIKDCIJLu6tzbZH6tffv2LFy4EIBOnTpVOmD/hg0b+OSTTxg6dCirVq3irrvuKjc/LS2NpKQkEhISSE1N5eabbyYxMbFC/b1799KmTRsaNGhgXzYzM5O+ffvW4J6KiIiIiFydy/mtMmLECEaMGGGfd+FvlXMu7K5Y2UD069ev55FHHrnquC+VujGKiDjJgw8+aH+zX20IDAy0j+dVn8XExNjfYnkx1113HcXFxfTv35+YmBhatGjB0aNHee211wB46aWXWL58OcuWLSM2NpZJkyZVqA8VuzCCbYDPc2+hERERERFxBTX9W+X999/HaHRcCkotu0RExOVV9WTKaDQSHR1Nenp6leMEnGtifU5lT6wAVqxYUWl9gKeffrrc9M6dO+nevXu51zaLiIiIiEjtUrJLRETcXmXdGx0hKiqKqKgop2xbRERERKS+UjdGERERERERERFxG0p2iYiIiIiIiIiI21CyS0RERERERERE3IbG7JI6J+8sZOQ4Z9uR/uDr6Zxti4iIiIiIiMjVU7JL6pyMHJiw1jnbntMXYoOcs20RERERERERuXrqxigiIiIiIiIiIm5DyS4REREREREREXEbSnaJiIiIiIiIiIjbULJLRERERERERETchgaoF7eQ9pKZ/F3JGDw8MZg88G59Da3GTMM/5kZnhyYiIiIiIiIiDqSWXeI2Wo2ZRrcFeUTPy6JRx97smX4HZflnnB2WiIiIiIiIiDiQkl3idoyeXjS9aTyWojyKjmQ4OxwRERERERERcSCXSXaVlJQQHx9PSEgIDRs2ZNCgQaSkpGAwGFi0aJGzw5M6xFJcyInlczD6+OPdqr2zwxERERERERERB3KJMbusViujR48mJSWFKVOmEBkZyfz58xkxYgQA3bp1c3hMbW68lm7P34N/u1aU5hXy09uL2T77K4fHIecdnh/P0c+nYvDwwjukE5GTv8bk4+/ssMRN7c+D/+w/P/23bXBnGET4OSsi95RVCF9mnp+esgVGhUKXJmAwOC8uEam7zlrguyOw+Gc4XgQBDeDWELi5FXi7xJ2viIjI1TlRBIt+Pj/90iYYFQbdAuvPPbRLfOW/++67LFmyhNTUVDp37gyA2WwmPDycwMBA2rZt69B4Wg2Iofdrv2XNU//maPJ2PBp60ah1U4fGIBW1uu+vtBzxrLPDkHrg83225NaFvtgHn+2DP3SG+9o5Jy538/1ReGEjlFrOly05AF8fgHsjbMe6vnxZi8ilyS6Gx5MhLcfWfcGC7b+bTsL7u+HtPtDSx8lBioiI1KKU4/CHFCgqO1+2/DB8cwiGhsDkWDDVg3tol+jGOGPGDMaMGWNPdAGYTCbCw8PtrbqKiop49NFHad++PV27duWRRx6ptXi6PXcPW9/8D0fWbMNaZuFsXiHZaQdqbXsiUnesOwYztoEV2+ecc/mYN7bDqqNOCMzN7MmB5zfYEl2VHedP9sKCfc6ITETqsuc3QnqO7e9z14tz/z1cAE+tA4u1siVFRERc35ECeHo9FJeVLz/33bf4ALy32/FxOUOdT3alp6ezb98+Ro0aVWHegQMH7Mmu5557Dm9vb3bv3s22bdv461//WivxeDT0omlsOxo2C2DE6n9y99Y5DPrgeXxDmtfK9kSkbvkwo+oLp/GXOnJ1FuyzfSlX9Zt0XgaU6UeriPxiZ7atBZflIvMtwN48SD7mwKBEREQc6Iv9UGKp+h56/t6KyTB3VOe7MR46dAiA5s3LJ5N27dpFZmYm3bp1Iy8vjw8//JCDBw9i+KVPS4sWLS55G35+fpSUlFQob+fRhOf8+5UraxDQCIPRSOhtvVh+71QKT56h51/GMXDuJBYPnnS5u1evDBxoZk/p6Wrr+XTsTbupSbUdTqUGDjRTkJbslG1L3Wf09qVzwskq61iA1FPg07QVZblV15WLi3rvCB5+gVXWOV4EQZ37ULhnk4Oicn9dPisCwMvL28mRuDcd59rR4p4pNBvxHAaj6aJ1rGWlPDBtHofeecyBkYmIiDhGh3/vxKtFRJV1cs9Cq+tvJW/rSgdFdeUslos9wqpenW/ZFRQUBEBGxvmmElarleeffx6LxUK3bt3Ys2cPQUFB/PnPf6ZHjx6YzWbWrFlTK/GczbPdoO6Ys4S8g8cpKyxh8yvzCeoarnG7nKjjtCSN1yW1zujd6NLrel16XanI6HVpg+oYvX1rORIRcRVGb1+wVn9TrOuGiIi4K9Mlfsddzu8aV1XnW3ZFRUURGRnJiy++iKenJ76+vsyePZstW7bg4+NDx44dSU1NZe/evXTr1o3XXnuN9evXM3ToUDIyMvD3r/5tfLm5uZWWZ6XsYunwyeXKzuYWkHfgGFjVd+ZyJSYm0aLnNdXWSz0JE9Y6IKBKJCYmERvknG1L3VdqgRuXQX5p1fW8TXDi53S8L964QKox+jvbGy+ru9JuX/MtwRpsusb0+OWlwsXFxc4NxM3pONeOBfvgtW1V1zGaPPjDuLt57G93OyYoERERBxq/GradvniX/nN++Ppz2jd2SEhXZe3atfTr16/6ipWo8y27PDw8+OKLLwgODmbs2LFMnDiRW265hQEDBhAdHY3RaKRt27Z4eHhw7733AtCrVy+aNm3K7t21M/Ja2offEjXhNnxaBWHy8qTbc/dw4sc95B86USvbE5G6wcMIw9pCVS8vMQK3h6BE11UaFVZ1ossIXN8MJbpExO6W1tDgEu5shzv2Jd4iIiIOMzKs6kSXEegUgEskuq5WnU92AcTExJCcnExBQQFpaWk8+uijbNmyxT44fdOmTRk4cCDLly8HYPfu3Rw7dozIyMhaiWfbrEUc+m4Lw779G6M3v4tPi0ASx79WK9sSkbplbCQ09a784mkEArxgXHtHR+V+hreFDv6VJxaNQAMTPNnJ0VGJSF3m3wAej6q6zgOR0Nr9e26IiEg9Nbg1xAZWfg9tAIwG+ENnR0flHC6R7Pq1wsJC0tLS7MkugLfffpvp06fTtWtX7rnnHhISEggICKidAKxWNk37iE+7jOfTzuP4btwMteoSqSeaesN7/eDaSrq7xgTa5rVo6Pi43E1DD3i7DwwMrvhlHeEH7/SBjvXgiZSIXJ7728ELXcHfs3y5jwkeuwaerCYZJiIi4so8jTDzeriljS2xdaG2vvBWH+rNsD11fsyuymzdupWysrJyya6IiAiSkpKcF5TUup/ffZLCfan4X3sLwaNfLDfv7OmjbHsknC6z02nQtA0nVrzHiW/n4BHQnPCJCZh8/AAo2JvKzmevo/vCs87YBXETwT7wdl/Ylws/nrKVdW0C7aofIlAug38D+Nt1cLQQNhyHsxbo0Bg6B4Chqr6kIlKv3Rlu63L+wzF4doOt7Nubwdsl73pFREQuj48H/OVaeKoTrDsGxRZo52d7MF+f7qFd8mu/V69eWDVAfL2Sn74Rg9GDjq+sZs+rd3I2OwvPgBb2+ce+/heNOvQCbK8VP/ndPDq+uoYzm5ZwYvkcWgx/GoDjy2bjE3GtU/ZB3E+4n+0jtatlQxiqMXZE5DI0MIE5+Py0El0iIlLfNPWG2+vxPbRLdmOU+id/93r8ogcB4NdlAAUZm+zzSvOyKc09gVfzMNt0zgkaNGuLwWikYWhX8tOSASg6nI6HfzNMDZWdEBEREREREXFXSnaJSyjLz8bkY+sjZmzoR1l+tn3e8SWzaDbkd/ZpD/9mFB/JwFJSRN72VZTlnwHg2OJ/0vy2Jxwat4iIiIiIiIg4lpJd4hJMjQIoK8gBwFKYi6lRgO3v4kKKDuzAJ+L8+G0Gk4kWIyaR/uchFO7/EY+AFpScPAyAZ5OWDo9dRERERERERBxHyS5xCY069CR3WyIAudtX4RPZHYDiY/spPrqH9ClDyEldzs/vPA5Ak94j6TgtiUYdetG4+y0UHdhBwb5U0qcMoWBfKj+/+5TT9kVEREREREREao+G6xSX0Kj9dZxc+QFpf+yPf7ebOXvqCDlbviVo4ANc89o6APb/8yFa3T8VgJ/ffoyiQ2l4h3QiZPybGEwm/GPjANgdH0fbR2Y6bV9EREREREREpPYo2SUuo+3vZpWb9omILTcd9vsPLqj71kXX0+GvK2oyLBERERERERGpQ9SNUURERERERERE3IaSXSIiIiIiIiIi4jaU7BIREREREREREbehMbukzon0hzl9nbdtERERZ0pKSmLcuHGEhoYSGhrKvHnzys1PSEggODiYuLg4pk+fztKlS4mNjeVf//pXuXr33HMPR48eJTc3l5CQEP773/9iNpsBOH78ODfddBMvv/wyI0eOxGKx0KZNGxISEjhz5gxTp07ljTfecNQui4iIiNQoJbukzvH1hNggZ0chIiLiPOPHj2fy5Mk89dRTJCcn07t3b/u8xYsXs2DBArKysti8eTOrV6/m6aefZuPGjfTo0cNe79NPPwXgnXfewWAwALZEGsAf//hHBg4ciLe3N59//jnNmjUjPj6elStXMnjwYLKzs8nLy8PX19dxOy0iIiJSQ9SNUURERC5JUlIS4eHhmM1mxo4dW2H+tGnTSE9Pv+jya9as4frrr6dPnz68/vrr5eYtW7YMs9mM2WwmKCiI1NRUCgsLufXWWxkwYADjxo0DYOfOncyYMaNmd6wO69KlC4cOHbJPnzp1Cm9vbwwGAxs3bmTAgAEADBo0iJSUlErXsXjxYoYOHVquLCkpCbPZjI+PD82aNQPAZDLZk2K9evWyJ8bcWW2e05XNO3XqFN27dy+XRKxv57SIiIgjKNklIiIil2z8+PEkJSXRuHFjkpOT7eUWi4WtW7fSvn37iy4bERHBqlWr+OGHH/j6668pKCiwzxsyZAhJSUkkJiYSERFBTEwM3377Lf369eP777/H09OTn376iaioKDZv3ozVaq3V/awrkpOTiYyMtE9nZGQQGhoKQHZ2Nv7+tv73fn5+ZGdnV1g+Ly+P3NxcgoODK6yjQYMG9rKsrCxWrlzJoEGDAAgNDWX37t21sUt1Tm2d05XN8/PzY/ny5Vx//fX2evXtnBYREXEEJbtERETksv26xdGPP/5Ihw4dqlymVatW9gSLyWTCaKx4G7JhwwZ69OiBwWAgPDyc/Px8wJa0ady4MWBLImzfvr2mdqVOmjt3LmazmdatWxMbG1tpnYCAAHJycgDIzc0lICCgQp1vvvmGIUOGlCtbtGgRw4cPt0+Xlpby8MMP89Zbb2EymWpsH1xNTZ/Tlc3z9PQkMDCwwnrqwzktIiLiSEp2iYiIyGX7dYuj9PR0wsLCLmnZ5cuX065dO7y9vSvMuzARExkZyerVq4mKisJgMBASEgLUj1ZH51obTZ06tVx5ZGQkmZmZAHTv3p1Vq1YBkJiYSM+ePSus59eJLYAlS5Zw66232qf/8Ic/8MADD9C1a1d7WWZmZpUtmtxRbZ3TVc07pz6c0yIiIo6kZJeIiIhcsktpcbRjxw77+FvnPq+++ioABw8e5JVXXqkwvtE5iYmJ9q508+bN4+6772bnzp00bdqUH374oVb2yZUEBgbau8q1bNmS6Oho+vfvT3FxMT169ODo0aO89tprAJSVlbF79246depkX/7EiRN4enraW8nt3buXOXPm8Pbbb2M2m/nf//4HwLp16+xvbnR3tXlOV3e+i4iISO3Q2xhFRETkkp17S+CvtW/fnoULFwLQqVOnSgc3Ly4u5qGHHmL27NmVvuVv7969tGnTxt71y2Kx2Lt8BQYG2sekyszMpG/fvjW0R3XPuWTKxQwbNowVK1YQFxdHfHw88fHx9nktW7Zk0qRJgK3r3Lp168ot27RpU5YtW2afjoiIKDfOFNgGUQ8ICMDPz68G9qbuq61zurrz/ULufk6LiIg4mlp2iYiIyFWLiYkhLS2tyjrz589nx44d/Pa3v8VsNnPo0KFyLZF+3eXuvvvu4/3338dsNpOamspNN90E2AZY79KlS+3tTB334IMPEhcXV2vrDwwM5B//+Eetrd9VXO05Xdk8gLi4OLZs2UJcXBw//fQToHNaRESkpqlll4iIiFySqlocGY1GoqOjSU9Pv+hYT+PGjWPcuHEVys+1RHr66afLlTdp0oRvv/22XNnOnTvp3r07BoPhCvZApLzaPqcrm7dixYpy0zqnRUREap6SXSIiIlIjKusKVtOioqKIioqq9e2IgM5pERERV6VujCIiIiIiIiIi4jaU7BIREREREREREbehZJeIiIiIiIiIiLgNjdkldU7eWcjIcc62I/3B19M52xYRERERERGRq6dkl9Q5GTkwYa1ztj2nL8QGOWfbIiIiIiIiInL11I1RRERERERERETchpJdIiIiIiIiIiLiNpTsEhERERERERERt6Fkl4iIiIiIiIiIuA0NUC9uIe0lM/m7kjF4eGIweeDd+hpajZmGf8yNzg5NRERERERERBxILbvEbbQaM41uC/KInpdFo4692TP9Dsryzzg7LBERERERERFxICW7xO0YPb1oetN4LEV5FB3JcHY4IiIiIiIiIuJASnaJ27EUF3Ji+RyMPv54t2rv7HBERERERERExIFcJtlVUlJCfHw8ISEhNGzYkEGDBpGSkoLBYGDRokUOi+P+jIRynwd//pRhK1932Pbl4g7Pjyf1vgC2/SaMgn0/Ejn5a0w+/s4OS0Skzisqhf9mnp+e9iNsP+28eNxVqQVWHD4/Hb8ZUo6D1eq8mNyRxQrJx+ClTefLEo/Yjr+IiIjUDy4xQL3VamX06NGkpKQwZcoUIiMjmT9/PiNGjACgW7duDovl48gHyk0PW/k6+xatddj25eJa3fdXWo541tlhiIi4lIwceDwZThafL1uUCV9mwrAQeCkWTAanhec2jhXajvO+vPNl3xyCpQfh+mbw2nXQ0CXuyuq2vLPw9HrYcgqMF5y3kzZAe3/49/UQ5O28+ERERMQxXOK26t1332XJkiWkpqbSuXNnAMxmM+Hh4QQGBtK2bVunxNU0NpKADm3IWJDolO2LiIhcjdyz8NgPkF1SvvxcA5ivDtgSA49HOTw0t1JmhSfWQWZe+XLLLy261h+Hv6TCKz0cHprbmbwZUk/Z/rb8qsXcnhx4OgXm9QeDErgiIiJuzSWSXTNmzGDMmDH2RBeAyWQiPDwcT09P9u/fzx133GGfl52dTU5ODqdOnarVuNrfN4hD322hMEt9PURExPV8fQBOlVRd55O98FB7aOQSdwx109os2Jt78flWbN0bH8+HNo0cFpbbyciBNVkXn28BdmTDxhNwXTNHRSUiIiLOUOdvXdPT09m3bx8zZ86sMO/AgQOMGjWKsLAwUlNT7eUTJ06ktLT0krfh5+dHSUnFu/12Hk14zr9fpct4NPQifHhfVj/170veTn03cKCZPaXVJwZ9Ovam3dSk2g6nUgMHmilIS3bKtkVEHC1i2vf4RPbEYLz4EJ5FZRB24z3krPvSgZG5lzZPvkdA37sxmC5+22WxWun10Euc+ErjgF6p5nfF03zUi1Wez9ayUu768/sc/r8nHBiZiIiIXAmL5coH3Kzzya5Dhw4B0Lx583Llu3btIjMzs8J4XSUlJXz88cd88803tRpX2NDelBaWcHDFpuorS63rOC3J2SGIiLgcU6MmVSYG7PV8GjsgGvdl8mlcfb85SxmmRnqpytUw+TQGaxlVv3/JqpfXiIiI1AN1PtkVFBQEQEZGBj179gRsA9Y///zzWCyWCsmur776itatW3Pttdde8jZycyvvW5CVsoulwydXOq/9/Tey57MkrGV6tc+lSkxM4v/bu/e4qOrE/+PvGQZQQ1C8a6goXlAESRNNjRGttDbLzMy01OzXbatlt6y+ru7aPdetdVtbN7/ZzdK+5daarXlLSS2STAivCIaoeE28gCC3md8fkyhyVWEOc3g9Hw8eMuecmXnPdDozvOdzPtOqX/cqt0s6Lj1g0Jz/69bFqXczY+4bANztie+l74+en6OrIks/eEtRLd5ySyYz+stWaUl65c+zxcumOTOf1R3vPeu2XGbz0R7pb9sr38bq5a3fTRqrx/8y1j2hAADAZTt9+rS2bt2qXr16XfJ1q/4412ChoaEKCQnRtGnT9Omnn+qrr77Sbbfdpi1btqhRo0bq1q1bqe3feecd3X///bWayb9zW7Xs2027F39dq/cDAEBtur19FQWMpFYNpL7N3ZXInG6r4nmWJB+rdGM7t8QxrRFXS7YqBtA5Jd1qzPcaAQCAS+Tv76+BAwfK3//SR2XX+bLLZrNpyZIlatOmjSZOnKjY2FiNGDFC0dHRCg8Pl/WC0y8yMzP1zTffaPz48bWaqcu4GB3ZtFPZ6Ydr9X4AAKhN17eWIgNdpdbFLHIVA78Pk7z45ror0i1AuuXqyrd5uLvk5+2ePGYV6Cvd37XybUZ3kDr6uScPAAAwTp0/jVGSIiIiFB9fetLwuXPnKjo6utSy999/X7fcckvJqY+15ccXP6zV2wcAwB1sVmlOf+mFJOnrg65y6xx/b2lqL2lYW6PSmcuM3q4y6997paILnuiGXtJD3aXxnYxKZi7/r6trdNc7qa4vVzjHZpHGdZIe62FcNgAA4D4eUXZdLC8vTykpKYqNjS21/L333iv3WxthHjk7NurAu09JFquaXjdarW5/smTdL2ve0S+r3patSUsFxy6Us7hQe169Q3I45N38agXHLpTFy8vA9ABQ91xlk17tKx3MldYfdhUEQVe5Rn151/nx357DZnWVh1O6SusOSacLpZYNpCFtpEYe+W6sbrJYXKO77gp2Pc+/5EtNfFzPcxMfo9MBAAB38ci3V8nJySouLi4zOf3u3bsNSgR38WnVSV1fXi+rt49S/jhELUY8IqtvIzmLi3R87fvq9upGnfpxuX5Z/bZaDH9InZ7+VN4BLZT50QxlJ38t/8gbjX4IAFAntW0k3c3ooloX6CuN7mh0CvPz82ZuLgAA6jOP/Mw2KipKTqdTffv2NToK3MynWVtZvV0fzVqsXpLFtQsXnf5FPi3ay2K1qmGHXjqTEi+rbyN5B7S4YFsmnQEAAAAAwOw8suwCTietlm+bzrL6NJAk2fxbKP9QmhwFZ5Wzfb2Kz5wq2bbw5BFlJ3+txr1ijIoLAAAAAADchLILHqfglwM6vOQVXT35tZJlFi8vtRo1VanPDVfe3p9ka9JKkuQsLtLeN+5X+4f+yXxdAAAAAADUAx45ZxfqL0dhvvb+fZLaPzxPXg1Lf3d40wF3qOmAO3Ti20/lLC6SJO1f8Ac1s9+rhh17GREXAAAAAAC4GWUXPErWN4t0dv8OZcx7SJLUbsJLyj/8s5oNuVf7/vWozmamqEFQDwVNmaP8wz/rl9VvKy8jWcdW/kutR01VQN9bDH4EAAAAAACgNlF2waM0HzZZzYdNLrXML3SgJKn9w/8stdy3dSdd82mu27IBAAAAAADjMWcXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADTsDidTqfRIeqqguxcndi5z+gYptE0tL18GjeqcrucQinttBsClSPEX/LzNua+AQAAAADAlaPsAgAAAAAAgGlwGiMAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATMNmdAAAAAAAAFB/FWTn6sTOfUbHMI2moe3l07iR0TEMRdkFAAAAAAAMc2LnPn1123SjY5jGiKUvqlW/7kbHMBSnMQIAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpeEzZVVBQoBkzZigoKEgNGzZUTEyMEhISZLFYtHTpUqPjwaROFUiL9kgvJEmzkqWNR6Rip9GpAABOp/RTlvTaNun5JOntFOlwntGpAABATbJ4WdXvhckat+Nd3bPrfV332iPy8vU2OhY8gM3oANXhdDo1ZswYJSQkaObMmQoJCdGiRYs0atQoSVJkZKTBCWFGn+2VZm+TCh2Sl0VySvp0rxR0lfS3KKmjn8EBAaCeOpkvPfWDlJTl+tTOYpEcTumtFOneEOmxUMlqMTolAAC4UuFP3KHW14VpacyTKi4s0tD3nlGf6fcqYcY7RkdDHecRI7vmz5+v5cuXa82aNXrooYc0dOhQzZ8/X15eXgoMDFT79u2NjgiTWZ0pvZzsKrok12gux68jujJzpYe/df2xBQBwryKH9Nj3UnKW67JDrmO0U66fD9Kkt3cbGBAAANSYLuOHausbnyn3cJbyj59W0mufKGSsXRarR1QZMJBH7CGzZs3ShAkT1LNnz5JlXl5eCg4OLhnVtXv3bg0YMEBdu3bVgAEDlJqaalRceDinU/rnLqmiQQEOp/RLvvT5PrfGAgDIdTr5rlOukqsi76dKOYVuiwQAAGqBj38j+bVroazt6SXLjm9Nl0/jRvILamFgMniCOn8aY2pqqtLT0/XGG2+UWbd//36NHj1akvTwww/rt7/9rSZMmKAPP/xQDz30kNauXVvl7Z8+fVqtW7dWUVGRLBbOeYDUsHMfhbz6XaXbOJ0Ovf71Hj0cFuamVAAASWr/5Mfyv/ZWWbwqfguT75A63zJFJ7/50I3JAADA5epsa6qn/QeVWmbzayhJKjiVW7Ks4NQZSZL3r+tQviFD7NpTdMLoGDXCx8dH2dnZl3y9Oj+yKzMzU5LUsmXLUst37dqljIwMRUZG6ujRo9qyZYvGjRsnSRo3bpy2bNmiY8eOVXn7W7duVV5enpxOZh2Hiy2gZZXbWCzWam0HAKhZtiatKi26SrbjGA0AgEcrynF984y3f6OSZT4BV0mSCnP4VhpUrs6P7GrWrJkkKS0tTf369ZPkmrD+mWeekcPhUGRkpPbv36927drJy8tLkusUx7Zt22r//v1q0aJ6wxvj4uI0cODA2nkQ8CjbT0gTN1S9XXDLACXmM3EXALjT1B+kbw5VfhqjJL31+iv6zaevuCUTAAC4MkcSdumr26aXWlZwOlc5mccU2LOjTu85KElqFhasguxc5eyvemBLfbZuXZxa9etudAxD1fmyKzQ0VCEhIZo2bZq8vb3l5+enefPmKTExUY0aNVK3bt2UmJhodEyYSI8mUvurpP1nXJMdV2Qk34sAAG53y9XSukOVb9PAS7K3dk8eAABQe1I/+lrhj4/SkU075SgqVu8n71La/8XJ6ajqYy/Ud3W+7LLZbFqyZIkefvhhTZw4UUFBQYqNjZW/v7/27Nkjq9WqoKAgZWZmqri4WF5eXiouLtbBgwcVFBRkdHx4IItFejRUenZz+eutkpo1kG7v4NZYAABJg1q5PpTYdbLi0V2TQiQ/bzeGAgAAtSL5jc/kG+iv2+P+JovVor1ffq8fX2JOTlStzpddkhQREaH4+PhSy+bOnavo6GhJrvm8evfurcWLF2vChAlavHixIiMjq30KI3CxYW2l6RHSX7ZKBRf9NXX1VdKcKKmJjzHZAKA+s1mlN/pLUxOkxKzzyy2//twXIk3palQ6AABQk5zFDiXMeEcJM94xOgo8jEeUXRfLy8tTSkqKYmNjS5b961//0sSJE/X888+radOm+uCDD4wLCFO4vYMU00ZafkD66zbXsjf6S/1bSFa+uBMADNPER5o/UNp+Upr06xyLj3SXfhMkteTLmQAAAOo9jyy7kpOTVVxcrMjIyJJl3bt316ZNmwxMBTPy95Hu7nS+7LqOL/cCgDrBYpHCmp6/fD+juQAAAPArjyy7oqKi5HRWNnU4AAAAAAAA6iOr0QEAAAAAAACAmkLZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATMNjyq6CggLNmDFDQUFBatiwoWJiYpSQkCCLxaKlS5caHQ8A6jyHU/r+qDR3h/T37dLqTKnQYXQqAIAknciXFv8szdkuvb1bysgxOhEAGK/jrQM0YukLGp+2UHcm/NPoOPAgNqMDVIfT6dSYMWOUkJCgmTNnKiQkRIsWLdKoUaMkSZGRkQYnBIC6bc9paeoP0r4z5z/lcEhq6iO92EeKamFkOgCov5xOaX6K9G6qVOSUvCyuDyf+tUsa2kaaGSk19Ih37ABQ8/JPndGud1aoQYsA9XzwN0bHgQfxiJfO+fPna/ny5UpKSlLPnj0lSXa7XcHBwQoMDFT79u0NTggAddfhPOnBb6XsQtflCwdznSqQfve99PYgKaypIfEAoF5bsFv6393nLxc7z/++9pCUWyS90V+yWNyfDQCMdmh9siSp/fBrDU4CT+MRpzHOmjVLEyZMKCm6JMnLy0vBwcElo7qeeuopBQcHy2KxaNu2bUZFBYA6Z/Ee6XRh6ZLrHIdcIwje2uXuVACA7ELpndSK1zslxR+TErPcFgkAAFOo82VXamqq0tPTNXr06DLr9u/fX1J23X777Vq/fr06dOjg7ogAUGc5ndLSfa4/mCrikPT9MemXs+5KBQCQpDUHpYIq5k60WqRl+9yTBwAAs6jzpzFmZmZKklq2bFlq+a5du5SRkVFSdg0aNOiK7sdut8tqrfPdHwwS9omrBfD1bWBwEuDSWGw+ClucXeV2TkmdI/rp7N6faj8UUIM4PsOTtbzzj2o5ZroslbwHLXY4tWjZGr3cn7lqAJhXZ1tTPe1/ZX/T47whQ+zaU3TC6Bg1wsfHR9nZVf89c7E63+40a9ZMkpSWllayzOl06plnnpHD4WByegCohLOoQI783GptW5zDeTIA4E7FOVmVFl2SJEexinOOuycQAAAmUedHdoWGhiokJETTpk2Tt7e3/Pz8NG/ePCUmJqpRo0bq1q1bjdxPXFycBg4cWCO3BfPp+4Xr3/z8fGODAJfhpZ+kpRnlz9kluT71CGsqbc5Mq2ALoO7i+AxP9stZ6ebVrrkTK2Lxsum9J+/WoL/c7b5gAOBmRxJ26avbppdZbrFaZfX2ksVmkywWefl6y+l0ylFQZEBKz7FuXZxa9etudAxD1fmyy2azacmSJXr44Yc1ceJEBQUFKTY2Vv7+/tqzZw+nHgJAFcZ3kpbvlwod5RdeTkn/r2Y+NwAAXILmDaQ7O0qfpJe/3iqpS4A0oGX56wHA7Drfeb0G/f2xksv37l2snP1HtaTfowamgieo82WXJEVERCg+Pr7Usrlz5yo6OtqgRADgOTo2dn1t/ZMJUs5FH4LZLNL03vwhBQBG+UNP6Uyh9N8DrnLrwg8lujeR5kRJXhaDwgGAwdI+iVPaJ3FGx4AH8shhUXl5eUpJSSk1X9cTTzyhq6++WgcOHNCwYcPUs2dPAxMCQN3Sp7n01Y3S9Ijzy57oIa24UfpNkHG5AKC+s1ml566RPrZLd3c6v/zNAdJ7g6VAX8OiAQDgsTyy7EpOTlZxcXGpsuuNN97QgQMHVFRUpMOHD2v79u0GJgSAuqehTbq9w/nL94VITfgjCgDqhBB/6Q9h5y9HtZCsjOgCAOCyeMRpjBeLioqS01nJTJ4AAAAAAAColzxyZBcAAAAAAABQHsouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGh5TdhUUFGjGjBkKCgpSw4YNFRMTo4SEBFksFi1dutToeACugNMp/XBMei9Vej9V2nbCtQzwVHtzpA/3SO/sluIOSUUOoxMBAOA+xU7p2yPSu6nSwjQp5ZTRieCJrD42XffXhzX6+zc1PnWhRm18Q93vH2F0LHgIm9EBqsPpdGrMmDFKSEjQzJkzFRISokWLFmnUqFGSpMjISIMTArhcO09Kf/xR2nem9PJuAdIrfaT2fobEAi7LyQLpT1uk746WXh7oI/2xtxTd2pBYAAC4zZbjrtfCw3mll/cOlF7qI7VqaEwueB6rl5fyjp7UqrtfUHbGEQX26KAbFk/X2WMntXdZvNHxUMd5xMiu+fPna/ny5VqzZo0eeughDR06VPPnz5eXl5cCAwPVvn17oyMCuAw/Z0sPfisdOFN2Xepp6YGN0tG8suuAuuhssfTod9L3R8uuO1EgPZVQtgQDAMBMtp2Qfhtf/vu35CzXe7tTBe7PBc9UlJevxL98rOy9hyWnU1nb92r/qs1q2S/U6GjwAB5Rds2aNUsTJkxQz549S5Z5eXkpODhYkZGROn78uG6++WZ169ZNvXr10h133KFjx44ZmBhAdfxvipRfLJV3hpfD6SoIPtrj9ljAZVlxQNp9uvz9+dxZuXO2c4ouAMC8/rlTKnZU8N5O0qE8acleN4eCaVhsXmoVFaoTOzOMjgIPUOfLrtTUVKWnp2v06NFl1u3fv1+RkZGyWCx6+umnlZKSoq1bt6pz58569tlnDUgLoLpOF0hfHyr/zdA5Tkn/2ecqvoC67vMMyVLJeqdcoxl3Mm8JAMCEDudKCb9U/t5Ocr1eApej/8tTVJiTpz2ffmN0FHiAOj9nV2ZmpiSpZcuWpZbv2rVLGRkZioyMVGBgoOx2e8m6/v37a968eZd0P3a7XVZrne/+YJCwT85Kknx9GxicxDx823VX1zk/VbndmSLpqsAWcuSedkOq+oH9uXaE/u9+2Zq0rHK76JFjdXrTf2o/UD3B/gyzYZ+Gp2rUbYA6vxhX5XaHzhTL17dR7QeCR+lsa6qn/QdVuP7amRPVok83rRwzU47CIjcm80xDhti1p+iE0TFqhI+Pj7Kzsy/5enW+3WnWrJkkKS0trWSZ0+nUM888I4fDUWZyeofDoXnz5mnkyJFuzQng0hTnVm94i7O4SI783FpOA1y54tyTclbjHMXiMwztAgCYT3Xf2znyLv2PVtRv/Z6fpLbXh2vlXc8pP4v9B9VT50d2hYaGKiQkRNOmTZO3t7f8/Pw0b948JSYmqlGjRurWrVup7R9//HH5+fnpscceu6T7iYuL08CBA2syOkyk7xeuf/Pz840NYjL3b3BNZFrRcHerpKFBNv2YW84M9rhs7M+1Y36K66cyTX2kIz+skHed/6jJc7A/w2zYp+GpnE7pznXSvpzzc1VezCrpzp5N9Cz7Ny5yJGGXvrptepnl/V64X20GhWnFnTOVf5wzPapr3bo4terX3egYhqrzZZfNZtOSJUv08MMPa+LEiQoKClJsbKz8/f21Z8+eUqcePvXUU0pNTdWyZcs4JRHwAPd3lWI3lb/OIslikSZ0dmsk4LLd0UFa/LN0prDiAndiF1F0AQBMyWKRHugqzdhSwXpJNqt0d7BbY8GDXXV1c/V44GYVny3QnZveLFl+ZNMurRn/koHJ4AnqfNklSREREYqPjy+1bO7cuYqOji65PG3aNP3444/673//K19fX3dHBHAZBrWS/idcmpXs+gTwwk8BbVbppWuknk2NSgdcmuYNpLn9pSe+l04Vnl9ulav8mtBZGt/JqHQAANS+EVdLR/KkuTtd5daF7+0aeEmzr5U6NjYqHTzNmQO/6L02dxodAx7KIz9fzsvLU0pKSsl8Xdu3b9crr7yigwcP6rrrrlPv3r01atQog1MCqI7RHaUvhrlGeZ3zWKj03xukmLaGxQIuS8+m0hc3uErcc8YESx/bpdierk+9AQAws0ldpM9jSo/O/0NP13u7/lV/jwsA1AiPGNl1seTkZBUXF5eUXT179qzWpMAA6qbWjaRHuksLdrsuT+pibB7gSlxlc5W4ryS7Lk/tZWgcAADcLshP+l1PaeEe1+V7mJYCgJt5ZNkVFRVFuQUAAAAAAIAyPPI0RgAAAAAAAKA8lF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0PKbsKigo0IwZMxQUFKSGDRsqJiZGCQkJslgsWrp0qdHx3K7YKX13VPo0XfrvfulkgdGJAACAGZ0tktYcdL3nWHtQyi82OhFw+RxOKeGYa3/+cp90/KzRiYArs+e09Nle10/aaaPT1Lz+rzygMZv/pXt2f6AxW95Sv+cnyeptMzoWPIBH7CVOp1NjxoxRQkKCZs6cqZCQEC1atEijRo2SJEVGRhqc0L3WHpRmb5OOXfDibLNId3SUft9T8vaYChMAANRVTqf0fpr0bqp0puj8cj+b9GA3aVwnyWIxLh9wqb47Kr3yk3Qo7/wyL4t0y9XS072kBh7xlxHgknlGmpkoJWaVXt47UJoZKV19lTG5atrOd1do8/MLVZSXL9/AxrLPf1LhT9yhpNc+MToa6jiPOKTPnz9fy5cvV1JSknr27ClJstvtCg4OVmBgoNq3b29wQvf5+qD07Oayy4uc0ifp0tE8afa1vPkEAABXZt4u6Z3UsstziqTXt0tni6X7u7o/F3A5vj8qxW5ylbgXKnZKy/a7CrB/9JdsfGgMD3DsrDRlo5SVX3ZdcpY0eYO0MFpq3dD92Wraqd0Hzl+wWOR0ONW4UxvjAsFjeMThfNasWZowYUJJ0SVJXl5eCg4OLhnVdfvttysiIkKRkZEaPHiwkpKSDEpbe4oc0l+3un53VrBN3GFp8y9uiwQAAEzocJ5rRFdl5qeU/4cWUNc4na6zIpzO8t9DOyX98Iu0/rC7kwGX5/1U1/HXUc46h6RTBdJ7VRzDPUmvx27X+LSFGrftHQX27KAd8780OhI8QJ0vu1JTU5Wenq7Ro0eXWbd///6Ssuv999/XTz/9pMTERD311FO6//773R211n1/TDqWX3HRJUlWi/R5htsiAQAAE1q2r+ptipzS8v21nwW4UsknpIycKt5DS/qM99DwAIUO6Yt95Rdd5zgkfbnfNQLXDLbO/Y8+CrlXn1//O6V8sEp5R08YHQkeoM6fxpiZmSlJatmyZanlu3btUkZGRknZFRAQULLu1KlTslovrcez2+2XfB13azb8UbWd8rdKt3E4pf9s2KLXBg5wU6r6IewT1wRpvr4NDE5ibjzP7sHz7B48z+7B81w7rv7t22oy+G5ZvLwr3MZZVKgZf3tHU95+wo3JzI99uuY1uf4eBT3+bqXbOCSt35YuX3t394SqJ9ifa56tSWuF/m/VzezZYql5+xAV/uIZn0p0tjXV0/6DKt3mVGqmsrZnaPA/ntDKO2e6J5iHGjLErj1F5igFfXx8lJ2dfcnXq/NlV7NmzSRJaWlp6tevnyTXhPXPPPOMHA5HqcnpH3jgAa1atUpOp1MrVqwwJG9tKj5b9X9gp6NYjrxL3xEAAADOcZzNkVTFBKBW66/bAXWbI6/q/dTpdKiY99DwAI78M9Xf9mz1t/UUVm8v+TNnF6qhzpddoaGhCgkJ0bRp0+Tt7S0/Pz/NmzdPiYmJatSokbp161ay7dtvvy1JWrhwoaZOnarly5dX+37i4uI0cODAGs9fk7LypZtXuU4bqIjF6qXnx0XrrmlMolGT+n7h+jc/n+e1NvE8uwfPs3vwPLsHz3Pt+OGY9Eh85dtYrF7671+fVNiCJ90Tqp5gn655Z4qkm1ZWfkqXxWLVH4aHa8oTPO81if25djz6nWue5opOZbRapIim0ubjh9ya60ocSdilr26bXmqZd+NG6jCin/atSFDB6Vw1De2giNjROhj3k0EpPce6dXFq1a9+j1St2+ftSbLZbFqyZInatGmjiRMnKjY2ViNGjFB0dLTCw8PLPfXw3nvv1bp163T8+HEDEteeQF9pZCVfPGm1SE19pJuvdl8mAABgPn2bS90CKn6jaJXr6+17NnFjKOAyXWWTxgZXvN766za3158veIeHuy+kijm7nNLELm6LU3ucTnUafb1Gf/+mxqctVMy7T+vA14na9McFRieDB6jzI7skKSIiQvHxpT9enDt3rqKjoyVJOTk5OnHihIKCgiRJy5YtU2BgoAIDA92etbY9GSYdPSttPOIqtxwXjPLy95bmDpD8Kp5eAwAAoEoWizQnSnrkO2nvBWeAWeX6A6uzv/SXa13bAZ7gke7SoTxpVWbZ99ANbdIb/aVmTCsFD9G/pfRsuDQr2XX53O587pD8ZJg0qJURyWpWYU6eVo193ugY8FAeUXZdLC8vTykpKYqNjZUknTlzRmPGjNGZM2fk5eWlwMBALVu2TBYTvgPz9ZJe7yclHHN9Y8zaX0emPhUm3RIkNaboAgAANaBFA+mjaOnrg9KfEl3LolpIv2kvxbSRvOv8+QHAeTar9NI10h0dXN9cvtL1HVj6XQ/p1vZSEx9j8wGX6s6O0rXNpX/vlRb97Fp2dydpdAepY2MjkwF1g0eWXcnJySouLi6ZnL5Vq1b6/vvvDU7lPlaLq83v3/L8efB3dzI2EwAAMB9fL+nmoPNl1z/4smd4MIvFdYpu3+bny657Q4zNBFyJDn7SH8LOl11PhhmbB6hLPLLsioqKktNZySztAAAAAAAAqJcYgA4AAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAwBWJi4tTcHCw7Ha7Jk6cWGb9woULtWbNGknSyy+/rMGDB+vxxx8vs93dd98tu92uPn366Pbbb5ckPfXUU2rRooU+/PDDku0mT54sp9NZOw8GAFAvDJrzW0W9NMXoGOUan7ZQgWHBRsfwaJRdAAAAuGJTpkxRXFycAgICFB8fX2rdsmXLNHToUB05ckRbtmzRhg0bZLPZtHnz5lLbffzxx4qLi9ODDz6om2++WZI0depUzZ49u9R2UVFRWrduXe0+IACAx2h9XU8N//dzGp+6UONTF2r4v59T6wE9jY5VoveTd2noB/9T7e0/CrlXWdvSazGR+VF2AfAYVY0ceOmll5Samlrh9bOystSnTx/5+fmVWZeXl6ebb75Z0dHRmjx5siRp48aN6t+/v6677jq99tprkqSdO3dq1qxZNfSIAMB8wsLClJmZWXI5KytLDRo0kMVi0ebNmxUdHS1JiomJUUJCQrm3sWzZMt16662SpFatWpVZP2TIEC1fvrwW0gMAPM3Vw/rohkXTtX/Nj/rkmof0yTUPaf+aH3XD4um6eug15V7H4lVzVYjF5lVjt4WaQ9kFwKNUNHLA4XAoOTlZXbp0qfC6jRs31urVq9W/f/8y61atWqVBgwbpm2++kbe3t7Zt26ZOnTpp/fr1+u677/Tll18qNzdXoaGh2rJlC6fPAEAF4uPjFRISUnI5LS1NHTp0kCSdPHlS/v7+klzH5JMnT5a5fk5OjrKzs9WmTZsK76NDhw7avXt3zQYHAHikqBfvV9qncdo+7wsVZueqMDtX2+d9oT1LvlG/F++XJN2Z8E+Fx47WzV+8pAk/f6TmEZ0lSd5XNZB9/pMan7pQt3/zN7W1R1R5f60H9NT4tIXqOmGY7vxhnkau+askqc314frNylm6J+V9jfz6NbUffq0kqf3wa9XriVFqN6S3xqct1Pi0hbL62Cq9j0mHlqhZRGdZvKy6Z/cHatItyHXf1/XUpENL1OE3AyRJDVs20X37Ppa3X8PLe/JMjLILgEe6eOTATz/9pK5du1Z6HW9vbwUGBpa7Ljg4WGfOnJHk+kMrICBAbdu2lY+PjyTJy8tLVqvrkNmpUydt3769Jh4GAJjGggULZLfb1a5dO/Xu3bvcbZo0aaLTp09LkrKzs9WkSZMy26xcuVLDhw+vxaQAALPw79xWjTu0Uvp/vi2z7ufPN8q/Y2v5d3J9eBIyxq5vn/ynPgq5V8d/PUUw+PZB+vnzDVrUfaKS//G5Yt55Wo1al//3woVsDX3VvHeI/nN9rL4c8Ywad2ytYe8/q21z/6PFPSbrx5c+VPS83yuwZ0ftW/GDtr7xuTLXJemjkHv1Uci9chQUVevxOYsdOrJpp9oM6iVJajO4l06nH1KbQWGuy4N66XjyzyrMyavW7dUnlF0APNLFIwdSU1PVsWPHy769kJAQbdiwQaGhobJYLAoKCipZt3r1anXu3FkNGjSQxIgCACjPuZG3L774YqnlISEhysjIkCT16dNH69evlyStW7dO/fr1K3M7S5cu1W233VbpfWVkZFQ6khcAUD80CGwsSco7klVmXd7RE65tmrlGFKcsXK1TqZlyOhwlZdPh73do31cJchY79POS9TqxI0Mdbx1Q5f1arFb9+PJHKsrLV3FegYJvu05HNu3U3mXxchY7lLk2UftWbVbnMdFX/BgPb9xWqtxK+usnJeVX64FhOvTttiu+DzOi7ALgUaozcmDHjh2y2+2lfl599dVKb/f999/X2LFjtXPnTjVv3lzfffedJOnAgQN65ZVXSubsAgBcmsDAQOXm5kqSWrdurfDwcA0ePFj5+fnq27evDh8+XDIBfXFxsXbv3q0ePXqUXH/27NmaPXu2Xn31Vb3++uuSXEXZiBEj3P9gAAB1ytmsbElSw1ZlR2M1bNnUtc1x14jiM5nHymxz5kDpZTn7j1VrZFdRXr7yf71vSWrUpplyLr6tjCNq1KZZlbdVlUMbt6pV/x7y8W8k/05tlf6fb+XlY1OjNoFqMyhMhzZsveL7MKPKTxQFgDpmypQpmj59epnlXbp00WeffSZJ6tGjh+Li4i7pdh0OR8kpjoGBgTp58qTy8/M1adIkzZs3r9Sk9hkZGRo4cODlPwgAMJlzHyxUZOTIkVqzZo2GDRumGTNmaMaMGSXrWrduralTp0pynTL+/fffl7ru1KlTS9afs2nTJj344IM19wAAAB7p9J6Dyt53RMEjr9Phi0Y4Bd92nbL3HdHpnw9JkpyOsnPuXnV1i1KX/YJa6NiWqs/gcDocpS7nHjpe5tsf/YJaKvfQ8XK3vxRZ2/fK6XCox//7jY7+sEtOh0OHNm5T13uGqVHLpjr6w67Lvm0zY2QXAFOIiIhQSkpKldsNGzZMiYmJGjZsmLZt21YyouCee+7Ru+++K7vdrqSkJN1www1atGiRduzYoYceekh2u71kjrC0tDSFhYXV9kMCANO47777NGzYsBq7vXfffbdkHkUAQP2W8Kf3FDJ2iHo+dKu8/RrKu3Ej9XjoNwq5a4gSZrxb6XVb9++hoBv7yuJlVac7Bqtpjw7a+9/vK71OedKXfqdWUaHqcEuULFar2g3praCb+mrPEtep+3m/nNJV7Zpf9rdAHv5uu3o8eIsObXSN4jr07Vb1ePAWHf1xt4rzCy/rNs2OkV0APEZlIwesVqvCw8OVmppa6Twua9asKbPs3IiBVatWlVo+efJkTZ48udSynTt3qk+fPrJYLJeYHgAAAEBN27/yB62Z8LIi/nCnek+9S5J0PPlnrZnwckk5VJH0/2xU5zHRuv7N3+nMoeNa98BflXvw+CVnyN57WGvv/4uu+Z/xGvi33+rMgWNa/9gbyvp1Ivy9y+LV6fZBunvbO7JYLPo4fEq1J6mXpEMbtqrjbwbo0EbX6LVDG7fJx/8q5uuqBGUXANMo7/TGmhYaGqrQ0NBavx8AAAAA1XNo49ZKi60l/R4ts2xj7JuXdV+H47fro5B7yyzPXJekzHVJ5V6n4GSOVoz+c7Vu3/LryOULy7CUD1Yp5YPzH8znHTmh99rceQmp6x/GfwMAAAAAANQBTXt2kKOwqNwJ9VF9jOwCAAAAAAD41W1xf5Pf1c3LLN+/6ketf3TOFd/+sI/+qFZR3cssL8w5K6u3l358eZEKTude8f3UZ5RdAAAAAAAAv1pq/32t3v6a8S/V6u2D0xgBAAAAAABgIpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBoeUXYVFBRoxowZCgoKUsOGDRUTE6OEhARZLBYtXbrU6HgAasCBM+d/P3bWuBwAgNKKHOd/3/yLVOw0LgsAoH7yauCjO777h8anLTQ6CjxEnS+7nE6nxowZo7ffflvTp0/Xl19+qeDgYI0aNUqSFBkZaXBCAFfiUK70eLw06uvzy25ZJT27WTqZb1wuAID02V7pltXnLz/8nfSb1dKX+wyLBACohyKnjlXOgV+MjgEPYjM6QFXmz5+v5cuXKykpST179pQk2e12BQcHKzAwUO3btzc4IYDLdTRPmrxBysqXLhwo4JC09qCUdlp6d7DU2NuohABQf72fKv1jZ9nlx85KM5OkM8XS2GC3xwIA1DPNwjup3ZDe+uG5DzRkwVNGx4GHqPMju2bNmqUJEyaUFF2S5OXlpeDg4DKjup577jlZLBZt27bN3TEBXIb/3e0quhzlrHNI2psjLf7Z3akAAL+cld7cVfk2c7ZLpwvckwcAUD9ZvKy67q8P6/tpb8tRUGR0HHiQOl12paamKj09XaNHjy6zbv/+/aXKri1btuj7779Xhw4d3BkRwGXKLZL+u7/8outCS/ZKTuaHAQC3WrZfclRx7C10SMsPuCcPAKB+Cnv0Nh3fmq4j35cz1BioRJ0+jTEzM1OS1LJly1LLd+3apYyMjJKyKz8/X7/97W+1ePFi2e32y7ovu90uq7VOd3/lCvvENZO3r28Dg5OYG89zzfNt201d/55c5XZZ+VKjps3lyMt2Q6r6gf3ZPXie3YPnuXZc/dv/VZNB42SxVXweubOoUP/z2jua+PYTbkxmfuzT7sHz7B48z+5hhue5s62pnvYfVGpZ446t1e2+G/XFDVMNSuW5hgyxa0/RCaNj1AgfHx9lZ1/634J1uuxq1qyZJCktLU39+vWT5Jqw/plnnpHD4Sgpu/70pz9pwoQJ6tixo1FRAVwiR0FetbZzOh1yFvL1jADgTo6Cs5LFUvlGFosc+bnuCQQAqHda9euuhs0DdMe3b0iSrDYveV/VUHdvf0frpsxmtBcqVafLrtDQUIWEhGjatGny9vaWn5+f5s2bp8TERDVq1EjdunVTfHy8Nm/erFdfffWK7isuLk4DBw6soeTu0/cL17/5+XxtXW3iea55Tqc0Nk5Kzy49Of2FrJKiWlr145kcNyYzP/Zn9+B5dg+e59rx7RHpd5sq38biZdPns36va97+vXtC1RPs0+7B8+wePM/uYYbn+UjCLn112/RSy9KXfaeDG86fCdKiTzcN+vtv9cWwp3T2+Gl3R/Qo69bFqVW/7kbHMFSdPm/PZrNpyZIlatOmjSZOnKjY2FiNGDFC0dHRCg8Pl9Vq1TfffKOdO3cqODhYHTt21IEDB3TTTTdp1apVRscHUAmLRbovpOKiS3LN5zW+s7sSAQDOGdBS6uhX8RtFq6RuAVJkoDtTAQDqk+K8AuUeyir5yT9+WnI6lXsoi8nqUaU6XXZJUkREhOLj45Wbm6uUlBQ98sgjSkxMLDmF8dlnn9XBgwe1d+9e7d27V1dffbVWrlypG2+80eDkAKpyy9XS5C6u3y88GJ37/akwqX/Li68FAKhtVov09yipZUPX5XMnNJ77t91V0uv9qj7TEQCAmnI4frs+CrnX6BjwEHX6NMby5OXlKSUlRbGxsUZHAXCFLBbpt6HSwJbSp3ul5CzXsqgW0p0dXaMGAADGaHeV9LFd+nK/69tzj+dLLRpItwZJI4KkqzzuXSQAAKgvPO5tSnJysoqLi0tGdl1s79697g0E4Ir1bub6AQDULX7e0t2dXD8AAACewuPKrqioKDmdlc3yAwAAAAAAgPqqzs/ZBQAAAAAAAFQXZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAgAHi4uIUHBwsu92uiRMnlln/0ksvKTU1tcLrZ2VlqU+fPvLz86v2+rfeektDhw6V3W5XYWGhdu7cqVmzZl35gwEAk7nSY7QkPf744xo8eLBefvnlctdffEyWpDlz5mjYsGGSyj+Oc9wGgOqh7AIAwCBTpkxRXFycAgICFB8fX7Lc4XAoOTlZXbp0qfC6jRs31urVq9W/f/9qrd+3b5+2bt2qr7/+WnFxcfL29lZoaKi2bNkip9NZsw8MAEzgSo7Rmzdvls1m04YNG7RlyxYdOXKk1PryjsmFhYVKSkoq2aa84zzHbQCoHsouAAAMFhYWpszMzJLLP/30k7p27Vrpdby9vRUYGFjt9atWrdKZM2cUExOjmTNnlizv1KmTtm/ffvnhAcDkLucYvWnTJsXExEiSoqOj9eOPP5ZaX94xeeHChRo3blzJNhUd5zluA0DVKLsAADBYfHy8QkJCSi6npqaqY8eONXofR48elcVi0dq1a5Wenl4yeqBDhw7avXt3jd4XAJjJ5RyjT548KX9/f0muEVonT54stf7iY/KWLVu0cuVK3XTTTVXm4bgNAFWzGR0AAID6asGCBVqzZo0GDRqk3r17l7vNjh079Oijj5ZaNnz4cD377LOXdF8BAQGKjo6WJF1//fVKSUmp8D4BAFd2jG7SpIlOnz4tScrOzlbnzp1LbXPxMTk1NVUjR46s+QcBAPUUZRcAAAaZMmWKpk+fXmZ5ly5d9Nlnn0mSevToobi4uCu+rwEDBmjRokWSpK1bt5acKpORkaGBAwde8e0DgNlcyTH6hx9+0OLFi3Xrrbdq/fr1uuuuu0qtv/iY3LRpU23cuFELFy5UUlKS3n77bT3wwAPl5uK4DQBV4zRGAADqmIiICKWkpFS53bBhw5SYmKhhw4Zp27ZtOnz4sGbPnl3ueh8fHxUVFclutys3N1dRUVGSpLS0NIWFhdXaYwEAs6nOMfraa69Vfn6+Bg8erIiICLVq1arUMfqaa64pdUz+85//rNWrV2vFihXq3bt3SdF18XFe4rgNANXByC4AAAxgt9tlt9vLXWe1WhUeHq7U1NRKv+1rzZo1ZZZNnTq1wvVz5swpdXnnzp3q06ePLBZL9YMDQD1QE8foN998s9Tl1q1blzpGX3xMPufCY/fFx3GO2wBQPZRdAADUQeWdOlPTQkNDFRoaWuv3AwBm445jdHk4bgNA9XAaIwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpeEzZVVBQoBkzZigoKEgNGzZUTEyMEhISZLFYtHTpUqPjAQBQIr/4/O+Hco3LAQAo68CZ878XOozLAaByg+b8VvdmLNb4tIUlP+2G9DY6FjyEzegA1eF0OjVmzBglJCRo5syZCgkJ0aJFizRq1ChJUmRkpMEJAQCQihzSgt3Sx+nnl41cI0W1kP4QJnVqbFw2AKjvdp+S/rZd+uGX88uGr5Tu6SxN6iJ5WYzLBqB8uz9co01/XGB0DHggjyi75s+fr+XLlyspKUk9e/aUJNntdgUHByswMFDt27c3OCEAoL5zOKXpW6Q1B0svd0pKOCZN3iC9M0jq7G9IPACo13adkh7YKBUUl15+qlCat0valyPNjJQsFF4AYAoecRrjrFmzNGHChJKiS5K8vLwUHBxcMqqrY8eO6t69u3r37q3evXtr5cqVRsUFANRD6w+XLbrOcUjKK5Zmb3VrJADAr175yVV0VXTW4n8PSAm/VLASgGE63TFY43a8q9vXz1H47+6QxcsjKgzUAXV+ZFdqaqrS09P1xhtvlFm3f/9+jR49uuTykiVLFBYW5s54AABIkpbslawW1wiv8jic0ubjUkaO1MHPrdEAoF7bfUrafrLybawWaUm667RzAHXDjgXLtfmFhTqbla1m4Z0U/c9Yefn6KPEvHxsdDR6gzpddmZmZkqSWLVuWWr5r1y5lZGTU2HxddrtdVqvntcRhn5yVJPn6NjA4ibnxPMNM2J9rR/f/3SfvJq2q3K7viDE6nfCFGxLVD+zPMBv26ZrXZPA4BT3xXqXbOJzSiqSf9cbgUPeEqifYn93DDM9zZ1tTPe0/qNSyrK3nJ0E9/tMeJf71/xT51FjKrmoYMsSuPUUnjI5RI3x8fJSdnX3J16vz7U6zZs0kSWlpaSXLnE6nnnnmGTkcjlJl1/jx4xUeHq5HH31UJ0+edHdUAEA95izMr952RYW1nAQAcCFHtY/P1dsOgEEcTol59VBNdX5kV2hoqEJCQjRt2jR5e3vLz89P8+bNU2Jioho1aqRu3bpJkjZs2KCgoCDl5+crNjZWjz32mD788MNq309cXJwGDhxYWw+j1vT9dXBAfj4vzrWJ5xlmwv5cO2YlS//eW/F8MJLka5X2rv+P/Lzdlcr82J9hNuzTNe9kvjR8lVRUwWnmkuvv5wftoXqC571GsT+7hxme5yMJu/TVbdNLLes48jplrktSYXaumoZ2UMSTY7T3y3iDEnqWdevi1Kpfd6NjGKrOl102m01LlizRww8/rIkTJyooKEixsbHy9/fXnj17Sk49DAoKkiT5+vrq0Ucf1ciRI42MDQCoZ8YES//OkOvrF8thkTSqgyi6AMDNmvhKtwRJX+wr/xBtkeRlke7o4O5kACrTfdJNGjDrQVm9vZR35KT2LPlGyf/43OhY8BB1vuySpIiICMXHl25w586dq+joaEnSmTNnVFRUpICAADmdTn388cfq3bu3AUkBAPVVp8bS85HSnxIlOc+P8LLK9fu1zaXHexiXDwDqs6fCXF8QkpR1/rgsuX63WqRX+kpXX2VgQABlrLjjz0ZHgAfziLLrYnl5eUpJSVFsbKwk6ciRIxo9erSKi4tVXFysHj166J///KexIQEA9c7wq6XOjaVP9krrDkkFDlcJdmdHaXg7yVbnZ8oEAHNqaJP+OUD6KtN1yvneHKmBVYppK90V7DpWAwDMwyPLruTkZBUXF5dMTt+pUyclJiYanAoAAKlLgPTHCNcPAKDu8PGSbmvv+gEAmJtHll1RUVFyOiuZYRIAAAAAAAD1EidUAAAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAADChuLg4BQcHy263a+LEiWXWL1y4UGvWrJEkvfzyyxo8eLAef/zxMtu9/vrrateunV588cWSZZMmTdKAAQNkt9u1du1aSdLkyZPldDpr6dEA1UfZBQAAAACASU2ZMkVxcXEKCAhQfHx8qXXLli3T0KFDdeTIEW3ZskUbNmyQzWbT5s2bS203YcIELVy4sMxtf/rpp4qLi1NMTIwkKSoqSuvWrau9BwNUE2UXUAOq+sTkpZdeUmpqaoXXz8rKUp8+feTn51dmXV5enm6++WZFR0dr8uTJkqSNGzeqf//+uu666/Taa69Jknbu3KlZs2bV0CNCfVab+3NF69966y0NHTpUdrtdhYWF7M8AAAA1LCwsTJmZmSWXs7Ky1KBBA1ksFm3evFnR0dGSpJiYGCUkJJS6bsuWLWW1lq4PLBaLxo4dq7vuuktZWVmSpCFDhmj58uW1/EiAqlF2ATWkok9MHA6HkpOT1aVLlwqv27hxY61evVr9+/cvs27VqlUaNGiQvvnmG3l7e2vbtm3q1KmT1q9fr++++05ffvmlcnNzFRoaqi1btjBsGDWitvbn8tbv27dPW7du1ddff624uDh5e3uzPwMAANSw+Ph4hYSElFxOS0tThw4dJEknT56Uv7+/JNd7tZMnT1Z5e6+//rq+/fZbjR07Vq+88ookqUOHDtq9e3fNhwcuEWUXUMMu/sTkp59+UteuXSu9jre3twIDA8tdFxwcrDNnzkiScnJyFBAQoLZt28rHx0eS5OXlVfIpS6dOnbR9+/aaeBiApJrfn8tbv2rVKp05c0YxMTGaOXNmyXL2ZwAAgCu3YMEC2e12tWvXTr179y53myZNmuj06dOSpOzsbDVp0qTK223atKkkaeTIkbxnQ51D2QXUsIs/MUlNTVXHjh0v+/ZCQkK0YcMGhYaGymKxKCgoqGTd6tWr1blzZzVo0EASn6Sg5tX0/lyeo0ePymKxaO3atUpPT1dSUpIk9mcAAICacG7E/oWTy0uuvzMyMjIkSX369NH69eslSevWrVO/fv2qvN3s7GxJrveLwcHBkqSMjIxKzwAA3IWyC6gh1fnEZMeOHbLb7aV+Xn311Upv9/3339fYsWO1c+dONW/eXN99950k6cCBA3rllVdK5uwCalJt7c/lCQgIKJkj4vrrr1dKSsqVRAcAAEA1BAYGKjc3V5LUunVrhYeHa/DgwcrPz1ffvn11+PBhzZ49W5L0wQcf6Mknn9R7772np59+WpJ03333adCgQXruuef07LPPSnIVZSNGjDDmAQEXsBkdADCLKVOmaPr06WWWd+nSRZ999pkkqUePHoqLi7uk23U4HCWnfAUGBurkyZPKz8/XpEmTNG/evFKTfGdkZGjgwIGX/yCAX9XW/lyeAQMGaNGiRZKkrVu3aty4cZLYnwEAAK7UuQ8kKzJy5EitWbNGw4YN04wZMzRjxoySda1bt9bUqVMluYqt++67r9R1P//88zK3t2nTJj344IM1Ex64AozsAmpZREREtUaqDBs2TImJiRo2bJi2bdtW8knKPffco3fffVd2u11JSUm64YYbtGjRIu3YsUMPPfSQ7HZ7yZxKaWlpCgsLq+2HhHrsSvfn8tb7+PioqKhIdrtdubm5ioqKksT+DAAAUNvuu+8+DRs2rMZu79133y3zrY2AERjZBdSAyj4xsVqtCg8PV2pqaqXnr69Zs6bMsnOfpKxatarU8smTJ2vy5Mmllu3cuVN9+vSRxWK5xPRAabW9P5e3fs6cOaUusz8DAAAAuFyUXYAblHc6WE0LDQ1VaGhord8PwP4MAAAAoC5jfCEAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaXhM2VVQUKAZM2YoKChIDRs2VExMjBISEmSxWLR06VKj48HEThWc/73IYVwOoCYUFJ///UyRcTkAAABw5c5e8N7uLO/tgBI2owNUh9Pp1JgxY5SQkKCZM2cqJCREixYt0qhRoyRJkZGRBieEGR3Ok/65U1qVeX7ZraulcZ2lCZ0lq8W4bMClKiiWFqRKn6afX3bjCuk3QdKjoVKAj3HZAAAAcGnyiqS3UqTPM84vu3GldFsH6ZHuUiOP+Eu/eq4eeo0in7lb/p3bqignT9v+tUzb531hdCzUcR7xv8D8+fO1fPlyJSUlqWfPnpIku92u4OBgBQYGqn379gYnhNkczpUmbpBO5EsXDuY6li+9sUNKOy09FylZKLzgAYoc0u8TpE3HSi/Pd0ifZUibj0vvDKLwAgAA8ARni6RHvpO2n5ScFyzPLZY+/llKOi69NdAchVfb6AgNmP2QNj4xV4fjt8vW0FdXtWtudCx4AI84jXHWrFmaMGFCSdElSV5eXgoODi4Z1XX27Fk98sgj6tKli3r16qUHH3zQqLgwgb9uK1t0XWj5Aembw26NBFy2zzPKFl3nOCXty5H+tcutkQAAAHCZPvxZ2naydNF1jlPSrlPSB2luDlVLIp++W8lz/q1DG7fKWexQYU6eTqbsNzoWPECdL7tSU1OVnp6u0aNHl1m3f//+krLr6aefVoMGDbR7925t3bpVL7zwgrujwiSO5rmKrMqm57JapE/3uisRcGU+SZcqG4TolLRsv2s4PAAAAOquYqe0JL3ybZyS/r3X8+cbtjX0VfPendWwRRON2vB3jU1+WzHvPSO/oJZGR4MHqPMDGzMzXRMmtWxZeofetWuXMjIyFBkZqZycHH3wwQc6cOCALL+eV9aqVatLuh+73S6rtc53f2WEfXJWkuTr28DgJObh1/smBf+x8nPAHU7p25+z5Gtv46ZUwGXysqnXx2eq3OxssdQ6tI/O7tvmhlBAzeF1EGbDPg0zYX+uebaAlgp9u+qRTScKpIB2nVSUlVnltnVBZ1tTPe0/qNQynyZXyWK1qsMtUVo97kXlHT+lfs9P1pAFU7XsxqkGJfUMQ4bYtafohNExaoSPj4+ys7Mv+Xp1vt1p1qyZJCkt7fw4TKfTqWeeeUYOh0ORkZHas2ePmjVrpueee059+/aV3W7Xxo0bjYoMT+eo5vAWR3HV2wBGczrkdFbvYz0n+zQAAECd5iy+hKH4Hv7erjDHVZbueHu5cg4cU3Fegba8skjNegUzbxeqVOdHdoWGhiokJETTpk2Tt7e3/Pz8NG/ePCUmJqpRo0bq1q2bkpKS9PPPPysyMlKzZ8/Wpk2bdOuttyotLU3+/v7Vup+4uDgNHDiwlh9Nzev76wCk/Px8Y4OYSE6hdNNK1+TdFbFKGtmzhZJ43uEBHvpWSjxe+am5zX2l71OTZKvzH4EApfE6CLNhn4aZsD/XPKdTGhcn7ckuf84uyTV9RQc/6YfDGR7zhVpHEnbpq9uml1pWmJ2rnP1HXQ8al2Tduji16tfd6BiGqvN/1thsNi1ZskRt2rTRxIkTFRsbqxEjRig6Olrh4eGyWq1q3769bDabxo0bJ0mKiopS8+bNtXv3boPTwxP5ebu+srey1wWHpLuC3ZUIuDLjOlVedEnS2E6i6AIAAKjjLBbpns4VF12Sa924Tub45viUD1Yp9IFb1KhtM3n5eivy6bv1y097dCbzF6OjoY6r8yO7JCkiIkLx8fGlls2dO1fR0dGSpObNm2vIkCFavXq1brzxRu3evVtHjx5VSEiIEXFhAk+ESrtPSUlZrtLr3IuJ1eKar+upMCmsqZEJgeqzt5EmhUjvpbk+4ThXfJ373d5aurezcfkAAABQfbcGSVtPuL5xu7z3drcGSaM6GJevJm19c6l8Avw0ctVfJItVRxN2ad2U2UbHggfwiLLrYnl5eUpJSVFsbGzJsn/961+6//779eSTT8rb21sLFy5UkyZNDMsIz9bAJr05QFq6z/VNdhk5kpdFGtRKuruT1JdTxOFhHushhQdK/5cubf7FVdp2DXCNULwlyLV/AwAAoO6zWKRp4VK/5q73dslZruVhTV2j9W9sa45RXZIkp1M/vvShfnzpQ6OTwMN4ZNmVnJys4uJiRUZGlizr1KmT4uLijAsF0/H1chUBdwW7igGLTPSigXrp+tauH6fTNVrRyv4MAADgkSwW6YZ2rp9zU1rxtwpwnkeWXVFRUXIySR3ciFIAZmKxVD4nHQAAADwHJRdQFtMRAwAAAAAAwDQouwAAAAAAAGAalF0AAAAAAAAwDcouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLtMLC4uTsHBwbLb7Zo4cWKZ9QsXLtSaNWu0f/9+XXfddbr++us1efJkOZ3OUtutWLFCAwYM0I033qiDBw9Kkp566im1aNFCH374Ycl25V0XAAAjVfe1UJJefvllDR48WI8//niZ7e6++27Z7Xb16dNHt99+uyReCwHgStTU8fn1119Xu3bt9OKLL5YsmzRpkgYMGCC73a61a9dK4vgM1DeUXSY3ZcoUxcXFKSAgQPHx8aXWLVu2TEOHDlXbtm317bffav369bJardq6dWup7WbNmqV169bp9ddf16xZsyRJU6dO1ezZs0ttFxUVpXXr1tXuAwIA4BJV57XwyJEj2rJlizZs2CCbzabNmzeX2u7jjz9WXFycHnzwQd18882SeC0EgCtVE8fnCRMmaOHChWVu+9NPP1VcXJxiYmIkcXwG6hvKrnoiLCxMmZmZJZezsrLUoEEDWSwWeXl5yWKxSJJ8fX3Vtm3bUte12Wxq0KCBevbsqYSEBElSq1atytzHkCFDtHz58lp8FAAAXL7KXgs3b96s6OhoSVJMTEzJ693Fli1bpltvvVUSr4UwRlWjYV566SWlpqZWehuPP/64Bg8erJdffrnc9W+99ZaGDh0qu92uwsJCSdKcOXM0bNgwSa7/d/r06SM/P7+S6+zcubPkQ1HgUl3J8blly5ayWkv/WWuxWDR27FjdddddysrKksTxGahvKLvqifj4eIWEhJRcTktLU4cOHUour127VuHh4Tp8+LACAgJKXbewsFDHjx/Xxo0bS14sytOhQwft3r275sMDAFADKnstPHnypPz9/SVJjRs31smTJ8tcPycnR9nZ2WrTpk2F98FrIdyhotEwDodDycnJ6tKlS4XX3bx5s2w2mzZs2KAtW7boyJEjpdbv27dPW7du1ddff624uDh5e3ursLBQSUlJJds0btxYq1evVv/+/UuWhYaGasuWLZwmhstypcfni73++uv69ttvNXbsWL3yyiuSOD4D9Q1ll8ktWLBAdrtd7dq1U+/evSvcLiYmRsnJyerQoYNWrFhRat2LL76oO++8U4sXL1aPHj1qOTEAADWrOq+FTZo00enTpyVJ2dnZatKkSZltVq5cqeHDh9diUuDSXDwa5qefflLXrl0rvc6mTZtKTuuKjo7Wjz/+WGr9qlWrdObMGcXExGjmzJmSXHMnjRs3rmQbb29vBQYGlrntTp06afv27Zf7cFAP1dTx+WJNmzaVJI0cOZJ9EqinKLtM7twnfxdO2ChJISEhysjIkCQVFBSULA8ICFCDBg1KbTto0CCtW7dOkyZNUlRUVIX3lZGRUekniQAAGKE6r4V9+vTR+vXrJUnr1q1Tv379ytzO0qVLddttt1V6X7wWwp0uHg2Tmpqqjh07VnqdqkbJHD16VBaLRWvXrlV6erq2bNmilStX6qabbqoyDyNncKlq6vh8sezsbEmu/0eCg4MlcXwG6hub0QFgjMDAQOXm5kqSEhISNG3aNFmtVoWEhGjo0KE6fPiwFi5cqKlTp+r5559XXFyc2rVrp7feekuSNHv2bL333nuyWCw6evSo/vCHP2jdunUaMWKEkQ8LAIBqu/C1sHXr1goPD9fgwYMVHh6uvn37lnotLC4u1u7du0uNcOa1EEZZsGCB1qxZo0GDBlU4GmbHjh169NFHSy0bPnx4mVEynTt3LrVNQEBAyfxI119/vVJTUzVy5MiafxBAJS7l+PzBBx/o73//u06dOqXTp0/rL3/5i+677z4dO3ZMvr6+eu+99ySJ4zNQz1ic9fzE+m+//VaDBg3Sxo0bNXDgQKPjXLK+X7j+3XwZ70E++OADtW3btmSy0Ss1efJkLViwoMwEkQAA1JYreR2UeC1E3VPVPh0XF6eNGzdq+vTpZdYlJibqs88+0wsvvFDh7f/www9avHixXn/9dY0ZM0Zz584t9WULW7Zs0aJFi/TXv/5VsbGxatq0qTZu3CgvLy9t3rxZr776qh544AFJ0rBhw7RmzZqS6/7P//yP7rnnHvXq1esyHjnMiL9VUF1HEnbpq9vKHtdweUYsfVGt+nU3Ooah+D+9Hrvvvvtq7MVDkt59911ePAAAHoXXQphJRESEUlJSKt3m2muvVX5+vgYPHqyIiAi1atVKhw8f1uzZsyVJ11xzjYqKimS325Wbm6s///nPWr16tVasWKHevXuXKroSExM1bNgwbdu2TZJrUvGwsLDafZCoNzg+A7gSnMYIAAAAeAi73S673V7uOqvVqvDwcKWmplY6N9Gbb75Z6nLr1q01derUkstz5swp93oXjuK68HdJ2rlzp/r06SOLxVLFIwAAoPZRdgEAAAAmUd7pje4QGhqq0NBQQ+4bAICLMY4TAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAaVB2AQAAAAAAwDQ8puwqKCjQjBkzFBQUpIYNGyomJkYJCQmyWCxaunSp0fEMcabI6AQAANQNOYVGJwCuHPsxzKSg+PzvDqdxOQDUTzajA1SH0+nUmDFjlJCQoJkzZyokJESLFi3SqFGjJEmRkZEGJ3SvA2ekBbulFZnnl01aL03qItnbGJcLAAB32XBYejf1/OVhK6Qb2kn/r6vU3s+4XMDl+DlbejtF+vrQ+WUPbpTu7yr1b2lcLuBy5BS6/lb5POP8slFfS/d0lsZ0lKwWw6LBw4xPW1jqspePt06mZuqLoU8alAiexCPKrvnz52v58uVKSkpSz549JUl2u13BwcEKDAxU+/btDU7oPunZ0pSNrhcRxwXLd5yUnvpB+n1PaXxno9IBAFD7Pk2XZm0tPTy9yCmtzHSVYG8PkkL8DYsHXJIdJ6WHvpXyi0u/t0vKkh7/XvpTb+nW+vNWFx4uu9D1t0p6tnThYK6DudLsrdKOE9KfIym8UD0fhdxb6vLIr19T+tJvDUoDT+MRpzHOmjVLEyZMKCm6JMnLy0vBwcGKjIzU3r171bt375Kfjh07KjAw0MDEtefPiVJOUek3Q9L5y3/bLu3NdncqAADc48AZ6S9bXb+XeS10SrlF0h9/lJycMgMP4HBK0zaXLbok12WnpBd+ko6dNSAccBne3Fm26JLOX/7vAWn1QXenghk07x2iJl2vVtr/rTM6CjxEnS+7UlNTlZ6ertGjR5dZt3//fkVGRqpjx45KSkoq+bn99tt1zz33GJC2du086fr0r7Jz3i2S/p1R8XoAADzZZ1W8xjkk7cmWkk+4JQ5wRRKOSQdyyxZdF3I4pf/w3g4eIKdQWravbNF1IaukT9LdlQhm0uWeGGWuTVTeEV7gUT11/jTGzEzXxFQtW5aesGDXrl3KyMgoM19XQUGBPvroI61cufKS7sdut8tqrdvdX+CND6nd/3uj0m2ckhasTNC0PoPdEwoAADcKnrlafj2vr3K7EQ9M1fH/Vv6aCRitxR3PqtXdf5bFUvF7UKfDodmLV+qxV253XzDgMjTs0k8hL2+odBuHpKSjBfL1beyeUPAYnW1N9bT/oHLX2Rr6Kvi2gdrwxFw3p/JcQ4bYtafIHMWgj4+PsrMv/fS1ut3uSGrWrJkkKS0trWSZ0+nUM888I4fDUabs+uKLL9SuXTtdc801bs3pFs7KPve7cDvO3QAAmJTTIWd1Xud4LYQn4L0dzKSa+zO7My5Vx1sHqCivQAfW/Gh0FHgQi7Na7xiNU1RUpNDQUBUWFmr27Nny8/PTvHnzlJiYqKysLGVnZ5cakXXzzTdr+PDheuKJJ6p1+6dPn9bWrVvVq1cv+fvX7dls95yWxsZVvo1F0sQQ6bEe7kgEAIB7vbVLent35afJSNKH10vdm7gjEXD5ko5LD1RjruUnekj3hdR+HuBKnC2SblolnSmqeBurRbq2ufTmAPflgmc4krBLX902vdx1I5a+oKObdunHlz9ycyrPNWLpi2rVr7vRMQxV50d22Ww2LVmyRG3atNHEiRMVGxurESNGKDo6WuHh4aWKrszMTH3zzTcaP358tW/f399fAwcOrPNFlyR19peuaVb5fzSLpFEd3JUIAAD3GtWh8m/xskoKa0LRBc8QESh1blzxPm2R5GOVRga5NRZwWRrYXMfoyr5o0eGU7gp2WySYgH/ntmrZt5t2L/7a6CjwMHW+7JKkiIgIxcfHKzc3VykpKXrkkUeUmJhY5hTG999/X7fcckvJqY9m9Hyk1LxB2RcRq1zL/tRbaneV+3MBAOAOLRtKz0W6XvcuLggskpr6Si/2MSIZcOksFmlWX8nfu5z3dhbXz8t9pCa+hsQDLtnD3aReTcsuP/dH5/hO0vWt3BoJHq7LuBgd2bRT2emHjY4CD1PnJ6gvT15enlJSUhQbG1tq+Xvvvac33jD3ZLStG0kLr5c+3CN9niHlFLneHA1sJd0b4hr5BQCAmQ2/WmrTSFqYJn1z2HVK41U26bb2rtfCFg2MTghUX8fGrtNuF+6Rvtgn5RW7Sq6Y1tKEECmsnOIAqKsa2KR/Xif938/Sp3ulw3mu5T2aSvd0km5o6yp5ger68cUPjY4AD1Xn5+wqz6ZNm9S/f3/98MMP6tu3r9FxDFPslM4USr5erh8AAOqbgmLpbLF0lbfkxR9Q8HBFDtd8Rw29JB/e28HDOZ2u/dnLIjX0yCEWcKfK5uzCpWPOLg8d2RUVFVW9b2IyOS+L5O9jdAoAAIzjQykAE7FZpQDe28EkLBbJz9voFADqK4+YswsAAAAAAACoDsouAAAAAAAAmAZlFwAAAAAAAEyDsgsAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA2L0+l0Gh0CAAAAAADUTwXZuTqxc5/RMUyjaWh7+TRuZHQMQ1F2AQAAAAAAwDQ4jREAAAAAAACmQdkFAAAAAAAA06DsAgAAAAAAgGlQdgEAAAAAAMA0KLsAAAAAAABgGpRdAAAAAAAAMA3KLgAAAAAAAJgGZRcAAAAAAABMg7ILAAAAAAAApkHZBQAAAAAAANOg7AIAAAAAAIBpUHYBAAAAAADANCi7AAAAAAAAYBqUXQAAAAAAADANyi4AAAAAAACYBmUXAAAAAAAATIOyCwAAAAAAAKZB2QUAAAAAAADToOwCAAAAAACAafx/NK7m2yrEPOAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -776,10 +776,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:38.354188Z", - "iopub.status.busy": "2024-11-08T21:58:38.353743Z", - "iopub.status.idle": "2024-11-08T21:58:38.611613Z", - "shell.execute_reply": "2024-11-08T21:58:38.611088Z" + "iopub.execute_input": "2024-11-08T22:03:51.859546Z", + "iopub.status.busy": "2024-11-08T22:03:51.859139Z", + "iopub.status.idle": "2024-11-08T22:03:52.116318Z", + "shell.execute_reply": "2024-11-08T22:03:52.115735Z" } }, "outputs": [ diff --git a/dev/explanations/state-vectors-and-gates.ipynb b/dev/explanations/state-vectors-and-gates.ipynb index 9b4005be8..8671d210f 100644 --- a/dev/explanations/state-vectors-and-gates.ipynb +++ b/dev/explanations/state-vectors-and-gates.ipynb @@ -26,10 +26,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.221110Z", - "iopub.status.busy": "2024-11-08T21:58:41.220924Z", - "iopub.status.idle": "2024-11-08T21:58:41.917013Z", - "shell.execute_reply": "2024-11-08T21:58:41.916364Z" + "iopub.execute_input": "2024-11-08T22:03:54.737417Z", + "iopub.status.busy": "2024-11-08T22:03:54.737231Z", + "iopub.status.idle": "2024-11-08T22:03:55.449789Z", + "shell.execute_reply": "2024-11-08T22:03:55.449273Z" } }, "outputs": [ @@ -74,10 +74,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.919191Z", - "iopub.status.busy": "2024-11-08T21:58:41.918752Z", - "iopub.status.idle": "2024-11-08T21:58:41.925308Z", - "shell.execute_reply": "2024-11-08T21:58:41.924799Z" + "iopub.execute_input": "2024-11-08T22:03:55.452002Z", + "iopub.status.busy": "2024-11-08T22:03:55.451545Z", + "iopub.status.idle": "2024-11-08T22:03:55.458223Z", + "shell.execute_reply": "2024-11-08T22:03:55.457652Z" } }, "outputs": [ @@ -120,10 +120,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.927326Z", - "iopub.status.busy": "2024-11-08T21:58:41.926963Z", - "iopub.status.idle": "2024-11-08T21:58:41.931168Z", - "shell.execute_reply": "2024-11-08T21:58:41.930666Z" + "iopub.execute_input": "2024-11-08T22:03:55.460136Z", + "iopub.status.busy": "2024-11-08T22:03:55.459790Z", + "iopub.status.idle": "2024-11-08T22:03:55.464060Z", + "shell.execute_reply": "2024-11-08T22:03:55.463497Z" } }, "outputs": [ @@ -157,10 +157,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.933094Z", - "iopub.status.busy": "2024-11-08T21:58:41.932716Z", - "iopub.status.idle": "2024-11-08T21:58:41.936948Z", - "shell.execute_reply": "2024-11-08T21:58:41.936440Z" + "iopub.execute_input": "2024-11-08T22:03:55.466349Z", + "iopub.status.busy": "2024-11-08T22:03:55.465827Z", + "iopub.status.idle": "2024-11-08T22:03:55.470128Z", + "shell.execute_reply": "2024-11-08T22:03:55.469596Z" } }, "outputs": [ @@ -199,10 +199,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.938981Z", - "iopub.status.busy": "2024-11-08T21:58:41.938622Z", - "iopub.status.idle": "2024-11-08T21:58:41.944482Z", - "shell.execute_reply": "2024-11-08T21:58:41.943915Z" + "iopub.execute_input": "2024-11-08T22:03:55.472162Z", + "iopub.status.busy": "2024-11-08T22:03:55.471841Z", + "iopub.status.idle": "2024-11-08T22:03:55.477841Z", + "shell.execute_reply": "2024-11-08T22:03:55.477273Z" } }, "outputs": [ @@ -245,10 +245,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.946532Z", - "iopub.status.busy": "2024-11-08T21:58:41.946099Z", - "iopub.status.idle": "2024-11-08T21:58:41.952016Z", - "shell.execute_reply": "2024-11-08T21:58:41.951544Z" + "iopub.execute_input": "2024-11-08T22:03:55.479754Z", + "iopub.status.busy": "2024-11-08T22:03:55.479434Z", + "iopub.status.idle": "2024-11-08T22:03:55.484847Z", + "shell.execute_reply": "2024-11-08T22:03:55.484359Z" } }, "outputs": [ @@ -293,10 +293,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:41.953906Z", - "iopub.status.busy": "2024-11-08T21:58:41.953550Z", - "iopub.status.idle": "2024-11-08T21:58:41.958599Z", - "shell.execute_reply": "2024-11-08T21:58:41.958121Z" + "iopub.execute_input": "2024-11-08T22:03:55.486753Z", + "iopub.status.busy": "2024-11-08T22:03:55.486324Z", + "iopub.status.idle": "2024-11-08T22:03:55.491210Z", + "shell.execute_reply": "2024-11-08T22:03:55.490757Z" } }, "outputs": [ diff --git a/dev/how-to-guides/entanglement-forging.html b/dev/how-to-guides/entanglement-forging.html index 378c5baf8..23d7edb63 100644 --- a/dev/how-to-guides/entanglement-forging.html +++ b/dev/how-to-guides/entanglement-forging.html @@ -334,8 +334,8 @@

Build a molecule @@ -471,10 +471,10 @@

Optimize energy\n" diff --git a/dev/how-to-guides/fermion-operator.html b/dev/how-to-guides/fermion-operator.html index f7df85387..3eb4d103e 100644 --- a/dev/how-to-guides/fermion-operator.html +++ b/dev/how-to-guides/fermion-operator.html @@ -315,9 +315,9 @@

How to use the FermionOperator class
 FermionOperator({
+    (cre_a(0), des_a(3)): 0.5,
     (cre_a(3), des_a(0)): -0.25,
-    (cre_b(1), des_b(5), cre_a(4)): 1+1j,
-    (cre_a(0), des_a(3)): 0.5
+    (cre_b(1), des_b(5), cre_a(4)): 1+1j
 })
 
@@ -336,7 +336,7 @@

How to use the FermionOperator class
-'FermionOperator({((True, False, 3), (False, False, 0)): -0.25+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 0), (False, False, 3)): 0.5+0j})'
+'FermionOperator({((True, False, 0), (False, False, 3)): 0.5+0j, ((True, False, 3), (False, False, 0)): -0.25+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j})'
 

FermionOperators support arithmetic operations. Note that when multiplying a FermionOperator by a scalar, the scalar must go on the left, i.e. 2 * op and not op * 2.

@@ -364,17 +364,17 @@

How to use the FermionOperator class
 FermionOperator({
-    (cre_a(0), des_a(3)): 1,
-    (cre_a(3), des_a(0)): -0.5,
-    (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,
     (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,
+    (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,
+    (cre_a(3), des_a(0)): -0.5,
+    (cre_a(0), des_a(3)): 1,
     (cre_b(2)): 0-0.25j,
     (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,
+    (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,
     (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,
-    (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,
     (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,
-    (des_a(3), des_b(3)): 0.0625,
-    (cre_b(1), des_b(5), cre_a(4)): 2+2j
+    (cre_b(1), des_b(5), cre_a(4)): 2+2j,
+    (des_a(3), des_b(3)): 0.0625
 })
 
@@ -403,17 +403,17 @@

How to use the FermionOperator class
 FermionOperator({
-    (cre_a(0), des_a(3)): 0-6j,
-    (cre_a(3), des_a(0)): 0+3j,
-    (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,
     (cre_a(3), des_a(0), cre_b(2)): -1,
+    (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,
+    (cre_a(3), des_a(0)): 0+3j,
+    (cre_a(0), des_a(3)): 0-6j,
     (cre_b(2)): -5,
     (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,
+    (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,
     (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,
-    (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,
     (cre_a(0), des_a(3), cre_b(2)): 2,
-    (des_a(3), des_b(3)): 0-1.25j,
-    (cre_b(1), des_b(5), cre_a(4)): 12-12j
+    (cre_b(1), des_b(5), cre_a(4)): 12-12j,
+    (des_a(3), des_b(3)): 0-1.25j
 })
 
@@ -434,16 +434,16 @@

How to use the FermionOperator class
 FermionOperator({
-    (cre_b(2), cre_a(3), des_a(0)): -1,
+    (cre_a(3), des_a(0)): 0+3j,
+    (des_b(3), des_a(3)): 0+1.25j,
+    (cre_b(2), cre_a(0), des_a(3)): 2,
     (cre_a(0), des_a(3)): 0-6j,
-    (cre_b(2)): -5,
     (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,
+    (cre_b(1), cre_a(4), des_b(5)): -12+12j,
     (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,
-    (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,
-    (cre_b(2), cre_a(0), des_a(3)): 2,
-    (cre_a(3), des_a(0)): 0+3j,
-    (des_b(3), des_a(3)): 0+1.25j,
-    (cre_b(1), cre_a(4), des_b(5)): -12+12j
+    (cre_b(2), cre_a(3), des_a(0)): -1,
+    (cre_b(2)): -5,
+    (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j
 })
 
@@ -514,7 +514,7 @@

How to use the FermionOperator class
 array([ 0.        +0.j        ,  0.        +0.j        ,
         0.        +0.j        ,  0.        +0.j        ,
-       -0.11930397-0.05940218j,  0.        +0.j        ,
+       -0.06659433-0.09977735j,  0.        +0.j        ,
         0.        +0.j        ,  0.        +0.j        ,
         0.        +0.j        ])
 
diff --git a/dev/how-to-guides/fermion-operator.ipynb b/dev/how-to-guides/fermion-operator.ipynb index a3a2f533e..4b6946947 100644 --- a/dev/how-to-guides/fermion-operator.ipynb +++ b/dev/how-to-guides/fermion-operator.ipynb @@ -29,10 +29,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:54.349104Z", - "iopub.status.busy": "2024-11-08T21:58:54.348912Z", - "iopub.status.idle": "2024-11-08T21:58:55.046367Z", - "shell.execute_reply": "2024-11-08T21:58:55.045841Z" + "iopub.execute_input": "2024-11-08T22:04:08.091307Z", + "iopub.status.busy": "2024-11-08T22:04:08.091112Z", + "iopub.status.idle": "2024-11-08T22:04:08.799275Z", + "shell.execute_reply": "2024-11-08T22:04:08.798654Z" } }, "outputs": [ @@ -40,9 +40,9 @@ "data": { "text/plain": [ "FermionOperator({\n", + " (cre_a(0), des_a(3)): 0.5,\n", " (cre_a(3), des_a(0)): -0.25,\n", - " (cre_b(1), des_b(5), cre_a(4)): 1+1j,\n", - " (cre_a(0), des_a(3)): 0.5\n", + " (cre_b(1), des_b(5), cre_a(4)): 1+1j\n", "})" ] }, @@ -76,17 +76,17 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.048422Z", - "iopub.status.busy": "2024-11-08T21:58:55.048148Z", - "iopub.status.idle": "2024-11-08T21:58:55.052294Z", - "shell.execute_reply": "2024-11-08T21:58:55.051709Z" + "iopub.execute_input": "2024-11-08T22:04:08.801504Z", + "iopub.status.busy": "2024-11-08T22:04:08.801052Z", + "iopub.status.idle": "2024-11-08T22:04:08.805055Z", + "shell.execute_reply": "2024-11-08T22:04:08.804526Z" } }, "outputs": [ { "data": { "text/plain": [ - "'FermionOperator({((True, False, 3), (False, False, 0)): -0.25+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j, ((True, False, 0), (False, False, 3)): 0.5+0j})'" + "'FermionOperator({((True, False, 0), (False, False, 3)): 0.5+0j, ((True, False, 3), (False, False, 0)): -0.25+0j, ((True, True, 1), (False, True, 5), (True, False, 4)): 1+1j})'" ] }, "execution_count": 2, @@ -110,10 +110,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.054433Z", - "iopub.status.busy": "2024-11-08T21:58:55.053923Z", - "iopub.status.idle": "2024-11-08T21:58:55.058379Z", - "shell.execute_reply": "2024-11-08T21:58:55.057801Z" + "iopub.execute_input": "2024-11-08T22:04:08.807027Z", + "iopub.status.busy": "2024-11-08T22:04:08.806701Z", + "iopub.status.idle": "2024-11-08T22:04:08.811065Z", + "shell.execute_reply": "2024-11-08T22:04:08.810510Z" } }, "outputs": [ @@ -121,17 +121,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(0), des_a(3)): 1,\n", - " (cre_a(3), des_a(0)): -0.5,\n", - " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,\n", " (cre_a(3), des_a(0), cre_b(2)): 0-0.25j,\n", + " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", + " (cre_a(3), des_a(0)): -0.5,\n", + " (cre_a(0), des_a(3)): 1,\n", " (cre_b(2)): 0-0.25j,\n", " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -0.25-0.25j,\n", + " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0.0625,\n", " (cre_a(0), des_a(3), des_a(3), des_b(3)): -0.125,\n", - " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): -1+1j,\n", " (cre_a(0), des_a(3), cre_b(2)): 0+0.5j,\n", - " (des_a(3), des_b(3)): 0.0625,\n", - " (cre_b(1), des_b(5), cre_a(4)): 2+2j\n", + " (cre_b(1), des_b(5), cre_a(4)): 2+2j,\n", + " (des_a(3), des_b(3)): 0.0625\n", "})" ] }, @@ -170,10 +170,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.060434Z", - "iopub.status.busy": "2024-11-08T21:58:55.059951Z", - "iopub.status.idle": "2024-11-08T21:58:55.063920Z", - "shell.execute_reply": "2024-11-08T21:58:55.063403Z" + "iopub.execute_input": "2024-11-08T22:04:08.813021Z", + "iopub.status.busy": "2024-11-08T22:04:08.812685Z", + "iopub.status.idle": "2024-11-08T22:04:08.816687Z", + "shell.execute_reply": "2024-11-08T22:04:08.816104Z" } }, "outputs": [ @@ -181,17 +181,17 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_a(0), des_a(3)): 0-6j,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", - " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,\n", " (cre_a(3), des_a(0), cre_b(2)): -1,\n", + " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", + " (cre_a(3), des_a(0)): 0+3j,\n", + " (cre_a(0), des_a(3)): 0-6j,\n", " (cre_b(2)): -5,\n", " (cre_b(1), des_b(5), cre_a(4), des_a(3), des_b(3)): -1+1j,\n", + " (cre_a(3), des_a(0), des_a(3), des_b(3)): 0-0.25j,\n", " (cre_a(0), des_a(3), des_a(3), des_b(3)): 0+0.5j,\n", - " (cre_b(1), des_b(5), cre_a(4), cre_b(2)): 4+4j,\n", " (cre_a(0), des_a(3), cre_b(2)): 2,\n", - " (des_a(3), des_b(3)): 0-1.25j,\n", - " (cre_b(1), des_b(5), cre_a(4)): 12-12j\n", + " (cre_b(1), des_b(5), cre_a(4)): 12-12j,\n", + " (des_a(3), des_b(3)): 0-1.25j\n", "})" ] }, @@ -220,10 +220,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.065934Z", - "iopub.status.busy": "2024-11-08T21:58:55.065440Z", - "iopub.status.idle": "2024-11-08T21:58:55.069385Z", - "shell.execute_reply": "2024-11-08T21:58:55.068822Z" + "iopub.execute_input": "2024-11-08T22:04:08.818469Z", + "iopub.status.busy": "2024-11-08T22:04:08.818278Z", + "iopub.status.idle": "2024-11-08T22:04:08.822136Z", + "shell.execute_reply": "2024-11-08T22:04:08.821663Z" } }, "outputs": [ @@ -231,16 +231,16 @@ "data": { "text/plain": [ "FermionOperator({\n", - " (cre_b(2), cre_a(3), des_a(0)): -1,\n", + " (cre_a(3), des_a(0)): 0+3j,\n", + " (des_b(3), des_a(3)): 0+1.25j,\n", + " (cre_b(2), cre_a(0), des_a(3)): 2,\n", " (cre_a(0), des_a(3)): 0-6j,\n", - " (cre_b(2)): -5,\n", " (cre_a(3), des_b(3), des_a(3), des_a(0)): 0+0.25j,\n", + " (cre_b(1), cre_a(4), des_b(5)): -12+12j,\n", " (cre_b(2), cre_b(1), cre_a(4), des_b(5)): 4+4j,\n", - " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j,\n", - " (cre_b(2), cre_a(0), des_a(3)): 2,\n", - " (cre_a(3), des_a(0)): 0+3j,\n", - " (des_b(3), des_a(3)): 0+1.25j,\n", - " (cre_b(1), cre_a(4), des_b(5)): -12+12j\n", + " (cre_b(2), cre_a(3), des_a(0)): -1,\n", + " (cre_b(2)): -5,\n", + " (cre_b(1), cre_a(4), des_b(5), des_b(3), des_a(3)): -1+1j\n", "})" ] }, @@ -265,10 +265,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.071276Z", - "iopub.status.busy": "2024-11-08T21:58:55.070942Z", - "iopub.status.idle": "2024-11-08T21:58:55.074366Z", - "shell.execute_reply": "2024-11-08T21:58:55.073878Z" + "iopub.execute_input": "2024-11-08T22:04:08.823784Z", + "iopub.status.busy": "2024-11-08T22:04:08.823599Z", + "iopub.status.idle": "2024-11-08T22:04:08.826428Z", + "shell.execute_reply": "2024-11-08T22:04:08.825977Z" } }, "outputs": [ @@ -298,10 +298,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.076325Z", - "iopub.status.busy": "2024-11-08T21:58:55.075966Z", - "iopub.status.idle": "2024-11-08T21:58:55.079853Z", - "shell.execute_reply": "2024-11-08T21:58:55.079384Z" + "iopub.execute_input": "2024-11-08T22:04:08.828314Z", + "iopub.status.busy": "2024-11-08T22:04:08.828125Z", + "iopub.status.idle": "2024-11-08T22:04:08.832402Z", + "shell.execute_reply": "2024-11-08T22:04:08.831916Z" } }, "outputs": [ @@ -341,10 +341,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.081760Z", - "iopub.status.busy": "2024-11-08T21:58:55.081405Z", - "iopub.status.idle": "2024-11-08T21:58:55.086724Z", - "shell.execute_reply": "2024-11-08T21:58:55.086261Z" + "iopub.execute_input": "2024-11-08T22:04:08.834437Z", + "iopub.status.busy": "2024-11-08T22:04:08.834023Z", + "iopub.status.idle": "2024-11-08T22:04:08.839435Z", + "shell.execute_reply": "2024-11-08T22:04:08.838968Z" } }, "outputs": [ @@ -353,7 +353,7 @@ "text/plain": [ "array([ 0. +0.j , 0. +0.j ,\n", " 0. +0.j , 0. +0.j ,\n", - " -0.11930397-0.05940218j, 0. +0.j ,\n", + " -0.06659433-0.09977735j, 0. +0.j ,\n", " 0. +0.j , 0. +0.j ,\n", " 0. +0.j ])" ] @@ -380,10 +380,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T21:58:55.088681Z", - "iopub.status.busy": "2024-11-08T21:58:55.088330Z", - "iopub.status.idle": "2024-11-08T21:58:55.099251Z", - "shell.execute_reply": "2024-11-08T21:58:55.098800Z" + "iopub.execute_input": "2024-11-08T22:04:08.841551Z", + "iopub.status.busy": "2024-11-08T22:04:08.841118Z", + "iopub.status.idle": "2024-11-08T22:04:08.853583Z", + "shell.execute_reply": "2024-11-08T22:04:08.853031Z" } }, "outputs": [ diff --git a/dev/how-to-guides/lucj.html b/dev/how-to-guides/lucj.html index 0e566ae2d..0fc892428 100644 --- a/dev/how-to-guides/lucj.html +++ b/dev/how-to-guides/lucj.html @@ -331,7 +331,7 @@

How to simulate the local unitary cluster Jastrow (LUCJ) ansatz @@ -435,10 +435,10 @@

General UCJ ansatz\n" @@ -251,10 +251,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:00:41.432719Z", - "iopub.status.busy": "2024-11-08T22:00:41.432513Z", - "iopub.status.idle": "2024-11-08T22:01:17.366582Z", - "shell.execute_reply": "2024-11-08T22:01:17.365968Z" + "iopub.execute_input": "2024-11-08T22:05:56.140899Z", + "iopub.status.busy": "2024-11-08T22:05:56.139858Z", + "iopub.status.idle": "2024-11-08T22:06:32.916741Z", + "shell.execute_reply": "2024-11-08T22:06:32.916109Z" } }, "outputs": [ @@ -266,10 +266,10 @@ " message: CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH\n", " success: True\n", " status: 0\n", - " fun: -77.87363426331358\n", - " x: [-1.152e+00 -7.322e-05 ... 3.520e-02 2.561e-01]\n", + " fun: -77.87363426494937\n", + " x: [-4.775e-01 -9.119e-05 ... 3.518e-02 2.561e-01]\n", " nit: 5\n", - " jac: [-2.132e-05 -1.421e-05 ... 4.263e-06 -1.421e-06]\n", + " jac: [ 1.990e-05 2.842e-05 ... 0.000e+00 -4.263e-06]\n", " nfev: 329\n", " njev: 7\n", " hess_inv: <46x46 LbfgsInvHessProduct with dtype=float64>\n" @@ -314,10 +314,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:17.369827Z", - "iopub.status.busy": "2024-11-08T22:01:17.369259Z", - "iopub.status.idle": "2024-11-08T22:01:32.185137Z", - "shell.execute_reply": "2024-11-08T22:01:32.184537Z" + "iopub.execute_input": "2024-11-08T22:06:32.920008Z", + "iopub.status.busy": "2024-11-08T22:06:32.919557Z", + "iopub.status.idle": "2024-11-08T22:06:49.315704Z", + "shell.execute_reply": "2024-11-08T22:06:49.315124Z" } }, "outputs": [ @@ -328,29 +328,29 @@ "Number of parameters: 46\n", " message: Convergence: Relative reduction of objective function <= ftol.\n", " success: True\n", - " fun: -77.87363432028101\n", - " x: [-1.152e+00 -2.361e-04 ... 3.488e-02 2.559e-01]\n", + " fun: -77.87363432565692\n", + " x: [-4.777e-01 -3.547e-04 ... 3.492e-02 2.558e-01]\n", " nit: 3\n", - " jac: [ 6.378e-07 -1.608e-06 ... -5.773e-07 -1.369e-06]\n", - " nfev: 487\n", + " jac: [-1.352e-06 -8.455e-07 ... -4.362e-07 -4.643e-07]\n", + " nfev: 511\n", " njev: 4\n", - " nlinop: 303\n", + " nlinop: 327\n", "\n", "Iteration 1\n", - " Energy: -77.8736217684642\n", - " Norm of gradient: 0.0031595733340700816\n", - " Regularization hyperparameter: 0.0025499345359661922\n", - " Variation hyperparameter: 0.9740484666566149\n", + " Energy: -77.87362951803819\n", + " Norm of gradient: 0.0017916907423955943\n", + " Regularization hyperparameter: 0.0017638230480210694\n", + " Variation hyperparameter: 0.9882021058109687\n", "Iteration 2\n", - " Energy: -77.87363430321963\n", - " Norm of gradient: 0.00010745254175743701\n", - " Regularization hyperparameter: 0.002550095989584378\n", - " Variation hyperparameter: 0.9740485436281343\n", + " Energy: -77.8736343056853\n", + " Norm of gradient: 6.762259618188165e-05\n", + " Regularization hyperparameter: 0.002422494824904172\n", + " Variation hyperparameter: 0.9857240665316018\n", "Iteration 3\n", - " Energy: -77.87363432028101\n", - " Norm of gradient: 9.466173883748333e-06\n", - " Regularization hyperparameter: 0.002550095989584378\n", - " Variation hyperparameter: 0.9740485436281343\n" + " Energy: -77.87363432565692\n", + " Norm of gradient: 1.373295931963946e-05\n", + " Regularization hyperparameter: 0.003552504471598931\n", + " Variation hyperparameter: 0.9857689585545333\n" ] } ], diff --git a/dev/how-to-guides/qiskit-circuits.html b/dev/how-to-guides/qiskit-circuits.html index a48d4cdf5..3c025f8b9 100644 --- a/dev/how-to-guides/qiskit-circuits.html +++ b/dev/how-to-guides/qiskit-circuits.html @@ -391,7 +391,7 @@

Prepare Hartree-Fock state
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd3477a3340>
+<qiskit.circuit.instructionset.InstructionSet at 0x7faa24bcb730>
 
@@ -420,7 +420,7 @@

Prepare Slater determinant
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd347745c90>
+<qiskit.circuit.instructionset.InstructionSet at 0x7faa24b87760>
 
@@ -447,7 +447,7 @@

Orbital rotation
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd3477a2fe0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7faa24bc9450>
 
@@ -469,7 +469,7 @@

Number operator sum evolution
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd3477e7d30>
+<qiskit.circuit.instructionset.InstructionSet at 0x7faa24d74af0>
 
@@ -494,7 +494,7 @@

Diagonal Coulomb evolution
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd348197c10>
+<qiskit.circuit.instructionset.InstructionSet at 0x7faa9470df90>
 
@@ -517,7 +517,7 @@

Spin-balanced unitary cluster Jastrow (UCJ) operator
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd346dfd8a0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7faa244410f0>
 
@@ -540,7 +540,7 @@

Spin-unbalanced unitary cluster Jastrow (UCJ) operator
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd347e99390>
+<qiskit.circuit.instructionset.InstructionSet at 0x7faa24b87850>
 
@@ -567,7 +567,7 @@

Trotter simulation of double-factorized Hamiltonian
-<qiskit.circuit.instructionset.InstructionSet at 0x7fd346dfe8c0>
+<qiskit.circuit.instructionset.InstructionSet at 0x7faa24442650>
 
diff --git a/dev/how-to-guides/qiskit-circuits.ipynb b/dev/how-to-guides/qiskit-circuits.ipynb index ebf4d2c31..d47ee9f70 100644 --- a/dev/how-to-guides/qiskit-circuits.ipynb +++ b/dev/how-to-guides/qiskit-circuits.ipynb @@ -16,10 +16,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:33.798006Z", - "iopub.status.busy": "2024-11-08T22:01:33.797814Z", - "iopub.status.idle": "2024-11-08T22:01:34.481362Z", - "shell.execute_reply": "2024-11-08T22:01:34.480804Z" + "iopub.execute_input": "2024-11-08T22:06:50.933528Z", + "iopub.status.busy": "2024-11-08T22:06:50.933335Z", + "iopub.status.idle": "2024-11-08T22:06:51.637750Z", + "shell.execute_reply": "2024-11-08T22:06:51.637098Z" } }, "outputs": [], @@ -54,10 +54,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:34.483761Z", - "iopub.status.busy": "2024-11-08T22:01:34.483293Z", - "iopub.status.idle": "2024-11-08T22:01:35.046390Z", - "shell.execute_reply": "2024-11-08T22:01:35.045816Z" + "iopub.execute_input": "2024-11-08T22:06:51.640409Z", + "iopub.status.busy": "2024-11-08T22:06:51.639943Z", + "iopub.status.idle": "2024-11-08T22:06:52.224799Z", + "shell.execute_reply": "2024-11-08T22:06:52.224141Z" } }, "outputs": [ @@ -103,10 +103,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.048549Z", - "iopub.status.busy": "2024-11-08T22:01:35.048048Z", - "iopub.status.idle": "2024-11-08T22:01:35.107588Z", - "shell.execute_reply": "2024-11-08T22:01:35.106967Z" + "iopub.execute_input": "2024-11-08T22:06:52.227433Z", + "iopub.status.busy": "2024-11-08T22:06:52.226611Z", + "iopub.status.idle": "2024-11-08T22:06:52.286888Z", + "shell.execute_reply": "2024-11-08T22:06:52.286377Z" } }, "outputs": [ @@ -160,17 +160,17 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.109612Z", - "iopub.status.busy": "2024-11-08T22:01:35.109256Z", - "iopub.status.idle": "2024-11-08T22:01:35.113556Z", - "shell.execute_reply": "2024-11-08T22:01:35.112953Z" + "iopub.execute_input": "2024-11-08T22:06:52.289176Z", + "iopub.status.busy": "2024-11-08T22:06:52.288666Z", + "iopub.status.idle": "2024-11-08T22:06:52.292981Z", + "shell.execute_reply": "2024-11-08T22:06:52.292359Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -195,17 +195,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.115614Z", - "iopub.status.busy": "2024-11-08T22:01:35.115258Z", - "iopub.status.idle": "2024-11-08T22:01:35.120213Z", - "shell.execute_reply": "2024-11-08T22:01:35.119603Z" + "iopub.execute_input": "2024-11-08T22:06:52.295028Z", + "iopub.status.busy": "2024-11-08T22:06:52.294563Z", + "iopub.status.idle": "2024-11-08T22:06:52.299537Z", + "shell.execute_reply": "2024-11-08T22:06:52.298958Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 5, @@ -242,17 +242,17 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.122242Z", - "iopub.status.busy": "2024-11-08T22:01:35.121883Z", - "iopub.status.idle": "2024-11-08T22:01:35.126435Z", - "shell.execute_reply": "2024-11-08T22:01:35.125856Z" + "iopub.execute_input": "2024-11-08T22:06:52.301396Z", + "iopub.status.busy": "2024-11-08T22:06:52.301059Z", + "iopub.status.idle": "2024-11-08T22:06:52.305582Z", + "shell.execute_reply": "2024-11-08T22:06:52.305013Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 6, @@ -279,17 +279,17 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.128351Z", - "iopub.status.busy": "2024-11-08T22:01:35.128008Z", - "iopub.status.idle": "2024-11-08T22:01:35.132466Z", - "shell.execute_reply": "2024-11-08T22:01:35.131879Z" + "iopub.execute_input": "2024-11-08T22:06:52.307644Z", + "iopub.status.busy": "2024-11-08T22:06:52.307302Z", + "iopub.status.idle": "2024-11-08T22:06:52.311630Z", + "shell.execute_reply": "2024-11-08T22:06:52.311041Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -315,17 +315,17 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.134572Z", - "iopub.status.busy": "2024-11-08T22:01:35.134198Z", - "iopub.status.idle": "2024-11-08T22:01:35.138593Z", - "shell.execute_reply": "2024-11-08T22:01:35.137992Z" + "iopub.execute_input": "2024-11-08T22:06:52.313501Z", + "iopub.status.busy": "2024-11-08T22:06:52.313302Z", + "iopub.status.idle": "2024-11-08T22:06:52.317533Z", + "shell.execute_reply": "2024-11-08T22:06:52.317073Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -354,17 +354,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.158301Z", - "iopub.status.busy": "2024-11-08T22:01:35.157702Z", - "iopub.status.idle": "2024-11-08T22:01:35.162990Z", - "shell.execute_reply": "2024-11-08T22:01:35.162424Z" + "iopub.execute_input": "2024-11-08T22:06:52.319403Z", + "iopub.status.busy": "2024-11-08T22:06:52.319066Z", + "iopub.status.idle": "2024-11-08T22:06:52.323951Z", + "shell.execute_reply": "2024-11-08T22:06:52.323492Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 9, @@ -391,17 +391,17 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.165103Z", - "iopub.status.busy": "2024-11-08T22:01:35.164737Z", - "iopub.status.idle": "2024-11-08T22:01:35.170161Z", - "shell.execute_reply": "2024-11-08T22:01:35.169568Z" + "iopub.execute_input": "2024-11-08T22:06:52.325685Z", + "iopub.status.busy": "2024-11-08T22:06:52.325493Z", + "iopub.status.idle": "2024-11-08T22:06:52.331034Z", + "shell.execute_reply": "2024-11-08T22:06:52.330451Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 10, @@ -428,17 +428,17 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:35.171978Z", - "iopub.status.busy": "2024-11-08T22:01:35.171656Z", - "iopub.status.idle": "2024-11-08T22:01:35.177391Z", - "shell.execute_reply": "2024-11-08T22:01:35.176807Z" + "iopub.execute_input": "2024-11-08T22:06:52.333012Z", + "iopub.status.busy": "2024-11-08T22:06:52.332649Z", + "iopub.status.idle": "2024-11-08T22:06:52.338428Z", + "shell.execute_reply": "2024-11-08T22:06:52.337844Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 11, diff --git a/dev/how-to-guides/qiskit-sampler.html b/dev/how-to-guides/qiskit-sampler.html index 152dc9115..0b5c87a55 100644 --- a/dev/how-to-guides/qiskit-sampler.html +++ b/dev/how-to-guides/qiskit-sampler.html @@ -456,10 +456,10 @@

Sampling from an LUCJ circuit for a closed-shell molecule
-converged SCF energy = -108.835236570774
+converged SCF energy = -108.835236570775
 norb = 14
 nelec = (3, 3)
-E(CCSD) = -108.9630419334855  E_corr = -0.1278053627110063
+E(CCSD) = -108.9630419334856  E_corr = -0.1278053627110059
 
@@ -555,13 +555,13 @@

Sampling from an LUCJ circuit for an open-shell molecule
 SCF not converged.
-SCF energy = -75.3484557059711
+SCF energy = -75.3484557070704
 norb = 11
 nelec = (5, 4)
 
 WARN: RCCSD method does not support ROHF method. ROHF object is converted to UHF object and UCCSD method is called.
 
-E(UCCSD) = -75.45619739146197  E_corr = -0.1077416854908703
+E(UCCSD) = -75.45619739126296  E_corr = -0.1077416841925733
 
diff --git a/dev/how-to-guides/qiskit-sampler.ipynb b/dev/how-to-guides/qiskit-sampler.ipynb index 3aeabdf58..2536860ee 100644 --- a/dev/how-to-guides/qiskit-sampler.ipynb +++ b/dev/how-to-guides/qiskit-sampler.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:37.130980Z", - "iopub.status.busy": "2024-11-08T22:01:37.130796Z", - "iopub.status.idle": "2024-11-08T22:01:37.808315Z", - "shell.execute_reply": "2024-11-08T22:01:37.807796Z" + "iopub.execute_input": "2024-11-08T22:06:54.254793Z", + "iopub.status.busy": "2024-11-08T22:06:54.254605Z", + "iopub.status.idle": "2024-11-08T22:06:54.959789Z", + "shell.execute_reply": "2024-11-08T22:06:54.959158Z" } }, "outputs": [], @@ -71,10 +71,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:37.810805Z", - "iopub.status.busy": "2024-11-08T22:01:37.810246Z", - "iopub.status.idle": "2024-11-08T22:01:37.873487Z", - "shell.execute_reply": "2024-11-08T22:01:37.872967Z" + "iopub.execute_input": "2024-11-08T22:06:54.962579Z", + "iopub.status.busy": "2024-11-08T22:06:54.962141Z", + "iopub.status.idle": "2024-11-08T22:06:55.025396Z", + "shell.execute_reply": "2024-11-08T22:06:55.024909Z" } }, "outputs": [ @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:37.875563Z", - "iopub.status.busy": "2024-11-08T22:01:37.875211Z", - "iopub.status.idle": "2024-11-08T22:01:38.168011Z", - "shell.execute_reply": "2024-11-08T22:01:38.167479Z" + "iopub.execute_input": "2024-11-08T22:06:55.027498Z", + "iopub.status.busy": "2024-11-08T22:06:55.027124Z", + "iopub.status.idle": "2024-11-08T22:06:55.303899Z", + "shell.execute_reply": "2024-11-08T22:06:55.303269Z" } }, "outputs": [ @@ -165,7 +165,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "converged SCF energy = -108.835236570774\n" + "converged SCF energy = -108.835236570775\n" ] }, { @@ -174,7 +174,7 @@ "text": [ "norb = 14\n", "nelec = (3, 3)\n", - "E(CCSD) = -108.9630419334855 E_corr = -0.1278053627110063\n" + "E(CCSD) = -108.9630419334856 E_corr = -0.1278053627110059\n" ] }, { @@ -188,15 +188,15 @@ "data": { "text/plain": [ "{'0000000000011100000000000111': 9926,\n", - " '0000000000110100000000001101': 12,\n", - " '0000000000011100000000011100': 11,\n", - " '0000000001110000000000000111': 10,\n", - " '0000000001011000000000010110': 9,\n", - " '0001000001010000000000000111': 4,\n", + " '0000000000110100000000001101': 13,\n", + " '0000000001110000000000000111': 12,\n", + " '0000000000011100000000011100': 10,\n", + " '0000000001011000000000010110': 10,\n", + " '0010000000110000000000000111': 4,\n", " '0000000001011000100000000110': 4,\n", + " '0010000000011000000000010110': 3,\n", " '0011000000010000000000000111': 3,\n", - " '0010000000110000000000000111': 3,\n", - " '0000000000011100100000001100': 3}" + " '0001000001010000000000000111': 2}" ] }, "execution_count": 3, @@ -276,10 +276,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:38.170182Z", - "iopub.status.busy": "2024-11-08T22:01:38.169791Z", - "iopub.status.idle": "2024-11-08T22:01:38.726692Z", - "shell.execute_reply": "2024-11-08T22:01:38.726068Z" + "iopub.execute_input": "2024-11-08T22:06:55.306017Z", + "iopub.status.busy": "2024-11-08T22:06:55.305711Z", + "iopub.status.idle": "2024-11-08T22:06:55.860469Z", + "shell.execute_reply": "2024-11-08T22:06:55.859913Z" } }, "outputs": [ @@ -294,7 +294,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "SCF energy = -75.3484557059711\n" + "SCF energy = -75.3484557070704\n" ] }, { @@ -312,7 +312,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "E(UCCSD) = -75.45619739146197 E_corr = -0.1077416854908703\n" + "E(UCCSD) = -75.45619739126296 E_corr = -0.1077416841925733\n" ] }, { diff --git a/dev/searchindex.js b/dev/searchindex.js index b0c5e216c..921881557 100644 --- a/dev/searchindex.js +++ b/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"API reference": [[7, null]], "Application to the double-factorized Hamiltonian": [[8, "Application-to-the-double-factorized-Hamiltonian"]], "Application to time evolution via Trotter-Suzuki formulas": [[8, "Application-to-time-evolution-via-Trotter-Suzuki-formulas"]], "Brief background on Trotter-Suzuki formulas": [[8, "Brief-background-on-Trotter-Suzuki-formulas"]], "Build a molecule": [[15, "Build-a-molecule"]], "Build the Hamiltonian": [[23, "Build-the-Hamiltonian"]], "Choose reference occupations": [[15, "Choose-reference-occupations"]], "Circuit transpilation": [[19, "Circuit-transpilation"]], "Citing ffsim": [[21, "citing-ffsim"]], "Code example": [[21, "code-example"]], "Compute energy": [[15, "Compute-energy"]], "Contents": [[21, "contents"]], "Criteria for circuits that FfsimSampler can sample": [[20, "Criteria-for-circuits-that-FfsimSampler-can-sample"]], "Data representation": [[9, "Data-representation"]], "Diagonal Coulomb evolution": [[13, "Diagonal-Coulomb-evolution"], [19, "Diagonal-Coulomb-evolution"]], "Double-factorized representation": [[8, "Double-factorized-representation"]], "Double-factorized representation of the molecular Hamiltonian": [[8, null]], "Example of using FfsimSampler": [[20, "Example-of-using-FfsimSampler"]], "Explanations": [[10, null]], "Gates": [[14, "Gates"]], "General UCJ ansatz": [[18, "General-UCJ-ansatz"]], "Hamiltonians": [[9, null]], "Hartree-Fock and Slater determinant preparation": [[13, "Hartree-Fock-and-Slater-determinant-preparation"]], "How to build and transpile Qiskit quantum circuits": [[19, null]], "How to simulate entanglement forging": [[15, null]], "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz": [[18, null]], "How to use ffsim\u2019s Qiskit Sampler primitive": [[20, null]], "How to use the FermionOperator class": [[16, null]], "How-to guides": [[17, null]], "Implement Trotter simulation": [[23, "Implement-Trotter-simulation"]], "Implementing Trotter simulation of the double-factorized Hamiltonian": [[23, null]], "Initialize ansatz operator": [[15, "Initialize-ansatz-operator"]], "Install from source": [[22, "install-from-source"]], "Installation": [[21, "installation"], [22, null]], "LUCJ ansatz": [[18, "LUCJ-ansatz"]], "Locality in the UCJ operator": [[13, "Locality-in-the-UCJ-operator"]], "Merging orbital rotations": [[13, "Merging-orbital-rotations"]], "More examples": [[20, "More-examples"]], "Number operator sum evolution": [[13, "Number-operator-sum-evolution"], [19, "Number-operator-sum-evolution"]], "Operator action via SciPy LinearOperators": [[9, "Operator-action-via-SciPy-LinearOperators"]], "Optimize energy": [[15, "Optimize-energy"]], "Optimize with the linear method": [[18, "Optimize-with-the-linear-method"]], "Orbital rotation": [[13, "Orbital-rotation"], [19, "Orbital-rotation"]], "Orbital rotations": [[12, "Orbital-rotations"]], "Orbital rotations and quadratic Hamiltonians": [[12, null]], "Overview of gates": [[19, "Overview-of-gates"]], "Pip install": [[22, "pip-install"]], "Prepare Hartree-Fock state": [[19, "Prepare-Hartree-Fock-state"]], "Prepare Slater determinant": [[19, "Prepare-Slater-determinant"]], "Qubit gate decompositions of fermionic gates": [[13, null]], "Sampling from an LUCJ circuit for a closed-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-a-closed-shell-molecule"]], "Sampling from an LUCJ circuit for an open-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-an-open-shell-molecule"]], "Spin-balanced and spin-unbalanced ansatzes": [[11, "Spin-balanced-and-spin-unbalanced-ansatzes"]], "Spin-balanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-balanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "Spin-unbalanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-unbalanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "State preparation gates": [[19, "State-preparation-gates"]], "State vectors": [[14, "State-vectors"]], "State vectors and gates": [[14, null]], "The general unitary cluster Jastrow (UCJ) ansatz": [[11, "The-general-unitary-cluster-Jastrow-(UCJ)-ansatz"]], "The local UCJ (LUCJ) ansatz": [[11, "The-local-UCJ-(LUCJ)-ansatz"]], "The local unitary cluster Jastrow (LUCJ) ansatz": [[11, null]], "Time evolution by a quadratic Hamiltonian": [[12, "Time-evolution-by-a-quadratic-Hamiltonian"]], "Treating spinless fermions": [[14, "Treating-spinless-fermions"]], "Trotter simulation of double-factorized Hamiltonian": [[13, "Trotter-simulation-of-double-factorized-Hamiltonian"], [19, "Trotter-simulation-of-double-factorized-Hamiltonian"]], "Tutorials": [[24, null]], "Unitary cluster Jastrow (UCJ) operator": [[13, "Unitary-cluster-Jastrow-(UCJ)-operator"]], "Unitary transformation gates": [[19, "Unitary-transformation-gates"]], "Use within Docker": [[22, "use-within-docker"]], "ffsim": [[0, null], [21, null]], "ffsim.contract": [[1, null]], "ffsim.linalg": [[2, null]], "ffsim.optimize": [[3, null]], "ffsim.qiskit": [[4, null]], "ffsim.random": [[5, null]], "ffsim.testing": [[6, null]]}, "docnames": ["api/ffsim", "api/ffsim.contract", "api/ffsim.linalg", "api/ffsim.optimize", "api/ffsim.qiskit", "api/ffsim.random", "api/ffsim.testing", "api/index", "explanations/double-factorized", "explanations/hamiltonians", "explanations/index", "explanations/lucj", "explanations/orbital-rotation", "explanations/qiskit-gate-decompositions", "explanations/state-vectors-and-gates", "how-to-guides/entanglement-forging", "how-to-guides/fermion-operator", "how-to-guides/index", "how-to-guides/lucj", "how-to-guides/qiskit-circuits", "how-to-guides/qiskit-sampler", "index", "install", "tutorials/double-factorized-trotter", "tutorials/index"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["api/ffsim.rst", "api/ffsim.contract.rst", "api/ffsim.linalg.rst", "api/ffsim.optimize.rst", "api/ffsim.qiskit.rst", "api/ffsim.random.rst", "api/ffsim.testing.rst", "api/index.md", "explanations/double-factorized.ipynb", "explanations/hamiltonians.ipynb", "explanations/index.md", "explanations/lucj.ipynb", "explanations/orbital-rotation.ipynb", "explanations/qiskit-gate-decompositions.ipynb", "explanations/state-vectors-and-gates.ipynb", "how-to-guides/entanglement-forging.ipynb", "how-to-guides/fermion-operator.ipynb", "how-to-guides/index.md", "how-to-guides/lucj.ipynb", "how-to-guides/qiskit-circuits.ipynb", "how-to-guides/qiskit-sampler.ipynb", "index.md", "install.md", "tutorials/double-factorized-trotter.ipynb", "tutorials/index.md"], "indexentries": {"__init__() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.__init__", false]], "__init__() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.numnumansatzopspinbalancedjw method)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockspinlessjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantspinlessjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.simulatetrotterdiagcoulombsplitopjw method)": [[4, "ffsim.qiskit.SimulateTrotterDiagCoulombSplitOpJW.__init__", false]], "__init__() (ffsim.qiskit.simulatetrotterdoublefactorizedjw method)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinlessjw method)": [[4, "ffsim.qiskit.UCJOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinunbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW.__init__", false]], "action (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.action", false]], "active_space (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.active_space", false]], "addresses_to_strings() (in module ffsim)": [[0, "ffsim.addresses_to_strings", false]], "alpha (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA", false]], "alpha_and_beta (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA_AND_BETA", false]], "apply_diag_coulomb_evolution() (in module ffsim)": [[0, "ffsim.apply_diag_coulomb_evolution", false]], "apply_fsim_gate() (in module ffsim)": [[0, "ffsim.apply_fsim_gate", false]], "apply_fswap_gate() (in module ffsim)": [[0, "ffsim.apply_fswap_gate", false]], "apply_givens_rotation() (in module ffsim)": [[0, "ffsim.apply_givens_rotation", false]], "apply_hop_gate() (in module ffsim)": [[0, "ffsim.apply_hop_gate", false]], "apply_matrix_to_slices() (in module ffsim.linalg)": [[2, "ffsim.linalg.apply_matrix_to_slices", false]], "apply_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_interaction", false]], "apply_num_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_num_interaction", false]], "apply_num_op_prod_interaction() (in module ffsim)": [[0, "ffsim.apply_num_op_prod_interaction", false]], "apply_num_op_sum_evolution() (in module ffsim)": [[0, "ffsim.apply_num_op_sum_evolution", false]], "apply_on_site_interaction() (in module ffsim)": [[0, "ffsim.apply_on_site_interaction", false]], "apply_orbital_rotation() (in module ffsim)": [[0, "ffsim.apply_orbital_rotation", false]], "apply_tunneling_interaction() (in module ffsim)": [[0, "ffsim.apply_tunneling_interaction", false]], "apply_unitary() (in module ffsim)": [[0, "ffsim.apply_unitary", false]], "approx_eq() (in module ffsim)": [[0, "ffsim.approx_eq", false]], "assert_allclose_up_to_global_phase() (in module ffsim.testing)": [[6, "ffsim.testing.assert_allclose_up_to_global_phase", false]], "atom (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.atom", false]], "basis (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.basis", false]], "beta (ffsim.spin attribute)": [[0, "ffsim.Spin.BETA", false]], "bit_array (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.BIT_ARRAY", false]], "bitstringtype (class in ffsim)": [[0, "ffsim.BitstringType", false]], "c (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.c", false]], "ccsd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_energy", false]], "ccsd_t1 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t1", false]], "ccsd_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t2", false]], "cisd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_energy", false]], "cisd_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_vec", false]], "coeffs (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.coeffs", false]], "conserves_particle_number() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_particle_number", false]], "conserves_spin_z() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_spin_z", false]], "constant (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.constant", false]], "constant (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.constant", false]], "constant (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.constant", false]], "constant (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.constant", false]], "contract_diag_coulomb() (in module ffsim.contract)": [[1, "ffsim.contract.contract_diag_coulomb", false]], "contract_num_op_sum() (in module ffsim.contract)": [[1, "ffsim.contract.contract_num_op_sum", false]], "contract_one_body() (in module ffsim.contract)": [[1, "ffsim.contract.contract_one_body", false]], "core_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.core_energy", false]], "cre() (in module ffsim)": [[0, "ffsim.cre", false]], "cre_a() (in module ffsim)": [[0, "ffsim.cre_a", false]], "cre_b() (in module ffsim)": [[0, "ffsim.cre_b", false]], "des() (in module ffsim)": [[0, "ffsim.des", false]], "des_a() (in module ffsim)": [[0, "ffsim.des_a", false]], "des_b() (in module ffsim)": [[0, "ffsim.des_b", false]], "diag() (in module ffsim)": [[0, "ffsim.diag", false]], "diag_coulomb_linop() (in module ffsim.contract)": [[1, "ffsim.contract.diag_coulomb_linop", false]], "diag_coulomb_mats (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.diag_coulomb_mats", false]], "diagcoulombevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW", false]], "diagcoulombevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW", false]], "diagonalcoulombhamiltonian (class in ffsim)": [[0, "ffsim.DiagonalCoulombHamiltonian", false]], "dim() (in module ffsim)": [[0, "ffsim.dim", false]], "dims() (in module ffsim)": [[0, "ffsim.dims", false]], "dipole_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.dipole_integrals", false]], "double_factorized() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized", false]], "double_factorized_t2() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2", false]], "double_factorized_t2_alpha_beta() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2_alpha_beta", false]], "doublefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.DoubleFactorizedHamiltonian", false]], "dropnegligible (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DropNegligible", false]], "expectation_one_body_power() (in module ffsim)": [[0, "ffsim.expectation_one_body_power", false]], "expectation_one_body_product() (in module ffsim)": [[0, "ffsim.expectation_one_body_product", false]], "expectation_product_state() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.expectation_product_state", false]], "expm_multiply_taylor() (in module ffsim.linalg)": [[2, "ffsim.linalg.expm_multiply_taylor", false]], "fci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_energy", false]], "fci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_vec", false]], "fermi_hubbard_1d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_1d", false]], "fermi_hubbard_2d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_2d", false]], "fermion_operator() (in module ffsim)": [[0, "ffsim.fermion_operator", false]], "fermionaction (class in ffsim)": [[0, "ffsim.FermionAction", false]], "fermionoperator (class in ffsim)": [[0, "ffsim.FermionOperator", false]], "ffsim": [[0, "module-ffsim", false]], "ffsim.contract": [[1, "module-ffsim.contract", false]], "ffsim.linalg": [[2, "module-ffsim.linalg", false]], "ffsim.optimize": [[3, "module-ffsim.optimize", false]], "ffsim.qiskit": [[4, "module-ffsim.qiskit", false]], "ffsim.random": [[5, "module-ffsim.random", false]], "ffsim.testing": [[6, "module-ffsim.testing", false]], "ffsim_vec_to_qiskit_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.ffsim_vec_to_qiskit_vec", false]], "ffsimsampler (class in ffsim.qiskit)": [[4, "ffsim.qiskit.FfsimSampler", false]], "final_orbital_rotation (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.final_orbital_rotation", false]], "final_state_vector() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.final_state_vector", false]], "from_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_diag_coulomb_mats", false]], "from_fcidump() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_fcidump", false]], "from_fermion_operator() (ffsim.diagonalcoulombhamiltonian static method)": [[0, "ffsim.DiagonalCoulombHamiltonian.from_fermion_operator", false]], "from_json() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_json", false]], "from_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian static method)": [[0, "ffsim.DoubleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_molecular_hamiltonian() (ffsim.singlefactorizedhamiltonian static method)": [[0, "ffsim.SingleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_orbital_rotation() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_orbital_rotation", false]], "from_parameters() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_parameters", false]], "from_parameters() (ffsim.hopgateansatzoperator static method)": [[0, "ffsim.HopGateAnsatzOperator.from_parameters", false]], "from_parameters() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.uccsdoprestrictedreal static method)": [[0, "ffsim.UCCSDOpRestrictedReal.from_parameters", false]], "from_parameters() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_parameters", false]], "from_parameters() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_parameters", false]], "from_scf() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_scf", false]], "from_t_amplitudes() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_t_amplitudes", false]], "generate_norb_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec", false]], "generate_norb_nelec_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec_spin", false]], "generate_norb_nocc() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nocc", false]], "generate_norb_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_spin", false]], "givens_decomposition() (in module ffsim.linalg)": [[2, "ffsim.linalg.givens_decomposition", false]], "givensansatzop (class in ffsim)": [[0, "ffsim.GivensAnsatzOp", false]], "givensansatzopjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpJW", false]], "givensansatzopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW", false]], "givensrotation (class in ffsim.linalg)": [[2, "ffsim.linalg.GivensRotation", false]], "hamiltonian (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.hamiltonian", false]], "hartree_fock_state() (in module ffsim)": [[0, "ffsim.hartree_fock_state", false]], "hf_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_energy", false]], "hf_mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_coeff", false]], "hf_mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_occ", false]], "hopgateansatzoperator (class in ffsim)": [[0, "ffsim.HopGateAnsatzOperator", false]], "i (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.i", false]], "init_cache() (in module ffsim)": [[0, "ffsim.init_cache", false]], "int (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.INT", false]], "interaction_pairs (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.interaction_pairs", false]], "interaction_pairs (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.interaction_pairs", false]], "interaction_pairs (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.interaction_pairs", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.inverse", false]], "is_antihermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_antihermitian", false]], "is_hermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_hermitian", false]], "is_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_orthogonal", false]], "is_real_symmetric() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_real_symmetric", false]], "is_special_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_special_orthogonal", false]], "is_unitary() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_unitary", false]], "j (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.j", false]], "jordan_wigner() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.jordan_wigner", false]], "linear_operator() (in module ffsim)": [[0, "ffsim.linear_operator", false]], "lup() (in module ffsim.linalg)": [[2, "ffsim.linalg.lup", false]], "many_body_order() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.many_body_order", false]], "match_global_phase() (in module ffsim.linalg)": [[2, "ffsim.linalg.match_global_phase", false]], "mergeorbitalrotations (class in ffsim.qiskit)": [[4, "ffsim.qiskit.MergeOrbitalRotations", false]], "minimize_linear_method() (in module ffsim.optimize)": [[3, "ffsim.optimize.minimize_linear_method", false]], "mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_coeff", false]], "mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_occ", false]], "modified_cholesky() (in module ffsim.linalg)": [[2, "ffsim.linalg.modified_cholesky", false]], "module": [[0, "module-ffsim", false], [1, "module-ffsim.contract", false], [2, "module-ffsim.linalg", false], [3, "module-ffsim.optimize", false], [4, "module-ffsim.qiskit", false], [5, "module-ffsim.random", false], [6, "module-ffsim.testing", false]], "mole (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.mole", false]], "moleculardata (class in ffsim)": [[0, "ffsim.MolecularData", false]], "molecularhamiltonian (class in ffsim)": [[0, "ffsim.MolecularHamiltonian", false]], "mp2_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_energy", false]], "mp2_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_t2", false]], "multireference_state() (in module ffsim)": [[0, "ffsim.multireference_state", false]], "multireference_state_prod() (in module ffsim)": [[0, "ffsim.multireference_state_prod", false]], "n_params() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.n_params", false]], "n_params() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.n_params", false]], "n_params() (ffsim.uccsdoprestrictedreal static method)": [[0, "ffsim.UCCSDOpRestrictedReal.n_params", false]], "n_params() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.n_params", false]], "n_params() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.n_params", false]], "n_params() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.n_params", false]], "n_reps (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.n_reps", false]], "n_reps (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.n_reps", false]], "n_reps (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.n_reps", false]], "nelec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.nelec", false]], "nelec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.nelec", false]], "norb (ffsim.diagonalcoulombhamiltonian property)": [[0, "ffsim.DiagonalCoulombHamiltonian.norb", false]], "norb (ffsim.doublefactorizedhamiltonian property)": [[0, "ffsim.DoubleFactorizedHamiltonian.norb", false]], "norb (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.norb", false]], "norb (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.norb", false]], "norb (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.norb", false]], "norb (ffsim.molecularhamiltonian property)": [[0, "ffsim.MolecularHamiltonian.norb", false]], "norb (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.norb", false]], "norb (ffsim.singlefactorizedhamiltonian property)": [[0, "ffsim.SingleFactorizedHamiltonian.norb", false]], "norb (ffsim.statevector attribute)": [[0, "ffsim.StateVector.norb", false]], "norb (ffsim.uccsdoprestrictedreal property)": [[0, "ffsim.UCCSDOpRestrictedReal.norb", false]], "norb (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.norb", false]], "norb (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.norb", false]], "norb (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.norb", false]], "normal_ordered() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.normal_ordered", false]], "num_op_sum_linop() (in module ffsim.contract)": [[1, "ffsim.contract.num_op_sum_linop", false]], "number_operator() (in module ffsim)": [[0, "ffsim.number_operator", false]], "numnumansatzopspinbalanced (class in ffsim)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced", false]], "numnumansatzopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW", false]], "numopsumevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW", false]], "numopsumevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW", false]], "one_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.one_body_integrals", false]], "one_body_linop() (in module ffsim.contract)": [[1, "ffsim.contract.one_body_linop", false]], "one_body_squares (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_squares", false]], "one_body_tensor (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_tensor", false]], "one_hot() (in module ffsim.linalg)": [[2, "ffsim.linalg.one_hot", false]], "orb (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.orb", false]], "orbital_rotations (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.orbital_rotations", false]], "orbital_symmetries (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.orbital_symmetries", false]], "orbitalrotationjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationJW", false]], "orbitalrotationspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW", false]], "phase_angles (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phase_angles", false]], "phis (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phis", false]], "pre_init (in module ffsim.qiskit)": [[4, "ffsim.qiskit.PRE_INIT", false]], "pre_init_passes() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.pre_init_passes", false]], "preparehartreefockjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockJW", false]], "preparehartreefockspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW", false]], "prepareslaterdeterminantjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW", false]], "prepareslaterdeterminantspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW", false]], "productstatesum (class in ffsim)": [[0, "ffsim.ProductStateSum", false]], "qiskit_vec_to_ffsim_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.qiskit_vec_to_ffsim_vec", false]], "random_antihermitian() (in module ffsim.random)": [[5, "ffsim.random.random_antihermitian", false]], "random_density_matrix() (in module ffsim.random)": [[5, "ffsim.random.random_density_matrix", false]], "random_diagonal_coulomb_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_diagonal_coulomb_hamiltonian", false]], "random_double_factorized_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_double_factorized_hamiltonian", false]], "random_fermion_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_hamiltonian", false]], "random_fermion_operator() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_operator", false]], "random_hermitian() (in module ffsim.random)": [[5, "ffsim.random.random_hermitian", false]], "random_molecular_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_molecular_hamiltonian", false]], "random_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.random_nelec", false]], "random_occupied_orbitals() (in module ffsim.testing)": [[6, "ffsim.testing.random_occupied_orbitals", false]], "random_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_orthogonal", false]], "random_real_symmetric_matrix() (in module ffsim.random)": [[5, "ffsim.random.random_real_symmetric_matrix", false]], "random_special_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_special_orthogonal", false]], "random_state_vector() (in module ffsim.random)": [[5, "ffsim.random.random_state_vector", false]], "random_t2_amplitudes() (in module ffsim.random)": [[5, "ffsim.random.random_t2_amplitudes", false]], "random_two_body_tensor() (in module ffsim.random)": [[5, "ffsim.random.random_two_body_tensor", false]], "random_uccsd_restricted() (in module ffsim.random)": [[5, "ffsim.random.random_uccsd_restricted", false]], "random_ucj_op_spin_balanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_balanced", false]], "random_ucj_op_spin_unbalanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_unbalanced", false]], "random_ucj_op_spinless() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spinless", false]], "random_unitary() (in module ffsim.random)": [[5, "ffsim.random.random_unitary", false]], "rdms() (in module ffsim)": [[0, "ffsim.rdms", false]], "reduced_matrix() (in module ffsim.linalg)": [[2, "ffsim.linalg.reduced_matrix", false]], "reduced_matrix_product_states() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.reduced_matrix_product_states", false]], "rotated() (ffsim.molecularhamiltonian method)": [[0, "ffsim.MolecularHamiltonian.rotated", false]], "run() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.run", false]], "run() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.run", false]], "run() (ffsim.qiskit.mergeorbitalrotations method)": [[4, "ffsim.qiskit.MergeOrbitalRotations.run", false]], "run_ccsd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_ccsd", false]], "run_cisd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_cisd", false]], "run_fci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_fci", false]], "run_mp2() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_mp2", false]], "run_sci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_sci", false]], "s (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.s", false]], "sample_slater_determinant() (in module ffsim)": [[0, "ffsim.sample_slater_determinant", false]], "sample_state_vector() (in module ffsim)": [[0, "ffsim.sample_state_vector", false]], "scf (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.scf", false]], "sci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_energy", false]], "sci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_vec", false]], "simulate_qdrift_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_qdrift_double_factorized", false]], "simulate_trotter_diag_coulomb_split_op() (in module ffsim)": [[0, "ffsim.simulate_trotter_diag_coulomb_split_op", false]], "simulate_trotter_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_trotter_double_factorized", false]], "simulatetrotterdiagcoulombsplitopjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.SimulateTrotterDiagCoulombSplitOpJW", false]], "simulatetrotterdoublefactorizedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW", false]], "singlefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.SingleFactorizedHamiltonian", false]], "slater_determinant() (in module ffsim)": [[0, "ffsim.slater_determinant", false]], "slater_determinant_amplitudes() (in module ffsim)": [[0, "ffsim.slater_determinant_amplitudes", false]], "slater_determinant_rdms() (in module ffsim)": [[0, "ffsim.slater_determinant_rdms", false]], "spin (class in ffsim)": [[0, "ffsim.Spin", false]], "spin (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.spin", false]], "spin (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.spin", false]], "spin_square() (in module ffsim)": [[0, "ffsim.spin_square", false]], "states (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.states", false]], "statevector (class in ffsim)": [[0, "ffsim.StateVector", false]], "string (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.STRING", false]], "strings_to_addresses() (in module ffsim)": [[0, "ffsim.strings_to_addresses", false]], "supportsapplyunitary (class in ffsim)": [[0, "ffsim.SupportsApplyUnitary", false]], "supportsapproximateequality (class in ffsim)": [[0, "ffsim.SupportsApproximateEquality", false]], "supportsdiagonal (class in ffsim)": [[0, "ffsim.SupportsDiagonal", false]], "supportsfermionoperator (class in ffsim)": [[0, "ffsim.SupportsFermionOperator", false]], "supportslinearoperator (class in ffsim)": [[0, "ffsim.SupportsLinearOperator", false]], "supportstrace (class in ffsim)": [[0, "ffsim.SupportsTrace", false]], "symmetry (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.symmetry", false]], "thetas (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.thetas", false]], "thetas (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.thetas", false]], "thetas (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.thetas", false]], "to_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_diag_coulomb_mats", false]], "to_fcidump() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_fcidump", false]], "to_json() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_json", false]], "to_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_molecular_hamiltonian", false]], "to_number_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_number_representation", false]], "to_orbital_rotation() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_orbital_rotation", false]], "to_parameters() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_parameters", false]], "to_parameters() (ffsim.hopgateansatzoperator method)": [[0, "ffsim.HopGateAnsatzOperator.to_parameters", false]], "to_parameters() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.uccsdoprestrictedreal method)": [[0, "ffsim.UCCSDOpRestrictedReal.to_parameters", false]], "to_parameters() (ffsim.ucjopspinbalanced method)": [[0, "ffsim.UCJOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.ucjopspinless method)": [[0, "ffsim.UCJOpSpinless.to_parameters", false]], "to_parameters() (ffsim.ucjopspinunbalanced method)": [[0, "ffsim.UCJOpSpinUnbalanced.to_parameters", false]], "to_z_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_z_representation", false]], "trace() (in module ffsim)": [[0, "ffsim.trace", false]], "two_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.two_body_integrals", false]], "two_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.two_body_tensor", false]], "uccsdoprestrictedreal (class in ffsim)": [[0, "ffsim.UCCSDOpRestrictedReal", false]], "ucjopspinbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinBalanced", false]], "ucjopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW", false]], "ucjopspinless (class in ffsim)": [[0, "ffsim.UCJOpSpinless", false]], "ucjopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinlessJW", false]], "ucjopspinunbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinUnbalanced", false]], "ucjopspinunbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW", false]], "vec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.vec", false]], "z_representation (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.z_representation", false]]}, "objects": {"": [[0, 0, 0, "-", "ffsim"]], "ffsim": [[0, 1, 1, "", "BitstringType"], [0, 1, 1, "", "DiagonalCoulombHamiltonian"], [0, 1, 1, "", "DoubleFactorizedHamiltonian"], [0, 1, 1, "", "FermionAction"], [0, 1, 1, "", "FermionOperator"], [0, 1, 1, "", "GivensAnsatzOp"], [0, 1, 1, "", "HopGateAnsatzOperator"], [0, 1, 1, "", "MolecularData"], [0, 1, 1, "", "MolecularHamiltonian"], [0, 1, 1, "", "NumNumAnsatzOpSpinBalanced"], [0, 1, 1, "", "ProductStateSum"], [0, 1, 1, "", "SingleFactorizedHamiltonian"], [0, 1, 1, "", "Spin"], [0, 1, 1, "", "StateVector"], [0, 1, 1, "", "SupportsApplyUnitary"], [0, 1, 1, "", "SupportsApproximateEquality"], [0, 1, 1, "", "SupportsDiagonal"], [0, 1, 1, "", "SupportsFermionOperator"], [0, 1, 1, "", "SupportsLinearOperator"], [0, 1, 1, "", "SupportsTrace"], [0, 1, 1, "", "UCCSDOpRestrictedReal"], [0, 1, 1, "", "UCJOpSpinBalanced"], [0, 1, 1, "", "UCJOpSpinUnbalanced"], [0, 1, 1, "", "UCJOpSpinless"], [0, 5, 1, "", "addresses_to_strings"], [0, 5, 1, "", "apply_diag_coulomb_evolution"], [0, 5, 1, "", "apply_fsim_gate"], [0, 5, 1, "", "apply_fswap_gate"], [0, 5, 1, "", "apply_givens_rotation"], [0, 5, 1, "", "apply_hop_gate"], [0, 5, 1, "", "apply_num_interaction"], [0, 5, 1, "", "apply_num_num_interaction"], [0, 5, 1, "", "apply_num_op_prod_interaction"], [0, 5, 1, "", "apply_num_op_sum_evolution"], [0, 5, 1, "", "apply_on_site_interaction"], [0, 5, 1, "", "apply_orbital_rotation"], [0, 5, 1, "", "apply_tunneling_interaction"], [0, 5, 1, "", "apply_unitary"], [0, 5, 1, "", "approx_eq"], [1, 0, 0, "-", "contract"], [0, 5, 1, "", "cre"], [0, 5, 1, "", "cre_a"], [0, 5, 1, "", "cre_b"], [0, 5, 1, "", "des"], [0, 5, 1, "", "des_a"], [0, 5, 1, "", "des_b"], [0, 5, 1, "", "diag"], [0, 5, 1, "", "dim"], [0, 5, 1, "", "dims"], [0, 5, 1, "", "expectation_one_body_power"], [0, 5, 1, "", "expectation_one_body_product"], [0, 5, 1, "", "fermi_hubbard_1d"], [0, 5, 1, "", "fermi_hubbard_2d"], [0, 5, 1, "", "fermion_operator"], [0, 5, 1, "", "hartree_fock_state"], [0, 5, 1, "", "init_cache"], [2, 0, 0, "-", "linalg"], [0, 5, 1, "", "linear_operator"], [0, 5, 1, "", "multireference_state"], [0, 5, 1, "", "multireference_state_prod"], [0, 5, 1, "", "number_operator"], [3, 0, 0, "-", "optimize"], [4, 0, 0, "-", "qiskit"], [5, 0, 0, "-", "random"], [0, 5, 1, "", "rdms"], [0, 5, 1, "", "sample_slater_determinant"], [0, 5, 1, "", "sample_state_vector"], [0, 5, 1, "", "simulate_qdrift_double_factorized"], [0, 5, 1, "", "simulate_trotter_diag_coulomb_split_op"], [0, 5, 1, "", "simulate_trotter_double_factorized"], [0, 5, 1, "", "slater_determinant"], [0, 5, 1, "", "slater_determinant_amplitudes"], [0, 5, 1, "", "slater_determinant_rdms"], [0, 5, 1, "", "spin_square"], [0, 5, 1, "", "strings_to_addresses"], [6, 0, 0, "-", "testing"], [0, 5, 1, "", "trace"]], "ffsim.BitstringType": [[0, 2, 1, "", "BIT_ARRAY"], [0, 2, 1, "", "INT"], [0, 2, 1, "", "STRING"]], "ffsim.DiagonalCoulombHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_fermion_operator"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"]], "ffsim.DoubleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_molecular_hamiltonian"], [0, 3, 1, "", "to_number_representation"], [0, 3, 1, "", "to_z_representation"], [0, 2, 1, "", "z_representation"]], "ffsim.FermionAction": [[0, 2, 1, "", "action"], [0, 2, 1, "", "orb"], [0, 2, 1, "", "spin"]], "ffsim.FermionOperator": [[0, 3, 1, "", "conserves_particle_number"], [0, 3, 1, "", "conserves_spin_z"], [0, 3, 1, "", "many_body_order"], [0, 3, 1, "", "normal_ordered"]], "ffsim.GivensAnsatzOp": [[0, 3, 1, "", "from_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "phase_angles"], [0, 2, 1, "", "phis"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_orbital_rotation"], [0, 3, 1, "", "to_parameters"]], "ffsim.HopGateAnsatzOperator": [[0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_parameters"]], "ffsim.MolecularData": [[0, 2, 1, "", "active_space"], [0, 2, 1, "", "atom"], [0, 2, 1, "", "basis"], [0, 2, 1, "", "ccsd_energy"], [0, 2, 1, "", "ccsd_t1"], [0, 2, 1, "", "ccsd_t2"], [0, 2, 1, "", "cisd_energy"], [0, 2, 1, "", "cisd_vec"], [0, 2, 1, "", "core_energy"], [0, 2, 1, "", "dipole_integrals"], [0, 2, 1, "", "fci_energy"], [0, 2, 1, "", "fci_vec"], [0, 3, 1, "", "from_fcidump"], [0, 3, 1, "", "from_json"], [0, 3, 1, "", "from_scf"], [0, 4, 1, "", "hamiltonian"], [0, 2, 1, "", "hf_energy"], [0, 2, 1, "", "hf_mo_coeff"], [0, 2, 1, "", "hf_mo_occ"], [0, 2, 1, "", "mo_coeff"], [0, 2, 1, "", "mo_occ"], [0, 4, 1, "", "mole"], [0, 2, 1, "", "mp2_energy"], [0, 2, 1, "", "mp2_t2"], [0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "one_body_integrals"], [0, 2, 1, "", "orbital_symmetries"], [0, 3, 1, "", "run_ccsd"], [0, 3, 1, "", "run_cisd"], [0, 3, 1, "", "run_fci"], [0, 3, 1, "", "run_mp2"], [0, 3, 1, "", "run_sci"], [0, 4, 1, "", "scf"], [0, 2, 1, "", "sci_energy"], [0, 2, 1, "", "sci_vec"], [0, 2, 1, "", "spin"], [0, 2, 1, "", "symmetry"], [0, 3, 1, "", "to_fcidump"], [0, 3, 1, "", "to_json"], [0, 2, 1, "", "two_body_integrals"]], "ffsim.MolecularHamiltonian": [[0, 2, 1, "", "constant"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "rotated"], [0, 2, 1, "", "two_body_tensor"]], "ffsim.NumNumAnsatzOpSpinBalanced": [[0, 3, 1, "", "from_diag_coulomb_mats"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_diag_coulomb_mats"], [0, 3, 1, "", "to_parameters"]], "ffsim.ProductStateSum": [[0, 2, 1, "", "coeffs"], [0, 2, 1, "", "states"]], "ffsim.SingleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 3, 1, "", "expectation_product_state"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_squares"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "reduced_matrix_product_states"]], "ffsim.Spin": [[0, 2, 1, "", "ALPHA"], [0, 2, 1, "", "ALPHA_AND_BETA"], [0, 2, 1, "", "BETA"]], "ffsim.StateVector": [[0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "vec"]], "ffsim.UCCSDOpRestrictedReal": [[0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "norb"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinBalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinUnbalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinless": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.contract": [[1, 5, 1, "", "contract_diag_coulomb"], [1, 5, 1, "", "contract_num_op_sum"], [1, 5, 1, "", "contract_one_body"], [1, 5, 1, "", "diag_coulomb_linop"], [1, 5, 1, "", "num_op_sum_linop"], [1, 5, 1, "", "one_body_linop"]], "ffsim.linalg": [[2, 1, 1, "", "GivensRotation"], [2, 5, 1, "", "apply_matrix_to_slices"], [2, 5, 1, "", "double_factorized"], [2, 5, 1, "", "double_factorized_t2"], [2, 5, 1, "", "double_factorized_t2_alpha_beta"], [2, 5, 1, "", "expm_multiply_taylor"], [2, 5, 1, "", "givens_decomposition"], [2, 5, 1, "", "is_antihermitian"], [2, 5, 1, "", "is_hermitian"], [2, 5, 1, "", "is_orthogonal"], [2, 5, 1, "", "is_real_symmetric"], [2, 5, 1, "", "is_special_orthogonal"], [2, 5, 1, "", "is_unitary"], [2, 5, 1, "", "lup"], [2, 5, 1, "", "match_global_phase"], [2, 5, 1, "", "modified_cholesky"], [2, 5, 1, "", "one_hot"], [2, 5, 1, "", "reduced_matrix"]], "ffsim.linalg.GivensRotation": [[2, 2, 1, "", "c"], [2, 2, 1, "", "i"], [2, 2, 1, "", "j"], [2, 2, 1, "", "s"]], "ffsim.optimize": [[3, 5, 1, "", "minimize_linear_method"]], "ffsim.qiskit": [[4, 1, 1, "", "DiagCoulombEvolutionJW"], [4, 1, 1, "", "DiagCoulombEvolutionSpinlessJW"], [4, 1, 1, "", "DropNegligible"], [4, 1, 1, "", "FfsimSampler"], [4, 1, 1, "", "GivensAnsatzOpJW"], [4, 1, 1, "", "GivensAnsatzOpSpinlessJW"], [4, 1, 1, "", "MergeOrbitalRotations"], [4, 1, 1, "", "NumNumAnsatzOpSpinBalancedJW"], [4, 1, 1, "", "NumOpSumEvolutionJW"], [4, 1, 1, "", "NumOpSumEvolutionSpinlessJW"], [4, 1, 1, "", "OrbitalRotationJW"], [4, 1, 1, "", "OrbitalRotationSpinlessJW"], [4, 6, 1, "", "PRE_INIT"], [4, 1, 1, "", "PrepareHartreeFockJW"], [4, 1, 1, "", "PrepareHartreeFockSpinlessJW"], [4, 1, 1, "", "PrepareSlaterDeterminantJW"], [4, 1, 1, "", "PrepareSlaterDeterminantSpinlessJW"], [4, 1, 1, "", "SimulateTrotterDiagCoulombSplitOpJW"], [4, 1, 1, "", "SimulateTrotterDoubleFactorizedJW"], [4, 1, 1, "", "UCJOpSpinBalancedJW"], [4, 1, 1, "", "UCJOpSpinUnbalancedJW"], [4, 1, 1, "", "UCJOpSpinlessJW"], [4, 5, 1, "", "ffsim_vec_to_qiskit_vec"], [4, 5, 1, "", "final_state_vector"], [4, 5, 1, "", "jordan_wigner"], [4, 5, 1, "", "pre_init_passes"], [4, 5, 1, "", "qiskit_vec_to_ffsim_vec"]], "ffsim.qiskit.DiagCoulombEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DropNegligible": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.FfsimSampler": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.GivensAnsatzOpJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.GivensAnsatzOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.MergeOrbitalRotations": [[4, 3, 1, "", "run"]], "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.NumOpSumEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.NumOpSumEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.PrepareHartreeFockJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareHartreeFockSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.SimulateTrotterDiagCoulombSplitOpJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinUnbalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.random": [[5, 5, 1, "", "random_antihermitian"], [5, 5, 1, "", "random_density_matrix"], [5, 5, 1, "", "random_diagonal_coulomb_hamiltonian"], [5, 5, 1, "", "random_double_factorized_hamiltonian"], [5, 5, 1, "", "random_fermion_hamiltonian"], [5, 5, 1, "", "random_fermion_operator"], [5, 5, 1, "", "random_hermitian"], [5, 5, 1, "", "random_molecular_hamiltonian"], [5, 5, 1, "", "random_orthogonal"], [5, 5, 1, "", "random_real_symmetric_matrix"], [5, 5, 1, "", "random_special_orthogonal"], [5, 5, 1, "", "random_state_vector"], [5, 5, 1, "", "random_t2_amplitudes"], [5, 5, 1, "", "random_two_body_tensor"], [5, 5, 1, "", "random_uccsd_restricted"], [5, 5, 1, "", "random_ucj_op_spin_balanced"], [5, 5, 1, "", "random_ucj_op_spin_unbalanced"], [5, 5, 1, "", "random_ucj_op_spinless"], [5, 5, 1, "", "random_unitary"]], "ffsim.testing": [[6, 5, 1, "", "assert_allclose_up_to_global_phase"], [6, 5, 1, "", "generate_norb_nelec"], [6, 5, 1, "", "generate_norb_nelec_spin"], [6, 5, 1, "", "generate_norb_nocc"], [6, 5, 1, "", "generate_norb_spin"], [6, 5, 1, "", "random_nelec"], [6, 5, 1, "", "random_occupied_orbitals"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "function", "Python function"], "6": ["py", "data", "Python data"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:function", "6": "py:data"}, "terms": {"": [0, 2, 4, 8, 9, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23], "0": [0, 2, 3, 4, 6, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23], "00": 18, "000": 20, "0000000": [15, 18], "0000000000011100000000000111": 20, "0000000000011100000000011100": 20, "0000000000011100100000001100": 20, "0000000000110100000000001101": 20, "0000000001011000000000010110": 20, "0000000001011000100000000110": 20, "0000000001110000000000000111": 20, "0000000111100000011111": 20, "0000000111100110000111": 20, "0000010101100001011011": 20, "0000010110100001011011": 20, "0000100101100000111011": 20, "0000100110100000111011": 20, "0000111100001111": 20, "0000111100011011": 20, "0000111100011101": 20, "0000111100101011": 20, "0001": 3, "0001000001010000000000000111": 20, "00010745254175743701": 18, "0001110100001111": 20, "0010000000110000000000000111": 20, "0010011100101101": 20, "0010101100001111": 20, "0010101100101101": 20, "001011": [0, 14], "0010110100100111": 20, "0010110100101011": 20, "0011000000010000000000000111": 20, "001101": [0, 14], "001110": 14, "0025499345359661922": 18, "002550095989584378": 18, "0031595733340700816": 18, "005e": 15, "01": [15, 18], "0100000110100100001111": 20, "010011": [0, 14], "0101": 0, "0101000001100000011111": 20, "010101": [0, 14], "010110": [0, 14], "0110": 0, "02": [15, 18], "02122442107773": 18, "02242": 2, "02459434j": 14, "02625": 2, "02998708j": 14, "03": 15, "03101213j": 14, "03525116j": 14, "03668541730983699": 23, "04": [15, 18], "04758323886584202": 18, "05": [0, 2, 3, 4, 18], "05395": 4, "05940218j": 16, "06": 18, "0609050": 5, "0625": [0, 16], "06273307": 14, "06551571": 14, "06677383j": 14, "06844774j": 14, "07": [6, 18], "08": [0, 2, 3, 4], "08957": 2, "0909": 5, "094e": 15, "09723851": 14, "0b001011": 0, "0b010101": 0, "0b010110": 0, "0b100101": 0, "0b100110": 0, "0j": 16, "0x7fd346dfd8a0": 19, "0x7fd346dfe8c0": 19, "0x7fd347745c90": 19, "0x7fd3477a2fe0": 19, "0x7fd3477a3340": 19, "0x7fd3477e7d30": 19, "0x7fd347e99390": 19, "0x7fd348197c10": 19, "1": [0, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "10": [13, 18, 19, 20, 23], "100": 15, "1000": 3, "1000000101100000111011": 20, "100011": [0, 14], "100101": [0, 14], "100110": [0, 14], "101": 20, "1024": 4, "104": [15, 21], "1077416854908703": 20, "108": [20, 23], "10_000": 20, "11": [0, 13, 19, 20, 23], "1102529j": 14, "11157654": 14, "112": 15, "11930397": 16, "12": [2, 13, 15, 16, 18, 20, 23], "1207": 0, "12204343": 14, "1234": [9, 13, 14, 15, 19, 21], "12345": 20, "125": [0, 16], "1278053627110063": 20, "1294": [15, 18], "12j": 16, "13": [0, 13, 18, 23], "13113848": 14, "132e": 18, "133": 20, "13327423j": 14, "13957088j": 14, "14": [13, 20], "15": [13, 15], "152e": 18, "1561685j": 14, "15624569": 14, "15828306": 14, "15x15": 15, "16": 13, "17": 13, "1711": [2, 4], "17181289596": 21, "17276745j": 14, "17558331": 14, "18": 13, "180": 15, "18007105": 14, "1808": 2, "18j": 16, "19": 0, "1e": [0, 2, 3, 4, 6, 15, 23], "1j": [0, 9, 16, 23], "2": [0, 1, 2, 4, 5, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "20835741": 14, "20881506": 14, "21": 0, "210": 20, "2104": 2, "2190712273": 9, "21928194": 14, "21984743e": 16, "22392824": 14, "229e": 18, "23": 15, "23550198": 14, "23611476": 14, "24": [13, 19], "25": [0, 16], "25j": [0, 16], "26": 23, "260e": 15, "26121865": 14, "263e": 18, "279e": 18, "287e": 18, "29821173j": 14, "2d": 0, "2j": [0, 2, 16], "2n": 14, "3": [0, 2, 5, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "30052742j": 14, "303": 18, "31980058j": 14, "31g": [20, 21], "32": [13, 19], "322e": 18, "329": 18, "33731417j": 14, "339": 18, "3484557059711": 20, "35": [0, 23], "361e": 18, "36730125j": 14, "369e": 18, "3714141": 14, "378e": 18, "38435478j": 14, "39": [13, 14, 15, 16, 18, 19, 20], "39075171": 14, "395e": 15, "3j": 16, "4": [0, 2, 8, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "420e": 15, "421e": 18, "4390672": 14, "45619739146197": 20, "46": 18, "464957764796": 23, "466173883748333e": 18, "46x46": 18, "47": 20, "478": 15, "48": [13, 20], "487": 18, "488e": 18, "49094286j": 14, "4j": 16, "5": [0, 3, 9, 13, 14, 15, 16, 18, 19, 20, 23], "5094": 5, "51253171j": 14, "520e": 18, "55717072551552": 9, "558e": 18, "559e": 18, "56": [13, 19, 20], "561e": 18, "5626": 18, "57": 20, "58888": 22, "5j": [0, 16], "6": [0, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "603e": 15, "607e": 18, "6083": 0, "608e": 18, "6332495815006": 15, "64": 14, "65": 20, "66": 20, "67794403659722": 15, "6787887956298": 15, "6787887956314": 15, "68381564339327": 15, "6g": [0, 15, 18, 23], "6j": 16, "7": [0, 9, 13, 14, 15, 16, 18, 19, 23], "70": 20, "705e": 18, "72": 18, "7288249991515": 15, "72x72": 18, "73105542j": 14, "747e": 15, "75": [15, 20], "755e": 15, "77": 18, "773e": 18, "8": [0, 13, 15, 16, 19, 20, 23], "8266321248744": 18, "8266321248745": 18, "835236570774": 20, "842e": 18, "87160024816276": 18, "8736217684642": 18, "87363426331358": 18, "87363430321963": 18, "87363432028101": 18, "8738739212081": 18, "87421536374033": 18, "8742165643863": 18, "9": [13, 14, 16, 18, 19, 20, 23], "9289": 18, "9402384004020212": 23, "949": 18, "958": 15, "9630419334855": 20, "9740484666566149": 18, "9740485436281343": 18, "99": 9, "9926": 20, "9985210983500776": 23, "9985210983501476": 23, "9991": 20, "9996731173183298": 23, "A": [0, 1, 2, 3, 4, 5, 6, 8, 12, 13, 14, 16, 22, 23], "AND": 15, "As": [11, 13, 14, 18, 19, 23], "By": 21, "For": [0, 3, 4, 5, 8, 9, 11, 14, 15, 16, 22, 23], "If": [0, 1, 2, 3, 4, 5, 6, 13, 16], "In": [0, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "It": [0, 2, 3, 4, 13, 14, 16, 18, 20, 22], "Its": [3, 4], "NO": [15, 18], "No": 2, "Of": 11, "On": [14, 22], "One": [0, 23], "Such": 16, "That": [0, 3, 12, 16], "The": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "Their": 19, "Then": [0, 13], "There": 13, "These": [0, 5, 11, 16, 19], "To": [0, 8, 9, 11, 14, 18, 23], "With": [11, 14, 23], "_": [0, 1, 2, 4, 8, 11, 12, 15, 23], "_1": 12, "_2": 12, "__init__": 4, "_factr": 18, "_i": [0, 4], "_k": [0, 8, 11], "_nestedsequ": 4, "_supportsarrai": 4, "a_": [0, 4, 8, 9, 12, 16], "a_j": 1, "a_p": 0, "a_q": 0, "ab": [0, 23], "abil": 8, "abl": 22, "about": 21, "abov": [13, 16], "absenc": [0, 1, 4], "absolut": [0, 2, 4, 6], "acceler": 22, "accept": [12, 18], "access": [0, 9, 22], "accommod": 4, "accomod": 8, "accur": 8, "achiev": [2, 23], "across": 22, "act": [0, 2, 4, 9, 13, 15, 16], "action": [0, 1, 12, 16, 22, 23], "activ": [0, 15, 18, 20, 23], "active_spac": [0, 15, 18, 20, 21, 23], "actual": [6, 11], "ad": [0, 13, 18], "add": [13, 18], "addit": [0, 8, 16, 23], "addition": 2, "address": [0, 13], "addresses_to_str": [0, 7, 14], "adjac": 13, "advantag": 18, "after": [3, 18], "al": 2, "algebra": [2, 9, 16], "algorithm": [0, 2, 3, 18, 21], "alia": [0, 2], "align": [0, 11, 12], "all": [0, 1, 2, 3, 4, 6, 11, 13, 16, 20, 22], "alloc": 0, "allow": [0, 2, 5, 11, 13, 18, 22, 23], "along": 0, "alpha": [0, 1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 16, 19, 20], "alpha_and_beta": 0, "alpha_i": 0, "alpha_j": 0, "alreadi": [0, 4, 12], "also": [0, 2, 3, 5, 9, 12, 14, 16, 18, 23], "altern": [0, 8], "alwai": [0, 2, 5, 12, 14, 23], "amen": 13, "amplitud": [0, 2, 5, 18, 20], "an": [0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "angl": 0, "ani": [0, 3, 4, 5, 11, 12, 19, 20], "annihil": [0, 16], "anoth": [2, 6], "ansatz": [0, 3, 4, 5, 10, 13, 17, 19, 20, 21], "ansatz_oper": 0, "ansatz_st": 18, "anti": [2, 5], "anticommut": 12, "ao": 0, "ap": 2, "api": [14, 21], "appear": [0, 2, 13, 16, 20], "append": [0, 6, 13, 18, 19, 20], "appli": [0, 1, 2, 3, 4, 9, 11, 12, 13, 14, 18, 19, 20, 21, 23], "applic": 12, "apply_": 14, "apply_diag_coulomb_evolut": [0, 7, 8, 23], "apply_fsim_g": [0, 7], "apply_fswap_g": [0, 7], "apply_givens_rot": [0, 7], "apply_hop_g": [0, 7], "apply_matrix_to_slic": [2, 7], "apply_num_interact": [0, 7], "apply_num_num_interact": [0, 7], "apply_num_op_prod_interact": [0, 7], "apply_num_op_sum_evolut": [0, 7, 12, 23], "apply_on_site_interact": [0, 7, 14], "apply_orbital_rot": [0, 7, 12, 14, 21], "apply_quad_ham_evolut": 12, "apply_tunneling_interact": [0, 7, 14], "apply_unitari": [0, 7, 18], "appropri": [0, 11], "approx": 8, "approx_eq": [0, 7], "approxim": [0, 2, 3, 8, 18, 23], "apt": 22, "ar": [0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 19, 20, 22], "arbitrari": [4, 20], "arch": 22, "arg": [0, 4], "argument": [0, 2, 3, 8, 9, 12, 14, 23], "aris": 8, "arithmet": 16, "around": 23, "arrai": [0, 1, 2, 4, 6, 9, 11, 14, 16], "arxiv": [0, 2, 4, 5], "ascend": 20, "assembl": 2, "assert": 14, "assert_allclose_up_to_global_phas": [6, 7], "assertionerror": 6, "associ": [0, 3, 14, 16, 18], "assum": [0, 4, 14], "asterisk": 0, "asymmetr": 8, "atol": [0, 2, 4, 6], "atom": [0, 15, 18, 20, 21, 23], "attempt": 2, "attribut": [0, 3, 9, 15, 18, 20], "author": 21, "auto": 0, "avail": [9, 19, 22], "avoid": [0, 9, 16], "awar": 16, "ax": [0, 2], "axi": [0, 2], "b": [0, 2, 3, 6, 12, 15, 18], "back": 4, "backend": [13, 19], "backflow": 3, "background": 23, "balanc": [0, 4, 5, 18, 20], "barrier": 20, "base": [0, 2, 4], "basepass": 4, "basesamplerv2": 4, "basi": [0, 2, 4, 12, 15, 18, 20, 21, 23], "basic": [9, 13], "basis_g": [13, 19], "bear": 23, "becaus": [0, 2, 8, 9, 13, 15, 16, 18], "been": [0, 8], "befor": [0, 13, 16, 22, 23], "begin": [0, 2, 11, 12, 14, 20, 23], "behavior": [2, 4, 5, 19], "being": [2, 16, 18], "below": [0, 18, 23], "benchmark": 0, "beta": [0, 1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 16, 19, 20], "beta_i": 0, "beta_j": 0, "better": 8, "between": [0, 1, 2, 3, 11, 13], "bfg": [0, 2, 3, 15, 18], "bibtex": 21, "bit": [0, 13, 14], "bit_arrai": 0, "bitstr": [0, 14, 20], "bitstring_typ": [0, 14], "bitstringtyp": [0, 7, 14], "bla": 22, "bloc": 20, "block": 2, "block_diag": [0, 2], "bmod": 0, "bodi": [0, 1, 2, 5, 8, 9, 18, 23], "bond": 15, "bond_angle_deg": 15, "bond_dist": 18, "bool": [0, 1, 2, 3, 4, 5, 6], "both": [0, 1, 2, 4, 11, 15], "bound": [0, 2], "boundari": 0, "box": 13, "bq": 2, "bracket": 0, "braket": 0, "branch": 21, "brickwork": 15, "browser": 22, "buffer": 4, "build": [13, 17, 18, 20, 21, 22], "built": [19, 20, 23], "byte": [0, 4], "bz2": 0, "c": [2, 18], "c2v": 15, "cach": 0, "calcul": [0, 14, 18], "call": [0, 3, 8, 9, 12, 14, 16, 18, 20, 23], "callabl": [3, 18], "callback": [0, 2, 3, 18], "can": [0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23], "cannot": 20, "canon": 0, "casci": [15, 18], "case": [0, 6, 13, 15], "categori": 21, "caus": 0, "cc": [18, 20], "ccsd": [0, 18, 20], "ccsd_energi": 0, "ccsd_t1": 0, "ccsd_t2": 0, "cd": 22, "cdot": 2, "cell": [9, 13, 14, 18, 19, 20, 23], "certain": [2, 13], "challeng": 11, "character": 0, "check": [2, 4, 6], "chemcor": 23, "chemic": 0, "chemical_potenti": 0, "chemistri": 21, "choic": [0, 6, 13, 14], "choleski": [0, 2], "choos": [2, 14], "chosen": 0, "ci": [15, 18], "circuit": [0, 4, 8, 13, 14, 17, 21], "circul": 0, "cisd": 0, "cisd_energi": 0, "cisd_vec": 0, "class": [0, 2, 4, 5, 9, 11, 15, 17, 18, 20, 21, 23], "clement": 2, "clone": 22, "close": [11, 18], "cluster": [0, 4, 5, 10, 17, 21], "co": [0, 15], "code": [4, 9, 13, 14, 16, 18, 19, 20, 23], "coeff": [0, 1, 4, 13, 19], "coeffici": [0, 1, 2, 4, 12, 16], "collect": [0, 2, 4, 18], "column": [0, 2, 12, 14], "com": [21, 22], "comb": 4, "combin": [0, 1, 4, 12, 13, 16], "command": 22, "commonli": [8, 20], "commun": [21, 22], "commut": 8, "compact": [8, 23], "compar": [0, 6, 23], "compil": 22, "complet": 0, "complex": [0, 1, 2, 4, 5, 9], "compon": [0, 16, 21], "compos": [4, 22], "compress": [0, 2], "compris": [0, 16], "comput": [0, 2, 4, 9, 12, 18, 21, 23], "concaten": [0, 14], "concret": 9, "condit": 0, "configur": [0, 4, 13, 14, 22], "conflict": 6, "conj": [2, 12, 20], "conjug": 2, "connect": [0, 11, 13], "consecut": [4, 20], "conserv": [0, 5, 16, 21], "conserves_particle_numb": [0, 16], "conserves_spin_z": [0, 16], "consid": [11, 12, 13], "consist": [0, 9, 13], "constant": [0, 5, 8, 9, 11, 13, 19], "constrain": 2, "constraint": [11, 18], "construct": [0, 1, 3, 4, 13, 14, 15, 16, 18, 19, 20, 23], "contain": [0, 2, 3, 5, 13, 16, 20, 21, 22], "contract": [2, 7, 21], "contract_diag_coulomb": [1, 7], "contract_num_op_sum": [1, 7], "contract_one_bodi": [1, 7], "contrast": 14, "control": [3, 13], "conveni": 14, "convent": 0, "converg": [3, 15, 18, 20, 23], "convers": [11, 18], "convert": [0, 1, 4, 14, 16, 18, 20, 21, 23], "coordin": 0, "coov": 20, "copi": [0, 16], "core": 0, "core_energi": 0, "correl": 3, "correspond": [0, 2, 3, 4, 8, 12, 13, 14, 18], "cost": 0, "coulomb": [0, 1, 2, 4, 5, 8, 11, 23], "count": [0, 13, 20], "count_op": [13, 19], "coupl": 0, "cours": 11, "cp": [13, 19], "cphaseg": 13, "cre": [0, 7], "cre_a": [0, 7, 16], "cre_b": [0, 7, 16], "creat": [0, 4, 13, 14, 16, 19, 20, 21, 23], "creation": [0, 4, 12, 16], "criteria": 16, "current": [0, 2, 18], "d": [2, 22], "d2h": 18, "dag": 4, "dagcircuit": 4, "dagger": [0, 1, 2, 8, 11, 12, 16], "dagger_": [0, 4, 8, 9, 12], "dagger_i": 1, "dagger_p": 0, "dagger_q": 0, "data": [0, 5, 13, 15, 16, 18, 20, 21, 23], "daunt": 8, "de": [0, 7], "decompos": [2, 4, 8, 13, 19], "decomposit": [0, 2, 4, 8, 10, 19, 21, 23], "decreas": [0, 18], "def": [2, 12, 15, 18, 23], "default": [0, 2, 3, 4, 5, 8, 9, 23], "default_rng": [0, 4, 5, 6, 9, 13, 15, 19, 20], "default_shot": [4, 20], "defaultdict": 18, "defin": [0, 2, 13, 15, 18, 20, 23], "definit": [0, 2, 3, 5, 14], "demonstr": [14, 18, 20], "denot": [0, 1, 2, 4, 12], "dens": 15, "densiti": [0, 5], "depend": [0, 2, 3, 22, 23], "depolar": 4, "depth": 11, "deriv": 8, "des_a": [0, 7, 16], "des_b": [0, 7, 16], "descend": [0, 16], "describ": [0, 1, 2, 8, 11, 12, 13, 16, 23], "descript": [0, 4], "design": [0, 2, 12], "desir": [0, 2, 5, 6], "destroi": [0, 16], "detail": [13, 19], "determin": [0, 2, 4, 14], "determinant": 0, "dev": 22, "devel": 22, "develop": [4, 21], "devic": [13, 19], "df_hamiltonian": [13, 19, 23], "df_hamiltonian_alt": 23, "diag": [0, 7], "diag_coulomb_indic": [0, 2], "diag_coulomb_jw": 13, "diag_coulomb_linop": [1, 7], "diag_coulomb_mat": [0, 2, 13, 19, 20, 23], "diagcoulombevolutionjw": [4, 7, 13, 19, 20], "diagcoulombevolutionspinlessjw": [4, 7], "diagon": [0, 1, 2, 4, 5, 8, 11, 23], "diagonal_coulomb_mat": 2, "diagonalcoulombhamiltonian": [0, 4, 5, 7], "dict": [0, 2, 3, 15, 18], "dictionari": [0, 16], "did": 0, "differ": [0, 1, 2, 3, 9, 11, 13, 18, 22, 23], "dim": [0, 5, 7, 14, 16], "dim_a": [0, 14], "dim_b": [0, 14], "dimens": [0, 2, 5, 14], "dimension": [0, 2, 4, 14], "dipol": 0, "dipole_integr": 0, "direct": [0, 23], "directli": [13, 18, 22, 23], "directori": 22, "discuss": [8, 12, 13], "disjoint": 2, "disk": 0, "displai": [13, 16, 20], "distinguish": 14, "distribut": [4, 5], "divid": 8, "divis": [0, 16], "dnf": 22, "do": [8, 13, 16], "doc": [15, 18, 21], "docker": 21, "dockerfil": 22, "document": [0, 2], "doe": [0, 4, 16, 18, 20], "don": 11, "dooh": [20, 21, 23], "dot": 0, "doubl": [0, 2, 4, 5, 10, 21, 24], "double_factor": [0, 2, 7], "double_factorized_t2": [2, 7], "double_factorized_t2_alpha_beta": [2, 7], "doublefactorizedhamiltonian": [0, 4, 5, 7, 23], "down": 14, "draw": [13, 19], "drop": [4, 15, 18], "dropneglig": [4, 7], "dtype": [2, 4, 5, 9, 15, 18], "due": 20, "dump": [15, 18], "duplic": 0, "dure": 4, "e": [0, 2, 4, 8, 9, 11, 15, 16, 18, 20], "e_corr": [18, 20], "each": [0, 2, 3, 4, 5, 8, 11, 14, 16, 18, 22, 23], "edg": 0, "effect": [0, 4, 13], "effici": [8, 13, 16], "eig": [9, 16], "eigendecomposit": 12, "eigenvalu": [0, 2, 3, 9], "eigenvector": [0, 2], "eigh": [12, 23], "eigsh": 9, "einsum": 23, "either": [0, 1, 2, 4, 5, 6, 11], "electon": 4, "electron": [0, 1, 4, 5, 9, 13, 14, 15, 19, 20, 23], "element": [0, 1, 2, 4, 20, 23], "ell": 2, "els": [0, 5, 14], "elsewher": 0, "enabl": 2, "encount": 20, "end": [0, 2, 11, 12, 20, 23], "energi": [0, 3, 9, 12, 18, 20, 21, 23], "energy_nuc": [15, 18], "enough": 4, "ensur": 9, "entangl": [0, 17, 21], "entir": [2, 8], "entri": [0, 2, 4, 5, 11, 14, 23], "enum": 0, "enumer": [0, 18], "environ": 22, "epsilon": 3, "epsmch": 18, "equal": [0, 2, 5, 6, 13], "equal_nan": 6, "equilibrium": 15, "equival": [0, 4], "err_msg": 6, "error": [0, 2, 4, 6, 23], "especi": 16, "estim": 9, "et": 2, "etc": 0, "ethen": 18, "evalu": [3, 15], "even": 13, "everi": 12, "everywher": 14, "evolut": [0, 4, 9, 23], "evolv": [0, 23], "evolved_vec": 9, "evolved_vec_2": 9, "exact": [2, 8, 9, 23], "exact_st": 23, "exampl": [0, 4, 9, 11, 13, 14, 15, 16, 18, 19, 22], "exce": [2, 15, 23], "except": [2, 3], "excit": 13, "exist": [2, 4], "exp": [0, 2, 4, 6], "expand": 0, "expanded_diag_coulomb_mat": 2, "expanded_orbital_rot": 2, "expans": [2, 3], "expect": [0, 3], "expectation_one_body_pow": [0, 7], "expectation_one_body_product": [0, 7], "expectation_product_st": 0, "expens": [0, 2], "explain": [9, 11, 13, 14, 18, 23], "explan": [0, 19, 21], "explicit": 0, "explicitli": 0, "exploit": 21, "expm": 2, "expm_multipli": [9, 23], "expm_multiply_taylor": [2, 7], "exponenti": [8, 9, 23], "expos": [4, 13], "express": [11, 14, 23], "extra": 8, "extract": 20, "f": [3, 14, 15, 18, 20, 23], "facilit": 11, "fact": 15, "factor": [0, 2, 4, 5, 10, 21, 24], "failur": 6, "fake_provid": [13, 19], "fals": [0, 1, 2, 4, 5, 15, 16, 18], "far": 16, "fast": 0, "faster": [18, 21], "fault": 11, "fci": [0, 14, 15, 18], "fci_energi": 0, "fci_vec": 0, "fcidump": 0, "fcivec": 0, "fedora": 22, "feenberg": 3, "fermi": 0, "fermi_hubbard_1d": [0, 7], "fermi_hubbard_2d": [0, 7], "fermion": [0, 4, 5, 6, 8, 10, 11, 12, 16, 19, 20, 21], "fermion_oper": [0, 7], "fermionact": [0, 7], "fermionoper": [0, 4, 5, 7, 17, 21], "few": [14, 22], "fewer": [13, 19, 23], "ffsim": [7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23], "ffsim_vec_to_qiskit_vec": [4, 7], "ffsimsampl": [4, 7], "fidel": 23, "field": [0, 2], "fifth": 13, "file": [0, 22], "filter": 0, "final": [0, 3, 4, 5, 13, 19, 23], "final_orbital_rot": 0, "final_st": [18, 23], "final_state_vector": [4, 7], "finish": 23, "finit": 3, "first": [0, 2, 4, 8, 13, 14, 18, 20, 23], "fix": 14, "flag": 0, "float": [0, 2, 3, 4, 5, 6, 9, 12, 23], "float64": [9, 15, 18], "fock": [0, 4, 11, 14, 18, 21, 23], "focu": 9, "follow": [0, 2, 3, 4, 9, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23], "foot": 0, "forg": [0, 17, 21], "form": [0, 1, 2, 4, 5, 8, 9, 11, 12, 16, 20, 23], "format": [0, 4], "formula": [0, 23], "fourth": [8, 13], "frac": [0, 2], "frac12": [0, 8, 9, 11], "frac18": 0, "framework": 22, "from": [0, 2, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "from_diag_coulomb_mat": 0, "from_fcidump": 0, "from_fermion_oper": 0, "from_json": 0, "from_molecular_hamiltonian": [0, 23], "from_orbital_rot": 0, "from_paramet": [0, 13, 18], "from_scf": [0, 15, 18, 20, 21, 23], "from_t_amplitud": [0, 18, 20], "frozen": [18, 20], "fsim": 0, "fswap": 0, "ftol": [3, 18], "full": [0, 2, 13, 14, 15], "fulli": 9, "fun": [3, 15, 18], "function": [0, 1, 2, 3, 8, 9, 12, 14, 15, 16, 18, 19, 23], "fundament": 12, "further": [13, 14], "furthermor": [0, 2], "g": [0, 4, 15], "g_": 2, "g_1": 2, "g_i": 3, "g_k": 2, "g_l": 2, "gate": [0, 4, 10, 11, 15, 20, 21], "gener": [0, 3, 4, 5, 6, 8, 13, 14, 15, 19, 20, 21], "generate_norb_nelec": [6, 7], "generate_norb_nelec_spin": [6, 7], "generate_norb_nocc": [6, 7], "generate_norb_spin": [6, 7], "generate_preset_pass_manag": [13, 19], "genericbackendv2": [13, 19], "get": [0, 14, 15, 18, 20, 21, 23], "get_count": 20, "get_hcor": [15, 18], "get_ovlp": [15, 18], "git": 22, "github": [21, 22], "give": [0, 2, 8, 14, 19], "given": [0, 2, 4, 6, 8, 12], "givens_ansatz_op": 4, "givens_decomposit": [2, 7], "givensansatzop": [0, 4, 7], "givensansatzopjw": [4, 7], "givensansatzopspinlessjw": [4, 7], "givensrot": [2, 7], "global": [4, 6], "global_depolar": 4, "go": [0, 13, 16], "good": 16, "gradient": [2, 3, 18], "greater": 3, "ground": [9, 18], "gt": [15, 18, 19, 20], "gto": [15, 18, 20, 21, 23], "gtol": 3, "guarante": [4, 19], "guess": [3, 18], "guid": [11, 15, 18, 19, 20, 21], "gzip": 0, "h": [0, 8, 9, 15, 18, 20, 23], "h1_x": 15, "h2_x": 15, "h2_y": 15, "h_": [0, 2, 8, 9], "h_0": [8, 23], "h_k": [8, 23], "ha": [0, 1, 2, 4, 5, 8, 11, 12, 13, 14, 18], "haar": 5, "ham": 14, "hamiltonian": [0, 3, 4, 5, 10, 15, 18, 20, 21, 24], "hand": 14, "handl": [20, 23], "happen": 13, "hardwar": 13, "hartre": [0, 4, 11, 14, 18, 21, 23], "hartree_fock": 0, "hartree_fock_jw": 13, "hartree_fock_st": [0, 7, 9, 14, 18, 21, 23], "hasattr": 18, "hash": 16, "have": [0, 2, 8, 9, 11, 12, 13, 14, 16, 18, 20, 22], "height": 5, "helper": 16, "here": [0, 2, 8, 12, 13, 15, 23], "hermitian": [0, 2, 5, 12], "hess_inv": [15, 18], "hf": [15, 18], "hf_energi": 0, "hf_mo_coeff": 0, "hf_mo_occ": 0, "high": 13, "higher": [0, 8, 23], "hilbert": 5, "ho": 20, "hold": [0, 3], "home": [15, 18, 22], "hop": [0, 15], "hopgateansatzoper": [0, 7, 15], "hot": 2, "how": [0, 8, 9, 11, 12, 13, 14, 21, 23], "howev": [8, 13, 21], "http": [0, 21, 22], "hubbard": 0, "hydroxyl": 20, "hyperparamet": [3, 18], "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "idea": 11, "ident": 0, "ignor": [0, 2, 8], "ij": [0, 1, 2, 4, 8, 11, 12], "ijab": 2, "ik": 12, "imag": 22, "implement": [0, 1, 3, 4, 8, 9, 11, 12, 13, 15, 18, 20, 21, 22, 24], "import": [0, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "impos": [11, 18], "improv": [3, 23], "includ": [0, 2, 4, 5, 8, 9, 12, 13, 14, 15, 18, 19, 21, 22], "incorpor": 0, "increas": [0, 14, 23], "increment": 3, "incur": 3, "independ": [0, 1, 4, 15], "index": [0, 2, 11, 14, 16], "indic": [0, 1, 2, 4, 5, 11, 14, 16], "individu": [8, 14, 16], "info": 18, "inform": [0, 9, 16, 18, 21, 23], "init_cach": [0, 7], "initi": [0, 3, 4, 5, 6, 9, 11, 13, 18, 19, 20, 23], "initial_st": 23, "initiali": 15, "input": [0, 1, 3, 4, 5, 6, 18, 20], "insert": 13, "instanc": [5, 9, 23], "instead": [0, 2, 4, 18, 23], "instruct": [21, 22], "instructionset": 19, "int": [0, 1, 2, 3, 4, 5, 6, 12, 15, 23], "integ": [0, 2, 4, 5, 6, 14], "integr": [0, 4], "interact": [0, 1, 2, 4, 5, 11, 13, 18, 20], "interaction_pair": [0, 5, 13, 15, 18, 20], "interfac": [18, 22], "interferomet": 2, "intermedi": 18, "intermediate_result": [3, 18], "intern": 16, "interpret": [0, 5, 11], "intor_symmetr": [15, 18], "introduc": [11, 12, 23], "invers": 4, "involv": [12, 13], "ip": 2, "ipykernel_4130": 9, "is_antihermitian": [2, 7], "is_hermitian": [2, 7], "is_orthogon": [2, 7], "is_real_symmetr": [2, 7], "is_special_orthogon": [2, 7], "is_unitari": [2, 7], "isclos": 0, "isn": 4, "issu": [9, 13], "item": 20, "iter": [0, 3, 4, 6, 18], "itertool": 2, "its": [0, 2, 4, 9, 13, 14, 15, 16, 23], "itself": [0, 14, 16], "j": [0, 1, 2, 4, 5, 8, 11, 12, 14, 15, 16], "jac": [3, 15, 18], "jastrow": [0, 3, 4, 5, 10, 17, 21], "ji": [0, 4, 11, 12], "jk": 12, "job": [4, 20], "jordan": [0, 4], "jordan_wign": [4, 7], "jq": 2, "json": [0, 15, 18], "jupyt": 22, "just": [0, 14, 18, 22, 23], "jwt": 4, "k": [0, 2, 3, 8, 9, 11, 16, 20, 23], "kappa": 0, "kappa_": 0, "keep": [0, 2], "kei": 20, "kij": 23, "know": 15, "known": [0, 8], "kpi": 23, "kqi": 23, "krj": 23, "kron": 0, "ksj": 23, "kwarg": [0, 4], "l": [0, 2, 3, 8, 11, 15, 18, 23], "label": [4, 14], "ladder": [8, 11], "lambda": [0, 4, 20], "lambda_i": [0, 1, 4, 12], "lambda_k": 12, "langl": 0, "larger": [0, 2, 3, 16], "last": [0, 2, 3, 4], "later": [19, 23], "lattic": [0, 11, 13, 18, 20], "layer": [0, 2, 13, 20], "lbfgsinvhessproduct": [15, 18], "ldot": [0, 2, 8, 11, 23], "lead": 0, "least": [2, 5], "left": [0, 4, 12, 14, 16], "len": [15, 18, 23], "length": [0, 4, 5, 14, 15], "leq": [0, 2, 5], "less": [2, 11], "let": [0, 13, 14, 16, 18, 19, 20, 23], "level": 23, "lexicograph": [0, 16], "lib": [15, 18], "libopenbla": 22, "librari": [0, 21], "like": [4, 11, 18, 22], "limit": [0, 2, 11, 13, 15, 18], "linalg": [0, 7, 9, 12, 16, 18, 21, 23], "lindep": 3, "line": [0, 11, 13, 18], "linear": [0, 1, 2, 3, 4, 9, 12, 13, 16], "linear_oper": [0, 7, 9, 16, 18, 21, 23], "linearli": 8, "linearoper": [0, 1, 3, 16, 18, 21, 23], "linop": [9, 16, 21, 23], "linux": 22, "list": [0, 2, 4, 5, 6, 11, 14, 15, 18, 20, 23], "ll": [9, 12, 13, 15, 18, 20, 23], "lm": 16, "load": 0, "local": [10, 17, 21], "localhost": 22, "log": [0, 4], "logarithm": 11, "logic": [12, 15], "longer": 11, "longest": 0, "lookup": 0, "losslessli": 0, "low": [0, 8, 23], "lower": [0, 2], "lowest": [0, 13, 14], "lt": [15, 18, 19, 20], "lu": 2, "lucj": [10, 13, 17, 21], "lup": [2, 7], "lvert": [0, 4, 11, 14], "lzma": 0, "m": [0, 1, 2, 12], "m_": [0, 1, 2], "maco": 22, "made": 23, "magnitud": 0, "mai": [0, 2, 3, 4, 11, 22, 23], "main": [18, 22], "maintain": 8, "make": [11, 13], "manag": [4, 13, 19, 22], "mani": [0, 9, 12, 14, 21], "manual": 23, "many_body_ord": 0, "map": [0, 4, 12, 13, 16], "mapsto": [0, 4, 12], "mat": [0, 1, 2, 4, 12, 14], "mat_aa": 2, "mat_ab": 2, "mat_alpha_beta": 1, "mat_bb": 2, "match": [0, 2], "match_global_phas": [2, 7], "math": [5, 15], "mathbf": [0, 8, 11, 12], "mathcal": [0, 1, 4, 8, 11, 12], "matric": [0, 1, 2, 4, 11, 12, 23], "matrix": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 14, 16], "max": [3, 23], "max_error": 23, "max_term_length": 5, "max_vec": [0, 2, 23], "maxfun": 15, "maximum": [0, 2, 3, 5, 23], "maxit": [3, 18], "mcscf": [15, 18], "mea": 20, "meant": [4, 19], "measur": [5, 8, 20], "measure_al": 20, "mention": 8, "merg": [4, 19], "mergeorbitalrot": [4, 7, 13], "messag": [6, 15, 18], "method": [0, 2, 3, 11, 15, 16, 20, 21], "mid": 20, "might": 2, "mind": 23, "minim": [0, 2, 3, 13, 15, 18], "minimize_linear_method": [3, 7, 18], "minimizz": 15, "minimum": 4, "mk": 2, "mkap": 2, "mkbq": 2, "mkip": 2, "mkjq": 2, "mkpq": 2, "mo_coeff": 0, "mo_occ": 0, "mode": 12, "model": 0, "modifi": [0, 2], "modified_choleski": [2, 7], "modul": [0, 14, 15, 19, 20], "mol": [15, 18, 20, 21, 23], "mol_data": [15, 18, 20, 21, 23], "mol_hamiltonian": [9, 15, 18, 20, 23], "mole": [0, 15, 18, 20, 21, 23], "molecul": [0, 18, 21, 23], "molecular": [0, 5, 9, 10, 14, 15, 18, 20, 21, 23], "moleculardata": [0, 7, 15, 18, 20, 21, 23], "molecularhamiltonian": [0, 5, 7, 9, 23], "more": [0, 2, 3, 4, 8, 9, 11, 13, 14, 19, 23], "most": [0, 2, 16, 20], "motiv": 13, "mp2": 0, "mp2_energi": 0, "mp2_t2": 0, "mpl": [13, 19], "msg": [15, 18], "mu": 0, "much": [0, 2, 8, 13, 21], "multipl": [0, 9, 16, 23], "multipli": [0, 16], "multiport": 2, "multirefer": 0, "multireference_st": [0, 7], "multireference_state_prod": [0, 7, 15], "must": [0, 2, 3, 4, 5, 16, 20], "n": [0, 2, 3, 8, 9, 11, 12, 14, 20, 21, 23], "n2": [20, 21, 23], "n_": [0, 1, 4, 8, 11, 12, 14], "n_alpha": [4, 6, 20], "n_beta": [4, 6, 20], "n_frozen": [20, 23], "n_i": 4, "n_j": 4, "n_layer": 15, "n_p": 0, "n_param": [0, 13], "n_qubit": 4, "n_rep": [0, 5, 13, 18, 19, 20], "n_sampl": 0, "n_step": [0, 4, 13, 19, 23], "n_term": 5, "n_vec": 2, "n_x": 0, "n_y": 0, "name": [0, 9, 13, 14, 19, 22], "namedtupl": [0, 2], "nan": 6, "nao_nr": [15, 18, 20, 21, 23], "nativ": 21, "navig": 22, "ndarrai": [0, 1, 2, 3, 4, 5, 6, 12, 18, 23], "nearest": 0, "nearest_neighbor_interact": 0, "need": [0, 4, 9, 11, 13, 20, 22, 23], "neg": [0, 4], "neglig": 4, "neighbor": [0, 13], "nelec": [0, 1, 4, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "nelectron": 18, "neq": 0, "nest": 2, "network": 11, "new": [0, 4, 12, 16], "newli": 0, "next": [13, 15, 23], "nfev": [3, 15, 18], "nit": [15, 18], "nitrogen": [20, 23], "njev": [15, 18], "nlinop": [3, 18], "nn": 0, "nocc": [0, 5, 6], "nocc_a": 2, "nocc_b": 2, "noisi": [4, 11], "non": [4, 11], "none": [0, 1, 2, 3, 4, 5, 6], "nonzero": [0, 2, 5, 11], "norb": [0, 1, 2, 4, 5, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "norb_i": 0, "norb_rang": 6, "norb_x": 0, "norm": [0, 18], "normal": [0, 15, 16], "normal_ord": [0, 16], "note": [0, 2, 3, 13, 14, 16, 19, 21], "notebook": 22, "notic": 18, "notimplementederror": 4, "now": [9, 13, 15, 18, 20, 23], "np": [0, 2, 4, 5, 6, 9, 12, 13, 15, 18, 19, 20, 21, 23], "num_num_ansatz_op": 4, "num_op_sum_linop": [1, 7], "number": [0, 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 18, 21, 23], "number_oper": [0, 7], "numer": [0, 2, 4, 16], "numnumansatzopspinbalanc": [0, 4, 7], "numnumansatzopspinbalancedjw": [4, 7], "numopsumevolutionjw": [4, 7, 13, 19], "numopsumevolutionspinlessjw": [4, 7], "numpi": [0, 1, 2, 4, 6, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23], "o": [0, 15, 20], "o_1": 0, "o_2": 0, "o_k": 0, "obj": 0, "object": [0, 2, 3, 4, 5, 9, 16, 18, 20], "obtain": [0, 8, 9, 12, 13, 18, 23], "occ_a": 6, "occ_b": 6, "occup": [0, 6, 8, 12, 14], "occupi": [0, 4, 5, 6, 13, 14], "occupied_orbit": [0, 4, 13, 19, 20], "often": [8, 11, 18], "onc": [12, 13, 22], "one": [0, 1, 2, 4, 5, 8, 9, 13, 14, 18, 20, 22, 23], "one_body_basis_chang": 23, "one_body_energi": 23, "one_body_integr": 0, "one_body_linop": [1, 7], "one_body_squar": 0, "one_body_tensor": [0, 9, 23], "one_hot": [2, 7], "one_rdm": 0, "ones": 9, "onli": [0, 2, 4, 8, 11, 12, 13, 20, 22], "onsit": 0, "onto": [13, 16], "op": [0, 4, 16], "op1": [0, 16], "op2": [0, 16], "op3": 16, "op4": 16, "opaqu": 13, "open": [0, 11], "openbla": 22, "oper": [0, 1, 2, 3, 4, 5, 8, 11, 12, 16, 18, 22, 23], "oppos": 13, "opposit": [18, 20], "optim": [0, 2, 4, 7, 11, 13, 19, 21], "optimization_level": [13, 19], "optimize_kwarg": 3, "optimize_regular": 3, "optimize_vari": 3, "optimizeresult": [3, 18], "option": [0, 1, 2, 3, 4, 5, 9, 15, 18, 22], "orb": [0, 16], "orbit": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 18, 20, 21, 23], "orbital_rot": [0, 1, 2, 4, 12, 13, 14, 19, 20, 21, 23], "orbital_rotation_a": 2, "orbital_rotation_b": 2, "orbital_symmetri": 0, "orbitalrotationjw": [4, 7, 13, 19, 20], "orbitalrotationspinlessjw": [4, 7], "order": [0, 1, 2, 4, 5, 8, 9, 13, 14, 16, 19, 20, 23], "ordereddict": [13, 19], "org": 0, "origin": [0, 2, 11, 13, 23], "orthogon": [2, 5], "other": [0, 4, 11, 14, 18, 19, 20], "otherwis": 0, "our": [15, 18, 20, 23], "out": [2, 23], "output": [0, 3, 4, 13, 18, 20], "over": 0, "overrid": [0, 2], "overwritten": [0, 15, 18], "own": 4, "p": [0, 2, 8, 9, 11, 13, 18, 19, 20], "packag": [15, 18, 22], "pacman": 22, "pad": 0, "page": [8, 9, 11, 12, 13, 14], "pair": [0, 1, 2, 4, 5, 6, 11, 13, 14], "pairs_aa": [13, 18, 20], "pairs_ab": [13, 18, 20], "pairs_bb": 20, "paper": 11, "parallel": [2, 11, 13], "param": 0, "paramet": [0, 1, 2, 3, 4, 5, 6, 11, 15, 18], "parameter_valu": 4, "params_to_vec": [3, 18], "pars": [15, 18], "part": [0, 5, 8, 12, 14, 15], "particl": [0, 5, 6, 12, 16, 21], "pass": [0, 1, 2, 4, 9, 12, 13, 14, 15, 16, 18, 19], "pass_manag": [13, 19], "passmanag": [4, 13], "path": 0, "pathlik": 0, "pattern": [13, 15], "pauli": 0, "per": 23, "perform": [0, 2, 3, 8, 9, 12, 13, 20, 23], "period": 0, "periodic_i": 0, "periodic_x": 0, "permut": 2, "persist": 22, "ph": 5, "phase": [0, 2, 4, 6, 13], "phase_angl": 0, "phaseg": 13, "phi": [0, 2, 6], "phi_0": 11, "pi": [0, 15], "piec": [9, 16], "pip": 21, "pipelin": 13, "pivot": 2, "pk": 2, "place": [0, 2, 11, 13, 16, 22], "plain": 14, "pmatrix": [0, 2], "point": 0, "polar": 0, "posit": [2, 3, 5, 14], "possibl": [0, 2, 6, 20, 21], "possibli": [0, 18], "potenti": 0, "power": 0, "pq": [0, 2, 8, 9], "pqr": [0, 2, 8, 9, 23], "practic": 8, "pre": [11, 19], "pre_init": [4, 7, 13, 19], "pre_init_pass": [4, 7, 19], "precis": 6, "prepar": [0, 4, 20], "preparehartreefockjw": [4, 7, 13, 19, 20], "preparehartreefockspinlessjw": [4, 7, 20], "prepareslaterdeterminantjw": [4, 7, 13, 19, 20], "prepareslaterdeterminantspinlessjw": [4, 7, 20], "present": 3, "preserv": [16, 20], "preset_passmanag": [13, 19], "previou": [18, 20], "previous": [8, 13, 14, 18], "primit": [4, 17, 21], "primitivejob": 4, "primitiveresult": 4, "print": [0, 6, 13, 14, 15, 16, 18, 20, 21, 23], "probabl": [0, 4], "problem": 3, "process": 0, "processor": 11, "prod": 15, "prod_": [0, 4, 11], "prod_k": 8, "prod_state_sum": 0, "produc": [0, 13], "product": [0, 2, 8, 14, 15, 16], "productstatesum": [0, 7], "programmat": 16, "properti": [0, 2, 12], "proport": [0, 8], "protocol": 0, "provid": [9, 13, 19, 22], "pseudorandom": [0, 4, 5, 6], "psi": [0, 11], "pub": [4, 20], "pub_result": 20, "put": 15, "py": [9, 15, 18], "pypi": 22, "pyscf": [0, 4, 14, 15, 18, 20, 21, 23], "python3": [15, 18], "q": [0, 8, 9, 13, 19], "qdrift": 0, "qi": 0, "qiskit": [7, 13, 17, 21, 22], "qiskit_vec_to_ffsim_vec": [4, 7], "qk": 2, "quadrat": [8, 10, 21, 23], "qualnam": 0, "quantifi": 2, "quantiti": 0, "quantum": [0, 4, 8, 11, 13, 14, 17, 20, 21], "quantumcircuit": [4, 13, 19, 20], "quantumregist": [13, 19, 20], "qubit": [0, 4, 10, 11, 15, 19, 20, 21], "r": [0, 2, 8, 9], "radic": 20, "radius_1": 15, "radius_2": 15, "rais": [0, 2, 4, 5, 6], "random": [0, 4, 6, 7, 9, 13, 14, 15, 16, 19, 20, 21], "random_antihermitian": [5, 7], "random_density_matrix": [5, 7], "random_diagonal_coulomb_hamiltonian": [5, 7], "random_double_factorized_hamiltonian": [5, 7, 13, 19], "random_fermion_hamiltonian": [5, 7], "random_fermion_oper": [5, 7], "random_hermitian": [5, 7], "random_molecular_hamiltonian": [5, 7], "random_nelec": [6, 7], "random_occupied_orbit": [6, 7], "random_orthogon": [5, 7], "random_real_symmetric_matrix": [5, 7, 9, 13, 19, 20], "random_special_orthogon": [5, 7], "random_state_vector": [5, 7, 16], "random_t2_amplitud": [5, 7], "random_two_body_tensor": [5, 7, 9], "random_uccsd_restrict": [5, 7], "random_ucj_op_spin_balanc": [5, 7, 13, 19], "random_ucj_op_spin_unbalanc": [5, 7, 19], "random_ucj_op_spinless": [5, 7], "random_unitari": [5, 7, 13, 14, 19, 20, 21], "rang": [0, 2, 6, 13, 14, 15, 18, 20, 21, 23], "rangl": [0, 4, 11, 14], "rank": [0, 2, 5, 8, 13], "rather": [0, 5, 12, 14], "rccsd": 20, "rdm": [0, 7], "rdm1": 0, "rdm2": 0, "rdm3": 0, "rdm4": 0, "reach": 18, "read": 0, "real": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 18, 21], "reason": [4, 12], "recal": 13, "recommend": [4, 13, 16, 19, 21], "reconstruct": [0, 2, 23], "reconstruct_t2_alpha_beta": 2, "recover": 0, "reduc": [0, 2, 13], "reduced_matrix": [2, 7], "reduced_matrix_product_st": 0, "reduct": 18, "redund": 11, "refer": [0, 2, 3, 4, 5, 6, 11, 12, 14, 18, 21], "reference_occup": [0, 15], "reference_occupations_spati": 15, "reference_st": 18, "regress": 0, "regular": [3, 18], "rel": [0, 2, 4, 6, 18], "rel_reduction_of_f_": 18, "relat": 12, "releas": 21, "reorder": [0, 8], "rep": 13, "repeat": 15, "repeatedli": 12, "repetit": [0, 5, 11, 13, 18], "repositori": 22, "repr": 16, "repres": [0, 2, 3, 4, 5, 6, 9, 11, 14, 16, 18, 19], "represent": [0, 1, 2, 4, 5, 10, 14, 16, 21, 23], "reproduc": 23, "request": 0, "requir": [0, 9, 11, 13, 14, 22], "reshap": 14, "respect": [0, 2, 3, 23], "rest": [0, 13], "restrict": [0, 5, 13, 18], "result": [0, 1, 2, 3, 4, 5, 8, 9, 11, 13, 15, 18, 19, 20, 23], "retain": [0, 13], "retriev": 20, "return": [0, 1, 2, 3, 4, 5, 6, 12, 15, 16, 18, 23], "revers": 20, "rewrit": 0, "rewritten": 12, "rhf": [15, 18, 20, 21, 23], "right": [0, 4, 12, 14, 16], "ring": 0, "rise": [2, 8], "rng": [9, 13, 15, 19, 20], "rohf": 20, "root": 0, "rotat": [0, 1, 2, 4, 5, 8, 10, 11, 14, 21, 23], "rotated_vec": 14, "routin": [2, 9, 16], "row": [0, 2, 14], "rtol": [0, 2, 4, 6], "rtype": [2, 4], "run": [0, 4, 13, 15, 18, 19, 20, 21, 22, 23], "run_ccsd": 0, "run_cisd": 0, "run_fci": [0, 15, 18], "run_mp2": 0, "run_sci": 0, "rung": 11, "runner": [15, 18], "rust": 22, "rvert": 0, "s_": [0, 14], "s_a": 0, "s_b": 0, "sa": 9, "same": [0, 9, 11, 12, 13, 14, 15, 18, 20], "sampl": [0, 4, 5, 6, 9], "sample_slater_determin": [0, 7], "sample_state_vector": [0, 7], "sampler": [0, 4, 17, 21], "samplerpubresult": 4, "sandwich": 13, "satisfi": [0, 12, 16, 20, 22], "save": [0, 18, 22], "scalar": [0, 16], "scale": [8, 13, 15, 19], "scf": [0, 15, 18, 20, 21, 23], "scheme": 8, "schmidt": 5, "sci": 0, "sci_energi": 0, "sci_vec": 0, "scipi": [0, 2, 3, 15, 16, 18, 21, 23], "search": 14, "second": [0, 2, 4, 8], "section": [8, 19], "sector": [0, 1, 2, 4, 15], "see": [0, 2, 4, 11, 13, 14, 19, 22, 23], "seed": [0, 4, 5, 6, 9, 13, 14, 19, 20, 21], "seen": 20, "select": 3, "semi": 5, "sens": [13, 23], "separ": [11, 14], "sequenc": [0, 2, 4, 13], "seri": 2, "serial": 0, "serializ": [15, 18], "set": [0, 1, 2, 4, 5, 8, 11, 12, 13, 19, 23], "setup": 11, "sever": [9, 13], "shape": [0, 2, 5, 11, 23], "share": 11, "shell": [11, 18], "shot": [0, 4, 20], "should": [0, 1, 2, 4, 5, 6, 9, 12, 22], "show": [13, 15, 16, 18, 19, 20], "shown": 16, "side": 0, "sigma": [0, 1, 4, 8, 9, 11, 12], "sign": 0, "signatur": 3, "signific": 23, "significantli": 13, "similar": 18, "simpl": [20, 22], "simpler": 0, "simpli": [4, 13, 14], "simplist": 23, "simul": [0, 4, 8, 11, 12, 14, 17, 21, 24], "simulate_qdrift_double_factor": [0, 7], "simulate_trotter_diag_coulomb_split_op": [0, 7], "simulate_trotter_double_factor": [0, 7, 8, 23], "simulate_trotter_step_double_factor": 23, "simulatetrotterdiagcoulombsplitopjw": [4, 7], "simulatetrotterdoublefactorizedjw": [4, 7, 13, 19], "sin": [0, 15], "sinc": [0, 2, 11, 12, 15, 18], "singl": [0, 1, 4, 6, 8, 13, 23], "singlefactorizedhamiltonian": [0, 7], "singular": [0, 2], "site": [0, 15, 18], "size": [0, 3, 15], "slater": [0, 4], "slater_determin": [0, 7], "slater_determinant_amplitud": [0, 7], "slater_determinant_rdm": [0, 7], "slice": 2, "small": 2, "smaller": [0, 2, 8, 16, 23], "so": [0, 2, 6, 8, 11, 12, 13, 15, 16, 22, 23], "softwar": [0, 21], "solv": 3, "some": [0, 2, 6, 9, 13, 14, 16, 18, 20], "sometim": [0, 14], "sort": 20, "sourc": [0, 1, 2, 3, 4, 5, 6, 21], "space": [0, 9, 14, 15, 18, 20, 23], "span": [0, 2], "spars": [9, 16, 23], "sparsepauliop": 4, "sparsiti": 11, "spatial": [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 23], "speci": [4, 6], "special": [2, 5, 11, 13, 21], "specif": 14, "specifi": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 15, 23], "spectral": 0, "spin": [0, 1, 2, 4, 5, 6, 7, 12, 13, 14, 15, 16, 18, 20, 21], "spin_squar": [0, 7], "spin_sum": 0, "spinless": [0, 4, 5, 6], "split": [0, 4, 23], "squar": [0, 2, 11, 13, 18, 20], "stack": 0, "stage": [4, 13, 19], "standard": 18, "standard_norm": [9, 13, 19], "star": 2, "start": 0, "state": [0, 1, 3, 4, 5, 9, 10, 11, 12, 13, 18, 20, 21, 23], "statevector": [0, 4, 7], "static": 0, "statist": 20, "statu": [15, 18], "step": [0, 4, 8, 12, 15, 19, 23], "step_tim": 23, "still": [0, 8], "sto": [0, 15, 18, 23], "stop": [3, 15, 18], "store": [0, 2, 4, 6, 9, 11, 13, 18, 19, 23], "store_cisd_vec": 0, "store_fci_vec": 0, "store_sci_vec": 0, "store_t1": 0, "store_t2": 0, "str": [0, 2, 4, 6], "straightforward": 2, "strategi": 0, "strength": 0, "strictli": 3, "string": [0, 14, 16], "strings_a": 0, "strings_b": 0, "strings_to_address": [0, 7], "structur": [0, 8], "sub": 0, "subdirectori": 22, "submit": 20, "subroutin": 12, "subspac": [0, 2, 16], "substitut": [0, 5], "subsystem": [14, 22], "subtract": [0, 16], "success": [15, 18], "sudo": 22, "suffix": 15, "suggest": 19, "sum": [0, 4, 8, 23], "sum_": [0, 1, 2, 4, 8, 9, 11, 12, 23], "sum_j": 12, "sum_k": [8, 12], "sum_p": 0, "sum_t": 0, "summat": 0, "support": [0, 2, 9, 14, 16, 20, 22], "supportsapplyunitari": [0, 7], "supportsapproximateequ": [0, 7], "supportsdiagon": [0, 7], "supportsfermionoper": [0, 7], "supportslinearoper": [0, 7], "supportstrac": [0, 7], "suzuki": [0, 23], "swap": [0, 11, 13], "symmetr": [0, 2, 4, 5, 8, 11], "symmetri": [0, 12, 15, 18, 20, 21, 23], "system": [0, 4, 6, 12, 14, 22], "t": [0, 2, 4, 8, 11, 12, 20, 21], "t1": 0, "t1a": 0, "t1b": 0, "t2": [0, 2, 5, 18, 20], "t2_amplitud": 2, "t2aa": 0, "t2ab": 0, "t2bb": 0, "t_": 2, "tabl": [0, 16], "take": [0, 3, 18, 19], "taken": 11, "target": [2, 13], "target_orb": 0, "tau": [0, 1, 4, 8, 9, 11], "taylor": 2, "tensor": [0, 1, 2, 5, 8, 9, 18, 23], "term": [0, 2, 5, 8, 11, 16, 23], "test": [7, 21, 23], "text": [0, 8, 9], "th": [2, 12], "than": [0, 4, 5, 12, 13, 14, 18, 21], "thei": [0, 9, 11, 12, 16], "them": [11, 13, 14], "therefor": [0, 2, 11], "theta": [0, 15], "thi": [0, 2, 4, 8, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23], "think": 2, "third": [0, 2], "those": [3, 18], "though": 13, "three": [0, 1, 4, 9, 16], "threshold": [0, 2, 3], "thu": 8, "time": [0, 2, 3, 4, 9, 13, 14, 19, 20, 23], "titl": 21, "tmp": [9, 15, 18], "tmp4oof_itf": 18, "tmpz6wc_g1p": 15, "to_diag_coulomb_mat": 0, "to_fcidump": 0, "to_json": 0, "to_molecular_hamiltonian": 0, "to_number_represent": 0, "to_orbital_rot": 0, "to_paramet": [0, 18], "to_z_represent": 0, "tol": [0, 2, 23], "toler": [0, 2, 4, 6, 11, 23], "too": 2, "top": 20, "topologi": [11, 13, 18], "toru": 0, "total": [4, 8, 15, 18, 23], "tox": [15, 18], "trace": [0, 5, 7, 9, 23], "tracea": [9, 23], "trajectori": 0, "transform": [0, 1, 4], "transformationpass": 4, "transpil": [4, 13, 17, 21], "transpiled_opt": 13, "treat": 0, "triangl": 11, "trianglular": [0, 2], "triangular": [0, 2, 4, 5], "triplet": 6, "trotter": [0, 4, 21, 24], "true": [0, 2, 3, 4, 6, 16, 18, 20], "truncat": 8, "try": 23, "tunnel": 0, "tupl": [0, 1, 2, 4, 5, 6, 12, 15, 16, 23], "tutori": [21, 23], "twice": [0, 15, 19], "two": [0, 2, 5, 8, 9, 11, 13, 14, 15, 18, 22, 23], "two_body_integr": 0, "two_body_tensor": [0, 2, 9, 23], "type": [0, 1, 2, 3, 4, 5, 6, 20, 22], "typeerror": 0, "typic": 0, "u": [0, 1, 2, 4, 8, 11, 12], "u_": 4, "u_k": 0, "ubuntu": 22, "uccsd": [0, 5, 20], "uccsdoprestrictedr": [0, 5, 7], "ucj": [0, 4, 5], "ucj_balanced_jw": 13, "ucj_op": [4, 13, 19, 20], "ucjoperatorjw": 4, "ucjopspinbalanc": [0, 4, 5, 7, 11, 13, 18, 20], "ucjopspinbalancedjw": [4, 7, 13, 19, 20], "ucjopspinless": [0, 4, 5, 7], "ucjopspinlessjw": [4, 7], "ucjopspinunbalanc": [0, 4, 5, 7, 11, 20], "ucjopspinunbalancedjw": [4, 7, 13, 19, 20], "uhf": 20, "unbalanc": [0, 4, 5, 20], "uncorrel": 0, "under": [0, 4], "underli": 4, "unifi": 20, "uniform": [0, 4, 5], "unimpl": 4, "union": [2, 4], "unit": 2, "unitari": [0, 1, 2, 4, 5, 8, 10, 12, 14, 17, 21], "univers": 2, "unlik": 0, "unord": 0, "untouch": 0, "up": [0, 2, 6, 8, 14, 22], "updat": [0, 8], "upon": 16, "upper": [0, 2, 4, 5, 11], "url": 21, "us": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23], "usag": [0, 2, 16, 19], "user": 22, "userwarn": [9, 15, 18], "usual": 0, "util": [2, 5, 6, 8], "v": [0, 20], "v_": 0, "v_i": 2, "v_j": 2, "vacuum": 4, "valid": [0, 4, 5, 6], "valu": [0, 1, 2, 3, 4, 5, 6, 9, 11, 18, 19, 23], "valueerror": [0, 2, 4, 5], "vari": [0, 4], "variabl": [14, 23], "variant": [11, 13, 18], "variat": [0, 3, 11, 18], "variation": 18, "varphi": 0, "vdot": [18, 21, 23], "ve": 23, "vec": [0, 1, 2, 4, 9, 12, 14, 16, 21, 23], "vec_a": 0, "vec_b": 0, "vector": [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 15, 16, 18, 21], "verbos": 6, "verifi": 2, "version": 4, "vertic": 0, "via": [0, 23], "view": [0, 16], "volum": 22, "w": 0, "wa": [0, 3, 4, 11], "wai": 11, "want": 13, "warn": [9, 15, 18, 20], "water": 15, "wavefunct": [3, 18], "we": [0, 2, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "web": 22, "weight": 14, "well": [3, 14, 21, 22, 23], "when": [0, 3, 4, 9, 11, 13, 14, 16, 19, 21], "whenev": 0, "where": [0, 1, 2, 3, 4, 5, 8, 11, 12, 14, 22, 23], "whether": [0, 1, 2, 3, 4, 5, 16], "which": [0, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 22, 23], "while": [8, 11], "whose": [0, 2, 14], "width": 5, "wigner": [0, 4], "william": 2, "window": [21, 22], "wise": 2, "with_final_orbital_rot": [0, 5], "with_phase_angl": 0, "with_phi": 0, "within": [0, 2, 13, 16, 18, 21], "without": [11, 13, 18], "won": 21, "word": [0, 11, 20], "work": [9, 13, 15, 18, 19, 21, 22], "workflow": 20, "would": [13, 14], "wrapper": 23, "write": 23, "written": 8, "wrote": 23, "wsl": 22, "x": [0, 3, 4, 13, 15, 18, 19, 20], "x0": [3, 15, 18], "xx_plus_yi": [13, 19], "xxplusyyg": [13, 19], "y": 0, "yaml": 22, "yet": [9, 18], "yield": [0, 2, 4, 8, 11, 15, 23], "you": [0, 1, 2, 4, 9, 14, 18, 21, 22, 23], "your": [19, 22], "z": [0, 1, 2, 4, 5, 12, 16, 21], "z_represent": [0, 1, 4, 5], "zero": [0, 2, 4, 9, 19], "zip": [0, 15, 18, 23], "\u03c8": 18}, "titles": ["ffsim", "ffsim.contract", "ffsim.linalg", "ffsim.optimize", "ffsim.qiskit", "ffsim.random", "ffsim.testing", "API reference", "Double-factorized representation of the molecular Hamiltonian", "Hamiltonians", "Explanations", "The local unitary cluster Jastrow (LUCJ) ansatz", "Orbital rotations and quadratic Hamiltonians", "Qubit gate decompositions of fermionic gates", "State vectors and gates", "How to simulate entanglement forging", "How to use the FermionOperator class", "How-to guides", "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz", "How to build and transpile Qiskit quantum circuits", "How to use ffsim\u2019s Qiskit Sampler primitive", "ffsim", "Installation", "Implementing Trotter simulation of the double-factorized Hamiltonian", "Tutorials"], "titleterms": {"": 20, "The": 11, "action": 9, "an": 20, "ansatz": [11, 15, 18], "api": 7, "applic": 8, "background": 8, "balanc": [11, 19], "brief": 8, "build": [15, 19, 23], "can": 20, "choos": 15, "circuit": [19, 20], "cite": 21, "class": 16, "close": 20, "cluster": [11, 13, 18, 19], "code": 21, "comput": 15, "content": 21, "contract": 1, "coulomb": [13, 19], "criteria": 20, "data": 9, "decomposit": 13, "determin": [13, 19], "diagon": [13, 19], "docker": 22, "doubl": [8, 13, 19, 23], "energi": 15, "entangl": 15, "evolut": [8, 12, 13, 19], "exampl": [20, 21], "explan": 10, "factor": [8, 13, 19, 23], "fermion": [13, 14], "fermionoper": 16, "ffsim": [0, 1, 2, 3, 4, 5, 6, 20, 21], "ffsimsampl": 20, "fock": [13, 19], "forg": 15, "formula": 8, "from": [20, 22], "gate": [13, 14, 19], "gener": [11, 18], "guid": 17, "hamiltonian": [8, 9, 12, 13, 19, 23], "hartre": [13, 19], "how": [15, 16, 17, 18, 19, 20], "implement": 23, "initi": 15, "instal": [21, 22], "jastrow": [11, 13, 18, 19], "linalg": 2, "linear": 18, "linearoper": 9, "local": [11, 13, 18], "lucj": [11, 18, 20], "merg": 13, "method": 18, "molecul": [15, 20], "molecular": 8, "more": 20, "number": [13, 19], "occup": 15, "open": 20, "oper": [9, 13, 15, 19], "optim": [3, 15, 18], "orbit": [12, 13, 19], "overview": 19, "pip": 22, "prepar": [13, 19], "primit": 20, "qiskit": [4, 19, 20], "quadrat": 12, "quantum": 19, "qubit": 13, "random": 5, "refer": [7, 15], "represent": [8, 9], "rotat": [12, 13, 19], "sampl": 20, "sampler": 20, "scipi": 9, "shell": 20, "simul": [13, 15, 18, 19, 23], "slater": [13, 19], "sourc": 22, "spin": [11, 19], "spinless": 14, "state": [14, 19], "sum": [13, 19], "suzuki": 8, "test": 6, "time": [8, 12], "transform": 19, "transpil": 19, "treat": 14, "trotter": [8, 13, 19, 23], "tutori": 24, "ucj": [11, 13, 18, 19], "unbalanc": [11, 19], "unitari": [11, 13, 18, 19], "us": [16, 20, 22], "vector": 14, "via": [8, 9], "within": 22}}) \ No newline at end of file +Search.setIndex({"alltitles": {"API reference": [[7, null]], "Application to the double-factorized Hamiltonian": [[8, "Application-to-the-double-factorized-Hamiltonian"]], "Application to time evolution via Trotter-Suzuki formulas": [[8, "Application-to-time-evolution-via-Trotter-Suzuki-formulas"]], "Brief background on Trotter-Suzuki formulas": [[8, "Brief-background-on-Trotter-Suzuki-formulas"]], "Build a molecule": [[15, "Build-a-molecule"]], "Build the Hamiltonian": [[23, "Build-the-Hamiltonian"]], "Choose reference occupations": [[15, "Choose-reference-occupations"]], "Circuit transpilation": [[19, "Circuit-transpilation"]], "Citing ffsim": [[21, "citing-ffsim"]], "Code example": [[21, "code-example"]], "Compute energy": [[15, "Compute-energy"]], "Contents": [[21, "contents"]], "Criteria for circuits that FfsimSampler can sample": [[20, "Criteria-for-circuits-that-FfsimSampler-can-sample"]], "Data representation": [[9, "Data-representation"]], "Diagonal Coulomb evolution": [[13, "Diagonal-Coulomb-evolution"], [19, "Diagonal-Coulomb-evolution"]], "Double-factorized representation": [[8, "Double-factorized-representation"]], "Double-factorized representation of the molecular Hamiltonian": [[8, null]], "Example of using FfsimSampler": [[20, "Example-of-using-FfsimSampler"]], "Explanations": [[10, null]], "Gates": [[14, "Gates"]], "General UCJ ansatz": [[18, "General-UCJ-ansatz"]], "Hamiltonians": [[9, null]], "Hartree-Fock and Slater determinant preparation": [[13, "Hartree-Fock-and-Slater-determinant-preparation"]], "How to build and transpile Qiskit quantum circuits": [[19, null]], "How to simulate entanglement forging": [[15, null]], "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz": [[18, null]], "How to use ffsim\u2019s Qiskit Sampler primitive": [[20, null]], "How to use the FermionOperator class": [[16, null]], "How-to guides": [[17, null]], "Implement Trotter simulation": [[23, "Implement-Trotter-simulation"]], "Implementing Trotter simulation of the double-factorized Hamiltonian": [[23, null]], "Initialize ansatz operator": [[15, "Initialize-ansatz-operator"]], "Install from source": [[22, "install-from-source"]], "Installation": [[21, "installation"], [22, null]], "LUCJ ansatz": [[18, "LUCJ-ansatz"]], "Locality in the UCJ operator": [[13, "Locality-in-the-UCJ-operator"]], "Merging orbital rotations": [[13, "Merging-orbital-rotations"]], "More examples": [[20, "More-examples"]], "Number operator sum evolution": [[13, "Number-operator-sum-evolution"], [19, "Number-operator-sum-evolution"]], "Operator action via SciPy LinearOperators": [[9, "Operator-action-via-SciPy-LinearOperators"]], "Optimize energy": [[15, "Optimize-energy"]], "Optimize with the linear method": [[18, "Optimize-with-the-linear-method"]], "Orbital rotation": [[13, "Orbital-rotation"], [19, "Orbital-rotation"]], "Orbital rotations": [[12, "Orbital-rotations"]], "Orbital rotations and quadratic Hamiltonians": [[12, null]], "Overview of gates": [[19, "Overview-of-gates"]], "Pip install": [[22, "pip-install"]], "Prepare Hartree-Fock state": [[19, "Prepare-Hartree-Fock-state"]], "Prepare Slater determinant": [[19, "Prepare-Slater-determinant"]], "Qubit gate decompositions of fermionic gates": [[13, null]], "Sampling from an LUCJ circuit for a closed-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-a-closed-shell-molecule"]], "Sampling from an LUCJ circuit for an open-shell molecule": [[20, "Sampling-from-an-LUCJ-circuit-for-an-open-shell-molecule"]], "Spin-balanced and spin-unbalanced ansatzes": [[11, "Spin-balanced-and-spin-unbalanced-ansatzes"]], "Spin-balanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-balanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "Spin-unbalanced unitary cluster Jastrow (UCJ) operator": [[19, "Spin-unbalanced-unitary-cluster-Jastrow-(UCJ)-operator"]], "State preparation gates": [[19, "State-preparation-gates"]], "State vectors": [[14, "State-vectors"]], "State vectors and gates": [[14, null]], "The general unitary cluster Jastrow (UCJ) ansatz": [[11, "The-general-unitary-cluster-Jastrow-(UCJ)-ansatz"]], "The local UCJ (LUCJ) ansatz": [[11, "The-local-UCJ-(LUCJ)-ansatz"]], "The local unitary cluster Jastrow (LUCJ) ansatz": [[11, null]], "Time evolution by a quadratic Hamiltonian": [[12, "Time-evolution-by-a-quadratic-Hamiltonian"]], "Treating spinless fermions": [[14, "Treating-spinless-fermions"]], "Trotter simulation of double-factorized Hamiltonian": [[13, "Trotter-simulation-of-double-factorized-Hamiltonian"], [19, "Trotter-simulation-of-double-factorized-Hamiltonian"]], "Tutorials": [[24, null]], "Unitary cluster Jastrow (UCJ) operator": [[13, "Unitary-cluster-Jastrow-(UCJ)-operator"]], "Unitary transformation gates": [[19, "Unitary-transformation-gates"]], "Use within Docker": [[22, "use-within-docker"]], "ffsim": [[0, null], [21, null]], "ffsim.contract": [[1, null]], "ffsim.linalg": [[2, null]], "ffsim.optimize": [[3, null]], "ffsim.qiskit": [[4, null]], "ffsim.random": [[5, null]], "ffsim.testing": [[6, null]]}, "docnames": ["api/ffsim", "api/ffsim.contract", "api/ffsim.linalg", "api/ffsim.optimize", "api/ffsim.qiskit", "api/ffsim.random", "api/ffsim.testing", "api/index", "explanations/double-factorized", "explanations/hamiltonians", "explanations/index", "explanations/lucj", "explanations/orbital-rotation", "explanations/qiskit-gate-decompositions", "explanations/state-vectors-and-gates", "how-to-guides/entanglement-forging", "how-to-guides/fermion-operator", "how-to-guides/index", "how-to-guides/lucj", "how-to-guides/qiskit-circuits", "how-to-guides/qiskit-sampler", "index", "install", "tutorials/double-factorized-trotter", "tutorials/index"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["api/ffsim.rst", "api/ffsim.contract.rst", "api/ffsim.linalg.rst", "api/ffsim.optimize.rst", "api/ffsim.qiskit.rst", "api/ffsim.random.rst", "api/ffsim.testing.rst", "api/index.md", "explanations/double-factorized.ipynb", "explanations/hamiltonians.ipynb", "explanations/index.md", "explanations/lucj.ipynb", "explanations/orbital-rotation.ipynb", "explanations/qiskit-gate-decompositions.ipynb", "explanations/state-vectors-and-gates.ipynb", "how-to-guides/entanglement-forging.ipynb", "how-to-guides/fermion-operator.ipynb", "how-to-guides/index.md", "how-to-guides/lucj.ipynb", "how-to-guides/qiskit-circuits.ipynb", "how-to-guides/qiskit-sampler.ipynb", "index.md", "install.md", "tutorials/double-factorized-trotter.ipynb", "tutorials/index.md"], "indexentries": {"__init__() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.__init__", false]], "__init__() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpJW.__init__", false]], "__init__() (ffsim.qiskit.givensansatzopspinlessjw method)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.numnumansatzopspinbalancedjw method)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.__init__", false]], "__init__() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.__init__", false]], "__init__() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockJW.__init__", false]], "__init__() (ffsim.qiskit.preparehartreefockspinlessjw method)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW.__init__", false]], "__init__() (ffsim.qiskit.prepareslaterdeterminantspinlessjw method)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.simulatetrotterdiagcoulombsplitopjw method)": [[4, "ffsim.qiskit.SimulateTrotterDiagCoulombSplitOpJW.__init__", false]], "__init__() (ffsim.qiskit.simulatetrotterdoublefactorizedjw method)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinlessjw method)": [[4, "ffsim.qiskit.UCJOpSpinlessJW.__init__", false]], "__init__() (ffsim.qiskit.ucjopspinunbalancedjw method)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW.__init__", false]], "action (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.action", false]], "active_space (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.active_space", false]], "addresses_to_strings() (in module ffsim)": [[0, "ffsim.addresses_to_strings", false]], "alpha (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA", false]], "alpha_and_beta (ffsim.spin attribute)": [[0, "ffsim.Spin.ALPHA_AND_BETA", false]], "apply_diag_coulomb_evolution() (in module ffsim)": [[0, "ffsim.apply_diag_coulomb_evolution", false]], "apply_fsim_gate() (in module ffsim)": [[0, "ffsim.apply_fsim_gate", false]], "apply_fswap_gate() (in module ffsim)": [[0, "ffsim.apply_fswap_gate", false]], "apply_givens_rotation() (in module ffsim)": [[0, "ffsim.apply_givens_rotation", false]], "apply_hop_gate() (in module ffsim)": [[0, "ffsim.apply_hop_gate", false]], "apply_matrix_to_slices() (in module ffsim.linalg)": [[2, "ffsim.linalg.apply_matrix_to_slices", false]], "apply_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_interaction", false]], "apply_num_num_interaction() (in module ffsim)": [[0, "ffsim.apply_num_num_interaction", false]], "apply_num_op_prod_interaction() (in module ffsim)": [[0, "ffsim.apply_num_op_prod_interaction", false]], "apply_num_op_sum_evolution() (in module ffsim)": [[0, "ffsim.apply_num_op_sum_evolution", false]], "apply_on_site_interaction() (in module ffsim)": [[0, "ffsim.apply_on_site_interaction", false]], "apply_orbital_rotation() (in module ffsim)": [[0, "ffsim.apply_orbital_rotation", false]], "apply_tunneling_interaction() (in module ffsim)": [[0, "ffsim.apply_tunneling_interaction", false]], "apply_unitary() (in module ffsim)": [[0, "ffsim.apply_unitary", false]], "approx_eq() (in module ffsim)": [[0, "ffsim.approx_eq", false]], "assert_allclose_up_to_global_phase() (in module ffsim.testing)": [[6, "ffsim.testing.assert_allclose_up_to_global_phase", false]], "atom (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.atom", false]], "basis (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.basis", false]], "beta (ffsim.spin attribute)": [[0, "ffsim.Spin.BETA", false]], "bit_array (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.BIT_ARRAY", false]], "bitstringtype (class in ffsim)": [[0, "ffsim.BitstringType", false]], "c (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.c", false]], "ccsd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_energy", false]], "ccsd_t1 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t1", false]], "ccsd_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.ccsd_t2", false]], "cisd_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_energy", false]], "cisd_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.cisd_vec", false]], "coeffs (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.coeffs", false]], "conserves_particle_number() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_particle_number", false]], "conserves_spin_z() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.conserves_spin_z", false]], "constant (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.constant", false]], "constant (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.constant", false]], "constant (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.constant", false]], "constant (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.constant", false]], "contract_diag_coulomb() (in module ffsim.contract)": [[1, "ffsim.contract.contract_diag_coulomb", false]], "contract_num_op_sum() (in module ffsim.contract)": [[1, "ffsim.contract.contract_num_op_sum", false]], "contract_one_body() (in module ffsim.contract)": [[1, "ffsim.contract.contract_one_body", false]], "core_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.core_energy", false]], "cre() (in module ffsim)": [[0, "ffsim.cre", false]], "cre_a() (in module ffsim)": [[0, "ffsim.cre_a", false]], "cre_b() (in module ffsim)": [[0, "ffsim.cre_b", false]], "des() (in module ffsim)": [[0, "ffsim.des", false]], "des_a() (in module ffsim)": [[0, "ffsim.des_a", false]], "des_b() (in module ffsim)": [[0, "ffsim.des_b", false]], "diag() (in module ffsim)": [[0, "ffsim.diag", false]], "diag_coulomb_linop() (in module ffsim.contract)": [[1, "ffsim.contract.diag_coulomb_linop", false]], "diag_coulomb_mats (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.diag_coulomb_mats", false]], "diag_coulomb_mats (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.diag_coulomb_mats", false]], "diagcoulombevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW", false]], "diagcoulombevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW", false]], "diagonalcoulombhamiltonian (class in ffsim)": [[0, "ffsim.DiagonalCoulombHamiltonian", false]], "dim() (in module ffsim)": [[0, "ffsim.dim", false]], "dims() (in module ffsim)": [[0, "ffsim.dims", false]], "dipole_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.dipole_integrals", false]], "double_factorized() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized", false]], "double_factorized_t2() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2", false]], "double_factorized_t2_alpha_beta() (in module ffsim.linalg)": [[2, "ffsim.linalg.double_factorized_t2_alpha_beta", false]], "doublefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.DoubleFactorizedHamiltonian", false]], "dropnegligible (class in ffsim.qiskit)": [[4, "ffsim.qiskit.DropNegligible", false]], "expectation_one_body_power() (in module ffsim)": [[0, "ffsim.expectation_one_body_power", false]], "expectation_one_body_product() (in module ffsim)": [[0, "ffsim.expectation_one_body_product", false]], "expectation_product_state() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.expectation_product_state", false]], "expm_multiply_taylor() (in module ffsim.linalg)": [[2, "ffsim.linalg.expm_multiply_taylor", false]], "fci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_energy", false]], "fci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.fci_vec", false]], "fermi_hubbard_1d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_1d", false]], "fermi_hubbard_2d() (in module ffsim)": [[0, "ffsim.fermi_hubbard_2d", false]], "fermion_operator() (in module ffsim)": [[0, "ffsim.fermion_operator", false]], "fermionaction (class in ffsim)": [[0, "ffsim.FermionAction", false]], "fermionoperator (class in ffsim)": [[0, "ffsim.FermionOperator", false]], "ffsim": [[0, "module-ffsim", false]], "ffsim.contract": [[1, "module-ffsim.contract", false]], "ffsim.linalg": [[2, "module-ffsim.linalg", false]], "ffsim.optimize": [[3, "module-ffsim.optimize", false]], "ffsim.qiskit": [[4, "module-ffsim.qiskit", false]], "ffsim.random": [[5, "module-ffsim.random", false]], "ffsim.testing": [[6, "module-ffsim.testing", false]], "ffsim_vec_to_qiskit_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.ffsim_vec_to_qiskit_vec", false]], "ffsimsampler (class in ffsim.qiskit)": [[4, "ffsim.qiskit.FfsimSampler", false]], "final_orbital_rotation (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.final_orbital_rotation", false]], "final_orbital_rotation (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.final_orbital_rotation", false]], "final_state_vector() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.final_state_vector", false]], "from_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_diag_coulomb_mats", false]], "from_fcidump() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_fcidump", false]], "from_fermion_operator() (ffsim.diagonalcoulombhamiltonian static method)": [[0, "ffsim.DiagonalCoulombHamiltonian.from_fermion_operator", false]], "from_json() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_json", false]], "from_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian static method)": [[0, "ffsim.DoubleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_molecular_hamiltonian() (ffsim.singlefactorizedhamiltonian static method)": [[0, "ffsim.SingleFactorizedHamiltonian.from_molecular_hamiltonian", false]], "from_orbital_rotation() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_orbital_rotation", false]], "from_parameters() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.from_parameters", false]], "from_parameters() (ffsim.hopgateansatzoperator static method)": [[0, "ffsim.HopGateAnsatzOperator.from_parameters", false]], "from_parameters() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.uccsdoprestrictedreal static method)": [[0, "ffsim.UCCSDOpRestrictedReal.from_parameters", false]], "from_parameters() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_parameters", false]], "from_parameters() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_parameters", false]], "from_parameters() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_parameters", false]], "from_scf() (ffsim.moleculardata static method)": [[0, "ffsim.MolecularData.from_scf", false]], "from_t_amplitudes() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.from_t_amplitudes", false]], "from_t_amplitudes() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.from_t_amplitudes", false]], "generate_norb_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec", false]], "generate_norb_nelec_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nelec_spin", false]], "generate_norb_nocc() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_nocc", false]], "generate_norb_spin() (in module ffsim.testing)": [[6, "ffsim.testing.generate_norb_spin", false]], "givens_decomposition() (in module ffsim.linalg)": [[2, "ffsim.linalg.givens_decomposition", false]], "givensansatzop (class in ffsim)": [[0, "ffsim.GivensAnsatzOp", false]], "givensansatzopjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpJW", false]], "givensansatzopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.GivensAnsatzOpSpinlessJW", false]], "givensrotation (class in ffsim.linalg)": [[2, "ffsim.linalg.GivensRotation", false]], "hamiltonian (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.hamiltonian", false]], "hartree_fock_state() (in module ffsim)": [[0, "ffsim.hartree_fock_state", false]], "hf_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_energy", false]], "hf_mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_coeff", false]], "hf_mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.hf_mo_occ", false]], "hopgateansatzoperator (class in ffsim)": [[0, "ffsim.HopGateAnsatzOperator", false]], "i (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.i", false]], "init_cache() (in module ffsim)": [[0, "ffsim.init_cache", false]], "int (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.INT", false]], "interaction_pairs (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.interaction_pairs", false]], "interaction_pairs (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.interaction_pairs", false]], "interaction_pairs (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.interaction_pairs", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.diagcoulombevolutionspinlessjw method)": [[4, "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW.inverse", false]], "inverse() (ffsim.qiskit.numopsumevolutionspinlessjw method)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationjw method)": [[4, "ffsim.qiskit.OrbitalRotationJW.inverse", false]], "inverse() (ffsim.qiskit.orbitalrotationspinlessjw method)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW.inverse", false]], "is_antihermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_antihermitian", false]], "is_hermitian() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_hermitian", false]], "is_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_orthogonal", false]], "is_real_symmetric() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_real_symmetric", false]], "is_special_orthogonal() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_special_orthogonal", false]], "is_unitary() (in module ffsim.linalg)": [[2, "ffsim.linalg.is_unitary", false]], "j (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.j", false]], "jordan_wigner() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.jordan_wigner", false]], "linear_operator() (in module ffsim)": [[0, "ffsim.linear_operator", false]], "lup() (in module ffsim.linalg)": [[2, "ffsim.linalg.lup", false]], "many_body_order() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.many_body_order", false]], "match_global_phase() (in module ffsim.linalg)": [[2, "ffsim.linalg.match_global_phase", false]], "mergeorbitalrotations (class in ffsim.qiskit)": [[4, "ffsim.qiskit.MergeOrbitalRotations", false]], "minimize_linear_method() (in module ffsim.optimize)": [[3, "ffsim.optimize.minimize_linear_method", false]], "mo_coeff (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_coeff", false]], "mo_occ (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mo_occ", false]], "modified_cholesky() (in module ffsim.linalg)": [[2, "ffsim.linalg.modified_cholesky", false]], "module": [[0, "module-ffsim", false], [1, "module-ffsim.contract", false], [2, "module-ffsim.linalg", false], [3, "module-ffsim.optimize", false], [4, "module-ffsim.qiskit", false], [5, "module-ffsim.random", false], [6, "module-ffsim.testing", false]], "mole (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.mole", false]], "moleculardata (class in ffsim)": [[0, "ffsim.MolecularData", false]], "molecularhamiltonian (class in ffsim)": [[0, "ffsim.MolecularHamiltonian", false]], "mp2_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_energy", false]], "mp2_t2 (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.mp2_t2", false]], "multireference_state() (in module ffsim)": [[0, "ffsim.multireference_state", false]], "multireference_state_prod() (in module ffsim)": [[0, "ffsim.multireference_state_prod", false]], "n_params() (ffsim.givensansatzop static method)": [[0, "ffsim.GivensAnsatzOp.n_params", false]], "n_params() (ffsim.numnumansatzopspinbalanced static method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.n_params", false]], "n_params() (ffsim.uccsdoprestrictedreal static method)": [[0, "ffsim.UCCSDOpRestrictedReal.n_params", false]], "n_params() (ffsim.ucjopspinbalanced static method)": [[0, "ffsim.UCJOpSpinBalanced.n_params", false]], "n_params() (ffsim.ucjopspinless static method)": [[0, "ffsim.UCJOpSpinless.n_params", false]], "n_params() (ffsim.ucjopspinunbalanced static method)": [[0, "ffsim.UCJOpSpinUnbalanced.n_params", false]], "n_reps (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.n_reps", false]], "n_reps (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.n_reps", false]], "n_reps (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.n_reps", false]], "nelec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.nelec", false]], "nelec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.nelec", false]], "norb (ffsim.diagonalcoulombhamiltonian property)": [[0, "ffsim.DiagonalCoulombHamiltonian.norb", false]], "norb (ffsim.doublefactorizedhamiltonian property)": [[0, "ffsim.DoubleFactorizedHamiltonian.norb", false]], "norb (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.norb", false]], "norb (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.norb", false]], "norb (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.norb", false]], "norb (ffsim.molecularhamiltonian property)": [[0, "ffsim.MolecularHamiltonian.norb", false]], "norb (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.norb", false]], "norb (ffsim.singlefactorizedhamiltonian property)": [[0, "ffsim.SingleFactorizedHamiltonian.norb", false]], "norb (ffsim.statevector attribute)": [[0, "ffsim.StateVector.norb", false]], "norb (ffsim.uccsdoprestrictedreal property)": [[0, "ffsim.UCCSDOpRestrictedReal.norb", false]], "norb (ffsim.ucjopspinbalanced property)": [[0, "ffsim.UCJOpSpinBalanced.norb", false]], "norb (ffsim.ucjopspinless property)": [[0, "ffsim.UCJOpSpinless.norb", false]], "norb (ffsim.ucjopspinunbalanced property)": [[0, "ffsim.UCJOpSpinUnbalanced.norb", false]], "normal_ordered() (ffsim.fermionoperator method)": [[0, "ffsim.FermionOperator.normal_ordered", false]], "num_op_sum_linop() (in module ffsim.contract)": [[1, "ffsim.contract.num_op_sum_linop", false]], "number_operator() (in module ffsim)": [[0, "ffsim.number_operator", false]], "numnumansatzopspinbalanced (class in ffsim)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced", false]], "numnumansatzopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW", false]], "numopsumevolutionjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionJW", false]], "numopsumevolutionspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.NumOpSumEvolutionSpinlessJW", false]], "one_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.one_body_integrals", false]], "one_body_linop() (in module ffsim.contract)": [[1, "ffsim.contract.one_body_linop", false]], "one_body_squares (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_squares", false]], "one_body_tensor (ffsim.diagonalcoulombhamiltonian attribute)": [[0, "ffsim.DiagonalCoulombHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.one_body_tensor", false]], "one_body_tensor (ffsim.singlefactorizedhamiltonian attribute)": [[0, "ffsim.SingleFactorizedHamiltonian.one_body_tensor", false]], "one_hot() (in module ffsim.linalg)": [[2, "ffsim.linalg.one_hot", false]], "orb (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.orb", false]], "orbital_rotations (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinbalanced attribute)": [[0, "ffsim.UCJOpSpinBalanced.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinless attribute)": [[0, "ffsim.UCJOpSpinless.orbital_rotations", false]], "orbital_rotations (ffsim.ucjopspinunbalanced attribute)": [[0, "ffsim.UCJOpSpinUnbalanced.orbital_rotations", false]], "orbital_symmetries (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.orbital_symmetries", false]], "orbitalrotationjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationJW", false]], "orbitalrotationspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.OrbitalRotationSpinlessJW", false]], "phase_angles (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phase_angles", false]], "phis (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.phis", false]], "pre_init (in module ffsim.qiskit)": [[4, "ffsim.qiskit.PRE_INIT", false]], "pre_init_passes() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.pre_init_passes", false]], "preparehartreefockjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockJW", false]], "preparehartreefockspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareHartreeFockSpinlessJW", false]], "prepareslaterdeterminantjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantJW", false]], "prepareslaterdeterminantspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW", false]], "productstatesum (class in ffsim)": [[0, "ffsim.ProductStateSum", false]], "qiskit_vec_to_ffsim_vec() (in module ffsim.qiskit)": [[4, "ffsim.qiskit.qiskit_vec_to_ffsim_vec", false]], "random_antihermitian() (in module ffsim.random)": [[5, "ffsim.random.random_antihermitian", false]], "random_density_matrix() (in module ffsim.random)": [[5, "ffsim.random.random_density_matrix", false]], "random_diagonal_coulomb_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_diagonal_coulomb_hamiltonian", false]], "random_double_factorized_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_double_factorized_hamiltonian", false]], "random_fermion_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_hamiltonian", false]], "random_fermion_operator() (in module ffsim.random)": [[5, "ffsim.random.random_fermion_operator", false]], "random_hermitian() (in module ffsim.random)": [[5, "ffsim.random.random_hermitian", false]], "random_molecular_hamiltonian() (in module ffsim.random)": [[5, "ffsim.random.random_molecular_hamiltonian", false]], "random_nelec() (in module ffsim.testing)": [[6, "ffsim.testing.random_nelec", false]], "random_occupied_orbitals() (in module ffsim.testing)": [[6, "ffsim.testing.random_occupied_orbitals", false]], "random_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_orthogonal", false]], "random_real_symmetric_matrix() (in module ffsim.random)": [[5, "ffsim.random.random_real_symmetric_matrix", false]], "random_special_orthogonal() (in module ffsim.random)": [[5, "ffsim.random.random_special_orthogonal", false]], "random_state_vector() (in module ffsim.random)": [[5, "ffsim.random.random_state_vector", false]], "random_t2_amplitudes() (in module ffsim.random)": [[5, "ffsim.random.random_t2_amplitudes", false]], "random_two_body_tensor() (in module ffsim.random)": [[5, "ffsim.random.random_two_body_tensor", false]], "random_uccsd_restricted() (in module ffsim.random)": [[5, "ffsim.random.random_uccsd_restricted", false]], "random_ucj_op_spin_balanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_balanced", false]], "random_ucj_op_spin_unbalanced() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spin_unbalanced", false]], "random_ucj_op_spinless() (in module ffsim.random)": [[5, "ffsim.random.random_ucj_op_spinless", false]], "random_unitary() (in module ffsim.random)": [[5, "ffsim.random.random_unitary", false]], "rdms() (in module ffsim)": [[0, "ffsim.rdms", false]], "reduced_matrix() (in module ffsim.linalg)": [[2, "ffsim.linalg.reduced_matrix", false]], "reduced_matrix_product_states() (ffsim.singlefactorizedhamiltonian method)": [[0, "ffsim.SingleFactorizedHamiltonian.reduced_matrix_product_states", false]], "rotated() (ffsim.molecularhamiltonian method)": [[0, "ffsim.MolecularHamiltonian.rotated", false]], "run() (ffsim.qiskit.dropnegligible method)": [[4, "ffsim.qiskit.DropNegligible.run", false]], "run() (ffsim.qiskit.ffsimsampler method)": [[4, "ffsim.qiskit.FfsimSampler.run", false]], "run() (ffsim.qiskit.mergeorbitalrotations method)": [[4, "ffsim.qiskit.MergeOrbitalRotations.run", false]], "run_ccsd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_ccsd", false]], "run_cisd() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_cisd", false]], "run_fci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_fci", false]], "run_mp2() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_mp2", false]], "run_sci() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.run_sci", false]], "s (ffsim.linalg.givensrotation attribute)": [[2, "ffsim.linalg.GivensRotation.s", false]], "sample_slater_determinant() (in module ffsim)": [[0, "ffsim.sample_slater_determinant", false]], "sample_state_vector() (in module ffsim)": [[0, "ffsim.sample_state_vector", false]], "scf (ffsim.moleculardata property)": [[0, "ffsim.MolecularData.scf", false]], "sci_energy (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_energy", false]], "sci_vec (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.sci_vec", false]], "simulate_qdrift_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_qdrift_double_factorized", false]], "simulate_trotter_diag_coulomb_split_op() (in module ffsim)": [[0, "ffsim.simulate_trotter_diag_coulomb_split_op", false]], "simulate_trotter_double_factorized() (in module ffsim)": [[0, "ffsim.simulate_trotter_double_factorized", false]], "simulatetrotterdiagcoulombsplitopjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.SimulateTrotterDiagCoulombSplitOpJW", false]], "simulatetrotterdoublefactorizedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW", false]], "singlefactorizedhamiltonian (class in ffsim)": [[0, "ffsim.SingleFactorizedHamiltonian", false]], "slater_determinant() (in module ffsim)": [[0, "ffsim.slater_determinant", false]], "slater_determinant_amplitudes() (in module ffsim)": [[0, "ffsim.slater_determinant_amplitudes", false]], "slater_determinant_rdms() (in module ffsim)": [[0, "ffsim.slater_determinant_rdms", false]], "spin (class in ffsim)": [[0, "ffsim.Spin", false]], "spin (ffsim.fermionaction attribute)": [[0, "ffsim.FermionAction.spin", false]], "spin (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.spin", false]], "spin_square() (in module ffsim)": [[0, "ffsim.spin_square", false]], "states (ffsim.productstatesum attribute)": [[0, "ffsim.ProductStateSum.states", false]], "statevector (class in ffsim)": [[0, "ffsim.StateVector", false]], "string (ffsim.bitstringtype attribute)": [[0, "ffsim.BitstringType.STRING", false]], "strings_to_addresses() (in module ffsim)": [[0, "ffsim.strings_to_addresses", false]], "supportsapplyunitary (class in ffsim)": [[0, "ffsim.SupportsApplyUnitary", false]], "supportsapproximateequality (class in ffsim)": [[0, "ffsim.SupportsApproximateEquality", false]], "supportsdiagonal (class in ffsim)": [[0, "ffsim.SupportsDiagonal", false]], "supportsfermionoperator (class in ffsim)": [[0, "ffsim.SupportsFermionOperator", false]], "supportslinearoperator (class in ffsim)": [[0, "ffsim.SupportsLinearOperator", false]], "supportstrace (class in ffsim)": [[0, "ffsim.SupportsTrace", false]], "symmetry (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.symmetry", false]], "thetas (ffsim.givensansatzop attribute)": [[0, "ffsim.GivensAnsatzOp.thetas", false]], "thetas (ffsim.hopgateansatzoperator attribute)": [[0, "ffsim.HopGateAnsatzOperator.thetas", false]], "thetas (ffsim.numnumansatzopspinbalanced attribute)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.thetas", false]], "to_diag_coulomb_mats() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_diag_coulomb_mats", false]], "to_fcidump() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_fcidump", false]], "to_json() (ffsim.moleculardata method)": [[0, "ffsim.MolecularData.to_json", false]], "to_molecular_hamiltonian() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_molecular_hamiltonian", false]], "to_number_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_number_representation", false]], "to_orbital_rotation() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_orbital_rotation", false]], "to_parameters() (ffsim.givensansatzop method)": [[0, "ffsim.GivensAnsatzOp.to_parameters", false]], "to_parameters() (ffsim.hopgateansatzoperator method)": [[0, "ffsim.HopGateAnsatzOperator.to_parameters", false]], "to_parameters() (ffsim.numnumansatzopspinbalanced method)": [[0, "ffsim.NumNumAnsatzOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.uccsdoprestrictedreal method)": [[0, "ffsim.UCCSDOpRestrictedReal.to_parameters", false]], "to_parameters() (ffsim.ucjopspinbalanced method)": [[0, "ffsim.UCJOpSpinBalanced.to_parameters", false]], "to_parameters() (ffsim.ucjopspinless method)": [[0, "ffsim.UCJOpSpinless.to_parameters", false]], "to_parameters() (ffsim.ucjopspinunbalanced method)": [[0, "ffsim.UCJOpSpinUnbalanced.to_parameters", false]], "to_z_representation() (ffsim.doublefactorizedhamiltonian method)": [[0, "ffsim.DoubleFactorizedHamiltonian.to_z_representation", false]], "trace() (in module ffsim)": [[0, "ffsim.trace", false]], "two_body_integrals (ffsim.moleculardata attribute)": [[0, "ffsim.MolecularData.two_body_integrals", false]], "two_body_tensor (ffsim.molecularhamiltonian attribute)": [[0, "ffsim.MolecularHamiltonian.two_body_tensor", false]], "uccsdoprestrictedreal (class in ffsim)": [[0, "ffsim.UCCSDOpRestrictedReal", false]], "ucjopspinbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinBalanced", false]], "ucjopspinbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinBalancedJW", false]], "ucjopspinless (class in ffsim)": [[0, "ffsim.UCJOpSpinless", false]], "ucjopspinlessjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinlessJW", false]], "ucjopspinunbalanced (class in ffsim)": [[0, "ffsim.UCJOpSpinUnbalanced", false]], "ucjopspinunbalancedjw (class in ffsim.qiskit)": [[4, "ffsim.qiskit.UCJOpSpinUnbalancedJW", false]], "vec (ffsim.statevector attribute)": [[0, "ffsim.StateVector.vec", false]], "z_representation (ffsim.doublefactorizedhamiltonian attribute)": [[0, "ffsim.DoubleFactorizedHamiltonian.z_representation", false]]}, "objects": {"": [[0, 0, 0, "-", "ffsim"]], "ffsim": [[0, 1, 1, "", "BitstringType"], [0, 1, 1, "", "DiagonalCoulombHamiltonian"], [0, 1, 1, "", "DoubleFactorizedHamiltonian"], [0, 1, 1, "", "FermionAction"], [0, 1, 1, "", "FermionOperator"], [0, 1, 1, "", "GivensAnsatzOp"], [0, 1, 1, "", "HopGateAnsatzOperator"], [0, 1, 1, "", "MolecularData"], [0, 1, 1, "", "MolecularHamiltonian"], [0, 1, 1, "", "NumNumAnsatzOpSpinBalanced"], [0, 1, 1, "", "ProductStateSum"], [0, 1, 1, "", "SingleFactorizedHamiltonian"], [0, 1, 1, "", "Spin"], [0, 1, 1, "", "StateVector"], [0, 1, 1, "", "SupportsApplyUnitary"], [0, 1, 1, "", "SupportsApproximateEquality"], [0, 1, 1, "", "SupportsDiagonal"], [0, 1, 1, "", "SupportsFermionOperator"], [0, 1, 1, "", "SupportsLinearOperator"], [0, 1, 1, "", "SupportsTrace"], [0, 1, 1, "", "UCCSDOpRestrictedReal"], [0, 1, 1, "", "UCJOpSpinBalanced"], [0, 1, 1, "", "UCJOpSpinUnbalanced"], [0, 1, 1, "", "UCJOpSpinless"], [0, 5, 1, "", "addresses_to_strings"], [0, 5, 1, "", "apply_diag_coulomb_evolution"], [0, 5, 1, "", "apply_fsim_gate"], [0, 5, 1, "", "apply_fswap_gate"], [0, 5, 1, "", "apply_givens_rotation"], [0, 5, 1, "", "apply_hop_gate"], [0, 5, 1, "", "apply_num_interaction"], [0, 5, 1, "", "apply_num_num_interaction"], [0, 5, 1, "", "apply_num_op_prod_interaction"], [0, 5, 1, "", "apply_num_op_sum_evolution"], [0, 5, 1, "", "apply_on_site_interaction"], [0, 5, 1, "", "apply_orbital_rotation"], [0, 5, 1, "", "apply_tunneling_interaction"], [0, 5, 1, "", "apply_unitary"], [0, 5, 1, "", "approx_eq"], [1, 0, 0, "-", "contract"], [0, 5, 1, "", "cre"], [0, 5, 1, "", "cre_a"], [0, 5, 1, "", "cre_b"], [0, 5, 1, "", "des"], [0, 5, 1, "", "des_a"], [0, 5, 1, "", "des_b"], [0, 5, 1, "", "diag"], [0, 5, 1, "", "dim"], [0, 5, 1, "", "dims"], [0, 5, 1, "", "expectation_one_body_power"], [0, 5, 1, "", "expectation_one_body_product"], [0, 5, 1, "", "fermi_hubbard_1d"], [0, 5, 1, "", "fermi_hubbard_2d"], [0, 5, 1, "", "fermion_operator"], [0, 5, 1, "", "hartree_fock_state"], [0, 5, 1, "", "init_cache"], [2, 0, 0, "-", "linalg"], [0, 5, 1, "", "linear_operator"], [0, 5, 1, "", "multireference_state"], [0, 5, 1, "", "multireference_state_prod"], [0, 5, 1, "", "number_operator"], [3, 0, 0, "-", "optimize"], [4, 0, 0, "-", "qiskit"], [5, 0, 0, "-", "random"], [0, 5, 1, "", "rdms"], [0, 5, 1, "", "sample_slater_determinant"], [0, 5, 1, "", "sample_state_vector"], [0, 5, 1, "", "simulate_qdrift_double_factorized"], [0, 5, 1, "", "simulate_trotter_diag_coulomb_split_op"], [0, 5, 1, "", "simulate_trotter_double_factorized"], [0, 5, 1, "", "slater_determinant"], [0, 5, 1, "", "slater_determinant_amplitudes"], [0, 5, 1, "", "slater_determinant_rdms"], [0, 5, 1, "", "spin_square"], [0, 5, 1, "", "strings_to_addresses"], [6, 0, 0, "-", "testing"], [0, 5, 1, "", "trace"]], "ffsim.BitstringType": [[0, 2, 1, "", "BIT_ARRAY"], [0, 2, 1, "", "INT"], [0, 2, 1, "", "STRING"]], "ffsim.DiagonalCoulombHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_fermion_operator"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"]], "ffsim.DoubleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 2, 1, "", "diag_coulomb_mats"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_molecular_hamiltonian"], [0, 3, 1, "", "to_number_representation"], [0, 3, 1, "", "to_z_representation"], [0, 2, 1, "", "z_representation"]], "ffsim.FermionAction": [[0, 2, 1, "", "action"], [0, 2, 1, "", "orb"], [0, 2, 1, "", "spin"]], "ffsim.FermionOperator": [[0, 3, 1, "", "conserves_particle_number"], [0, 3, 1, "", "conserves_spin_z"], [0, 3, 1, "", "many_body_order"], [0, 3, 1, "", "normal_ordered"]], "ffsim.GivensAnsatzOp": [[0, 3, 1, "", "from_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "phase_angles"], [0, 2, 1, "", "phis"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_orbital_rotation"], [0, 3, 1, "", "to_parameters"]], "ffsim.HopGateAnsatzOperator": [[0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_parameters"]], "ffsim.MolecularData": [[0, 2, 1, "", "active_space"], [0, 2, 1, "", "atom"], [0, 2, 1, "", "basis"], [0, 2, 1, "", "ccsd_energy"], [0, 2, 1, "", "ccsd_t1"], [0, 2, 1, "", "ccsd_t2"], [0, 2, 1, "", "cisd_energy"], [0, 2, 1, "", "cisd_vec"], [0, 2, 1, "", "core_energy"], [0, 2, 1, "", "dipole_integrals"], [0, 2, 1, "", "fci_energy"], [0, 2, 1, "", "fci_vec"], [0, 3, 1, "", "from_fcidump"], [0, 3, 1, "", "from_json"], [0, 3, 1, "", "from_scf"], [0, 4, 1, "", "hamiltonian"], [0, 2, 1, "", "hf_energy"], [0, 2, 1, "", "hf_mo_coeff"], [0, 2, 1, "", "hf_mo_occ"], [0, 2, 1, "", "mo_coeff"], [0, 2, 1, "", "mo_occ"], [0, 4, 1, "", "mole"], [0, 2, 1, "", "mp2_energy"], [0, 2, 1, "", "mp2_t2"], [0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "one_body_integrals"], [0, 2, 1, "", "orbital_symmetries"], [0, 3, 1, "", "run_ccsd"], [0, 3, 1, "", "run_cisd"], [0, 3, 1, "", "run_fci"], [0, 3, 1, "", "run_mp2"], [0, 3, 1, "", "run_sci"], [0, 4, 1, "", "scf"], [0, 2, 1, "", "sci_energy"], [0, 2, 1, "", "sci_vec"], [0, 2, 1, "", "spin"], [0, 2, 1, "", "symmetry"], [0, 3, 1, "", "to_fcidump"], [0, 3, 1, "", "to_json"], [0, 2, 1, "", "two_body_integrals"]], "ffsim.MolecularHamiltonian": [[0, 2, 1, "", "constant"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "rotated"], [0, 2, 1, "", "two_body_tensor"]], "ffsim.NumNumAnsatzOpSpinBalanced": [[0, 3, 1, "", "from_diag_coulomb_mats"], [0, 3, 1, "", "from_parameters"], [0, 2, 1, "", "interaction_pairs"], [0, 3, 1, "", "n_params"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "thetas"], [0, 3, 1, "", "to_diag_coulomb_mats"], [0, 3, 1, "", "to_parameters"]], "ffsim.ProductStateSum": [[0, 2, 1, "", "coeffs"], [0, 2, 1, "", "states"]], "ffsim.SingleFactorizedHamiltonian": [[0, 2, 1, "", "constant"], [0, 3, 1, "", "expectation_product_state"], [0, 3, 1, "", "from_molecular_hamiltonian"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "one_body_squares"], [0, 2, 1, "", "one_body_tensor"], [0, 3, 1, "", "reduced_matrix_product_states"]], "ffsim.Spin": [[0, 2, 1, "", "ALPHA"], [0, 2, 1, "", "ALPHA_AND_BETA"], [0, 2, 1, "", "BETA"]], "ffsim.StateVector": [[0, 2, 1, "", "nelec"], [0, 2, 1, "", "norb"], [0, 2, 1, "", "vec"]], "ffsim.UCCSDOpRestrictedReal": [[0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "norb"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinBalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinUnbalanced": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.UCJOpSpinless": [[0, 2, 1, "", "diag_coulomb_mats"], [0, 2, 1, "", "final_orbital_rotation"], [0, 3, 1, "", "from_parameters"], [0, 3, 1, "", "from_t_amplitudes"], [0, 3, 1, "", "n_params"], [0, 4, 1, "", "n_reps"], [0, 4, 1, "", "norb"], [0, 2, 1, "", "orbital_rotations"], [0, 3, 1, "", "to_parameters"]], "ffsim.contract": [[1, 5, 1, "", "contract_diag_coulomb"], [1, 5, 1, "", "contract_num_op_sum"], [1, 5, 1, "", "contract_one_body"], [1, 5, 1, "", "diag_coulomb_linop"], [1, 5, 1, "", "num_op_sum_linop"], [1, 5, 1, "", "one_body_linop"]], "ffsim.linalg": [[2, 1, 1, "", "GivensRotation"], [2, 5, 1, "", "apply_matrix_to_slices"], [2, 5, 1, "", "double_factorized"], [2, 5, 1, "", "double_factorized_t2"], [2, 5, 1, "", "double_factorized_t2_alpha_beta"], [2, 5, 1, "", "expm_multiply_taylor"], [2, 5, 1, "", "givens_decomposition"], [2, 5, 1, "", "is_antihermitian"], [2, 5, 1, "", "is_hermitian"], [2, 5, 1, "", "is_orthogonal"], [2, 5, 1, "", "is_real_symmetric"], [2, 5, 1, "", "is_special_orthogonal"], [2, 5, 1, "", "is_unitary"], [2, 5, 1, "", "lup"], [2, 5, 1, "", "match_global_phase"], [2, 5, 1, "", "modified_cholesky"], [2, 5, 1, "", "one_hot"], [2, 5, 1, "", "reduced_matrix"]], "ffsim.linalg.GivensRotation": [[2, 2, 1, "", "c"], [2, 2, 1, "", "i"], [2, 2, 1, "", "j"], [2, 2, 1, "", "s"]], "ffsim.optimize": [[3, 5, 1, "", "minimize_linear_method"]], "ffsim.qiskit": [[4, 1, 1, "", "DiagCoulombEvolutionJW"], [4, 1, 1, "", "DiagCoulombEvolutionSpinlessJW"], [4, 1, 1, "", "DropNegligible"], [4, 1, 1, "", "FfsimSampler"], [4, 1, 1, "", "GivensAnsatzOpJW"], [4, 1, 1, "", "GivensAnsatzOpSpinlessJW"], [4, 1, 1, "", "MergeOrbitalRotations"], [4, 1, 1, "", "NumNumAnsatzOpSpinBalancedJW"], [4, 1, 1, "", "NumOpSumEvolutionJW"], [4, 1, 1, "", "NumOpSumEvolutionSpinlessJW"], [4, 1, 1, "", "OrbitalRotationJW"], [4, 1, 1, "", "OrbitalRotationSpinlessJW"], [4, 6, 1, "", "PRE_INIT"], [4, 1, 1, "", "PrepareHartreeFockJW"], [4, 1, 1, "", "PrepareHartreeFockSpinlessJW"], [4, 1, 1, "", "PrepareSlaterDeterminantJW"], [4, 1, 1, "", "PrepareSlaterDeterminantSpinlessJW"], [4, 1, 1, "", "SimulateTrotterDiagCoulombSplitOpJW"], [4, 1, 1, "", "SimulateTrotterDoubleFactorizedJW"], [4, 1, 1, "", "UCJOpSpinBalancedJW"], [4, 1, 1, "", "UCJOpSpinUnbalancedJW"], [4, 1, 1, "", "UCJOpSpinlessJW"], [4, 5, 1, "", "ffsim_vec_to_qiskit_vec"], [4, 5, 1, "", "final_state_vector"], [4, 5, 1, "", "jordan_wigner"], [4, 5, 1, "", "pre_init_passes"], [4, 5, 1, "", "qiskit_vec_to_ffsim_vec"]], "ffsim.qiskit.DiagCoulombEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DiagCoulombEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.DropNegligible": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.FfsimSampler": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "run"]], "ffsim.qiskit.GivensAnsatzOpJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.GivensAnsatzOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.MergeOrbitalRotations": [[4, 3, 1, "", "run"]], "ffsim.qiskit.NumNumAnsatzOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.NumOpSumEvolutionJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.NumOpSumEvolutionSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.OrbitalRotationSpinlessJW": [[4, 3, 1, "", "__init__"], [4, 3, 1, "", "inverse"]], "ffsim.qiskit.PrepareHartreeFockJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareHartreeFockSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.PrepareSlaterDeterminantSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.SimulateTrotterDiagCoulombSplitOpJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.SimulateTrotterDoubleFactorizedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinBalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinUnbalancedJW": [[4, 3, 1, "", "__init__"]], "ffsim.qiskit.UCJOpSpinlessJW": [[4, 3, 1, "", "__init__"]], "ffsim.random": [[5, 5, 1, "", "random_antihermitian"], [5, 5, 1, "", "random_density_matrix"], [5, 5, 1, "", "random_diagonal_coulomb_hamiltonian"], [5, 5, 1, "", "random_double_factorized_hamiltonian"], [5, 5, 1, "", "random_fermion_hamiltonian"], [5, 5, 1, "", "random_fermion_operator"], [5, 5, 1, "", "random_hermitian"], [5, 5, 1, "", "random_molecular_hamiltonian"], [5, 5, 1, "", "random_orthogonal"], [5, 5, 1, "", "random_real_symmetric_matrix"], [5, 5, 1, "", "random_special_orthogonal"], [5, 5, 1, "", "random_state_vector"], [5, 5, 1, "", "random_t2_amplitudes"], [5, 5, 1, "", "random_two_body_tensor"], [5, 5, 1, "", "random_uccsd_restricted"], [5, 5, 1, "", "random_ucj_op_spin_balanced"], [5, 5, 1, "", "random_ucj_op_spin_unbalanced"], [5, 5, 1, "", "random_ucj_op_spinless"], [5, 5, 1, "", "random_unitary"]], "ffsim.testing": [[6, 5, 1, "", "assert_allclose_up_to_global_phase"], [6, 5, 1, "", "generate_norb_nelec"], [6, 5, 1, "", "generate_norb_nelec_spin"], [6, 5, 1, "", "generate_norb_nocc"], [6, 5, 1, "", "generate_norb_spin"], [6, 5, 1, "", "random_nelec"], [6, 5, 1, "", "random_occupied_orbitals"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "function", "Python function"], "6": ["py", "data", "Python data"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:function", "6": "py:data"}, "terms": {"": [0, 2, 4, 8, 9, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23], "0": [0, 2, 3, 4, 6, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 21, 23], "00": 18, "000": 20, "0000000": [15, 18], "0000000000011100000000000111": 20, "0000000000011100000000011100": 20, "0000000000110100000000001101": 20, "0000000001011000000000010110": 20, "0000000001011000100000000110": 20, "0000000001110000000000000111": 20, "0000000111100000011111": 20, "0000000111100110000111": 20, "0000010101100001011011": 20, "0000010110100001011011": 20, "0000100101100000111011": 20, "0000100110100000111011": 20, "0000111100001111": 20, "0000111100011011": 20, "0000111100011101": 20, "0000111100101011": 20, "0001": 3, "0001000001010000000000000111": 20, "0001110100001111": 20, "000e": 18, "0010000000011000000000010110": 20, "0010000000110000000000000111": 20, "0010011100101101": 20, "0010101100001111": 20, "0010101100101101": 20, "001011": [0, 14], "0010110100100111": 20, "0010110100101011": 20, "0011000000010000000000000111": 20, "001101": [0, 14], "001110": 14, "0017638230480210694": 18, "0017916907423955943": 18, "002422494824904172": 18, "003552504471598931": 18, "005e": 15, "01": [15, 18], "0100000110100100001111": 20, "010011": [0, 14], "0101": 0, "0101000001100000011111": 20, "010101": [0, 14], "010110": [0, 14], "0110": 0, "02": [15, 18], "02122442107773": 18, "02242": 2, "02459434j": 14, "02625": 2, "02998708j": 14, "03": 15, "03101213j": 14, "03525116j": 14, "03668541730983699": 23, "04": [15, 18], "0475832388658375": 18, "05": [0, 2, 3, 4, 18], "05395": 4, "06": 18, "0609050": 5, "0625": [0, 16], "06273307": 14, "06551571": 14, "06659433": 16, "06677383j": 14, "06844774j": 14, "07": [6, 18], "08": [0, 2, 3, 4], "08957": 2, "0909": 5, "094e": 15, "09723851": 14, "09977735j": 16, "0b001011": 0, "0b010101": 0, "0b010110": 0, "0b100101": 0, "0b100110": 0, "0j": 16, "0x7faa244410f0": 19, "0x7faa24442650": 19, "0x7faa24b87760": 19, "0x7faa24b87850": 19, "0x7faa24bc9450": 19, "0x7faa24bcb730": 19, "0x7faa24d74af0": 19, "0x7faa9470df90": 19, "1": [0, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "10": [13, 18, 19, 20, 23], "100": 15, "1000": 3, "1000000101100000111011": 20, "100011": [0, 14], "100101": [0, 14], "100110": [0, 14], "101": 20, "1024": 4, "104": [15, 21], "1077416841925733": 20, "108": [20, 23], "10_000": 20, "11": [0, 13, 19, 20, 23], "1102529j": 14, "11157654": 14, "112": 15, "119e": 18, "12": [2, 13, 15, 16, 18, 20, 23], "1207": 0, "12204343": 14, "1234": [9, 13, 14, 15, 19, 21], "12345": 20, "125": [0, 16], "1278053627110059": 20, "1294": [15, 18], "12j": 16, "13": [0, 13, 18, 20, 23], "13113848": 14, "132e": 18, "133": 20, "13327423j": 14, "13957088j": 14, "14": [13, 20], "15": [13, 15], "1561685j": 14, "15624569": 14, "15828306": 14, "15x15": 15, "16": 13, "160e": 15, "17": 13, "1711": [2, 4], "17181289596": 21, "17276745j": 14, "17558331": 14, "18": 13, "180": 15, "18007105": 14, "1808": 2, "18j": 16, "19": 0, "1e": [0, 2, 3, 4, 6, 15, 23], "1j": [0, 9, 16, 23], "2": [0, 1, 2, 4, 5, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "20835741": 14, "20881506": 14, "21": 0, "210": 20, "2104": 2, "2190712273": 9, "21928194": 14, "21984743e": 16, "22392824": 14, "23": 15, "23550198": 14, "23611476": 14, "24": [13, 19], "25": [0, 16], "25j": [0, 16], "26": 23, "26121865": 14, "263e": 18, "287e": 18, "29821173j": 14, "2d": 0, "2j": [0, 2, 16], "2n": 14, "3": [0, 2, 5, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "30052742j": 14, "31980058j": 14, "31g": [20, 21], "32": [13, 19], "327": 18, "329": 18, "33731417j": 14, "339": 18, "3484557070704": 20, "35": [0, 23], "352e": 18, "362e": 18, "36730125j": 14, "3714141": 14, "373295931963946e": 18, "38435478j": 14, "39": [13, 14, 15, 16, 18, 19, 20], "39075171": 14, "3j": 16, "4": [0, 2, 8, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "401e": 18, "417e": 15, "421e": 18, "422e": 15, "4390672": 14, "455e": 18, "45619739126296": 20, "46": 18, "464957764796": 23, "46x46": 18, "47": 20, "478": 15, "48": [13, 20], "49094286j": 14, "492e": 18, "4j": 16, "5": [0, 3, 9, 13, 14, 15, 16, 18, 19, 20, 23], "5094": 5, "511": 18, "51253171j": 14, "518e": 18, "527e": 18, "547e": 18, "55717072551562": 9, "558e": 18, "56": [13, 19, 20], "561e": 18, "5626": 18, "57": 20, "58888": 22, "5j": [0, 16], "6": [0, 9, 13, 14, 15, 16, 18, 19, 20, 21, 23], "603e": 15, "6083": 0, "6332495815006": 15, "64": 14, "643e": 18, "65": 20, "66": 20, "67794403659728": 15, "6787887956297": 15, "6787887956314": 15, "6838156431781": 15, "6g": [0, 15, 18, 23], "6j": 16, "7": [0, 9, 13, 14, 15, 16, 18, 19, 23], "70": 20, "72": 18, "7288249991515": 15, "72x72": 18, "73105542j": 14, "746e": 15, "747e": 15, "75": [15, 20], "762259618188165e": 18, "77": 18, "773e": 18, "775e": 18, "777e": 18, "8": [0, 13, 15, 16, 18, 19, 20, 23], "8266321248744": 18, "8266321248745": 18, "835236570775": 20, "842e": 18, "87160024816276": 18, "87362951803819": 18, "87363426494937": 18, "8736343056853": 18, "87363432565692": 18, "8738739300466": 18, "8742153637403": 18, "8742165643863": 18, "885e": 18, "9": [13, 14, 16, 18, 19, 23], "9289": 18, "9402428512433694": 23, "949": 18, "958": 15, "9630419334856": 20, "9857240665316018": 18, "9857689585545333": 18, "9882021058109687": 18, "99": 9, "990e": 18, "9926": 20, "9985212764981216": 23, "9985212764981467": 23, "9991": 20, "9996731172098104": 23, "A": [0, 1, 2, 3, 4, 5, 6, 8, 12, 13, 14, 16, 22, 23], "AND": 15, "As": [11, 13, 14, 18, 19, 23], "By": 21, "For": [0, 3, 4, 5, 8, 9, 11, 14, 15, 16, 22, 23], "If": [0, 1, 2, 3, 4, 5, 6, 13, 16], "In": [0, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 23], "It": [0, 2, 3, 4, 13, 14, 16, 18, 20, 22], "Its": [3, 4], "NO": [15, 18], "No": 2, "Of": 11, "On": [14, 22], "One": [0, 23], "Such": 16, "That": [0, 3, 12, 16], "The": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "Their": 19, "Then": [0, 13], "There": 13, "These": [0, 5, 11, 16, 19], "To": [0, 8, 9, 11, 14, 18, 23], "With": [11, 14, 23], "_": [0, 1, 2, 4, 8, 11, 12, 15, 23], "_1": 12, "_2": 12, "__init__": 4, "_factr": 18, "_i": [0, 4], "_k": [0, 8, 11], "_nestedsequ": 4, "_supportsarrai": 4, "a_": [0, 4, 8, 9, 12, 16], "a_j": 1, "a_p": 0, "a_q": 0, "ab": [0, 23], "abil": 8, "abl": 22, "about": 21, "abov": [13, 16], "absenc": [0, 1, 4], "absolut": [0, 2, 4, 6], "acceler": 22, "accept": [12, 18], "access": [0, 9, 22], "accommod": 4, "accomod": 8, "accur": 8, "achiev": [2, 23], "across": 22, "act": [0, 2, 4, 9, 13, 15, 16], "action": [0, 1, 12, 16, 22, 23], "activ": [0, 15, 18, 20, 23], "active_spac": [0, 15, 18, 20, 21, 23], "actual": [6, 11], "ad": [0, 13, 18], "add": [13, 18], "addit": [0, 8, 16, 23], "addition": 2, "address": [0, 13], "addresses_to_str": [0, 7, 14], "adjac": 13, "advantag": 18, "after": [3, 18], "al": 2, "algebra": [2, 9, 16], "algorithm": [0, 2, 3, 18, 21], "alia": [0, 2], "align": [0, 11, 12], "all": [0, 1, 2, 3, 4, 6, 11, 13, 16, 20, 22], "alloc": 0, "allow": [0, 2, 5, 11, 13, 18, 22, 23], "along": 0, "alpha": [0, 1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 16, 19, 20], "alpha_and_beta": 0, "alpha_i": 0, "alpha_j": 0, "alreadi": [0, 4, 12], "also": [0, 2, 3, 5, 9, 12, 14, 16, 18, 23], "altern": [0, 8], "alwai": [0, 2, 5, 12, 14, 23], "amen": 13, "amplitud": [0, 2, 5, 18, 20], "an": [0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "angl": 0, "ani": [0, 3, 4, 5, 11, 12, 19, 20], "annihil": [0, 16], "anoth": [2, 6], "ansatz": [0, 3, 4, 5, 10, 13, 17, 19, 20, 21], "ansatz_oper": 0, "ansatz_st": 18, "anti": [2, 5], "anticommut": 12, "ao": 0, "ap": 2, "api": [14, 21], "appear": [0, 2, 13, 16, 20], "append": [0, 6, 13, 18, 19, 20], "appli": [0, 1, 2, 3, 4, 9, 11, 12, 13, 14, 18, 19, 20, 21, 23], "applic": 12, "apply_": 14, "apply_diag_coulomb_evolut": [0, 7, 8, 23], "apply_fsim_g": [0, 7], "apply_fswap_g": [0, 7], "apply_givens_rot": [0, 7], "apply_hop_g": [0, 7], "apply_matrix_to_slic": [2, 7], "apply_num_interact": [0, 7], "apply_num_num_interact": [0, 7], "apply_num_op_prod_interact": [0, 7], "apply_num_op_sum_evolut": [0, 7, 12, 23], "apply_on_site_interact": [0, 7, 14], "apply_orbital_rot": [0, 7, 12, 14, 21], "apply_quad_ham_evolut": 12, "apply_tunneling_interact": [0, 7, 14], "apply_unitari": [0, 7, 18], "appropri": [0, 11], "approx": 8, "approx_eq": [0, 7], "approxim": [0, 2, 3, 8, 18, 23], "apt": 22, "ar": [0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 19, 20, 22], "arbitrari": [4, 20], "arch": 22, "arg": [0, 4], "argument": [0, 2, 3, 8, 9, 12, 14, 23], "aris": 8, "arithmet": 16, "around": 23, "arrai": [0, 1, 2, 4, 6, 9, 11, 14, 16], "arxiv": [0, 2, 4, 5], "ascend": 20, "assembl": 2, "assert": 14, "assert_allclose_up_to_global_phas": [6, 7], "assertionerror": 6, "associ": [0, 3, 14, 16, 18], "assum": [0, 4, 14], "asterisk": 0, "asymmetr": 8, "atol": [0, 2, 4, 6], "atom": [0, 15, 18, 20, 21, 23], "attempt": 2, "attribut": [0, 3, 9, 15, 18, 20], "author": 21, "auto": 0, "avail": [9, 19, 22], "avoid": [0, 9, 16], "awar": 16, "ax": [0, 2], "axi": [0, 2], "b": [0, 2, 3, 6, 12, 15, 18], "back": 4, "backend": [13, 19], "backflow": 3, "background": 23, "balanc": [0, 4, 5, 18, 20], "barrier": 20, "base": [0, 2, 4], "basepass": 4, "basesamplerv2": 4, "basi": [0, 2, 4, 12, 15, 18, 20, 21, 23], "basic": [9, 13], "basis_g": [13, 19], "bear": 23, "becaus": [0, 2, 8, 9, 13, 15, 16, 18], "been": [0, 8], "befor": [0, 13, 16, 22, 23], "begin": [0, 2, 11, 12, 14, 20, 23], "behavior": [2, 4, 5, 19], "being": [2, 16, 18], "below": [0, 18, 23], "benchmark": 0, "beta": [0, 1, 2, 4, 5, 6, 9, 11, 13, 14, 15, 16, 19, 20], "beta_i": 0, "beta_j": 0, "better": 8, "between": [0, 1, 2, 3, 11, 13], "bfg": [0, 2, 3, 15, 18], "bibtex": 21, "bit": [0, 13, 14], "bit_arrai": 0, "bitstr": [0, 14, 20], "bitstring_typ": [0, 14], "bitstringtyp": [0, 7, 14], "bla": 22, "bloc": 20, "block": 2, "block_diag": [0, 2], "bmod": 0, "bodi": [0, 1, 2, 5, 8, 9, 18, 23], "bond": 15, "bond_angle_deg": 15, "bond_dist": 18, "bool": [0, 1, 2, 3, 4, 5, 6], "both": [0, 1, 2, 4, 11, 15], "bound": [0, 2], "boundari": 0, "box": 13, "bq": 2, "bracket": 0, "braket": 0, "branch": 21, "brickwork": 15, "browser": 22, "buffer": 4, "build": [13, 17, 18, 20, 21, 22], "built": [19, 20, 23], "byte": [0, 4], "bz2": 0, "c": [2, 18], "c2v": 15, "cach": 0, "calcul": [0, 14, 18], "call": [0, 3, 8, 9, 12, 14, 16, 18, 20, 23], "callabl": [3, 18], "callback": [0, 2, 3, 18], "can": [0, 1, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23], "cannot": 20, "canon": 0, "casci": [15, 18], "case": [0, 6, 13, 15], "categori": 21, "caus": 0, "cc": [18, 20], "ccsd": [0, 18, 20], "ccsd_energi": 0, "ccsd_t1": 0, "ccsd_t2": 0, "cd": 22, "cdot": 2, "cell": [9, 13, 14, 18, 19, 20, 23], "certain": [2, 13], "challeng": 11, "character": 0, "check": [2, 4, 6], "chemcor": 23, "chemic": 0, "chemical_potenti": 0, "chemistri": 21, "choic": [0, 6, 13, 14], "choleski": [0, 2], "choos": [2, 14], "chosen": 0, "ci": [15, 18], "circuit": [0, 4, 8, 13, 14, 17, 21], "circul": 0, "cisd": 0, "cisd_energi": 0, "cisd_vec": 0, "class": [0, 2, 4, 5, 9, 11, 15, 17, 18, 20, 21, 23], "clement": 2, "clone": 22, "close": [11, 18], "cluster": [0, 4, 5, 10, 17, 21], "co": [0, 15], "code": [4, 9, 13, 14, 16, 18, 19, 20, 23], "coeff": [0, 1, 4, 13, 19], "coeffici": [0, 1, 2, 4, 12, 16], "collect": [0, 2, 4, 18], "column": [0, 2, 12, 14], "com": [21, 22], "comb": 4, "combin": [0, 1, 4, 12, 13, 16], "command": 22, "commonli": [8, 20], "commun": [21, 22], "commut": 8, "compact": [8, 23], "compar": [0, 6, 23], "compil": 22, "complet": 0, "complex": [0, 1, 2, 4, 5, 9], "compon": [0, 16, 21], "compos": [4, 22], "compress": [0, 2], "compris": [0, 16], "comput": [0, 2, 4, 9, 12, 18, 21, 23], "concaten": [0, 14], "concret": 9, "condit": 0, "configur": [0, 4, 13, 14, 22], "conflict": 6, "conj": [2, 12, 20], "conjug": 2, "connect": [0, 11, 13], "consecut": [4, 20], "conserv": [0, 5, 16, 21], "conserves_particle_numb": [0, 16], "conserves_spin_z": [0, 16], "consid": [11, 12, 13], "consist": [0, 9, 13], "constant": [0, 5, 8, 9, 11, 13, 19], "constrain": 2, "constraint": [11, 18], "construct": [0, 1, 3, 4, 13, 14, 15, 16, 18, 19, 20, 23], "contain": [0, 2, 3, 5, 13, 16, 20, 21, 22], "contract": [2, 7, 21], "contract_diag_coulomb": [1, 7], "contract_num_op_sum": [1, 7], "contract_one_bodi": [1, 7], "contrast": 14, "control": [3, 13], "conveni": 14, "convent": 0, "converg": [3, 15, 18, 20, 23], "convers": [11, 18], "convert": [0, 1, 4, 14, 16, 18, 20, 21, 23], "coordin": 0, "coov": 20, "copi": [0, 16], "core": 0, "core_energi": 0, "correl": 3, "correspond": [0, 2, 3, 4, 8, 12, 13, 14, 18], "cost": 0, "coulomb": [0, 1, 2, 4, 5, 8, 11, 23], "count": [0, 13, 20], "count_op": [13, 19], "coupl": 0, "cours": 11, "cp": [13, 19], "cphaseg": 13, "cre": [0, 7], "cre_a": [0, 7, 16], "cre_b": [0, 7, 16], "creat": [0, 4, 13, 14, 16, 19, 20, 21, 23], "creation": [0, 4, 12, 16], "criteria": 16, "current": [0, 2, 18], "d": [2, 22], "d2h": 18, "dag": 4, "dagcircuit": 4, "dagger": [0, 1, 2, 8, 11, 12, 16], "dagger_": [0, 4, 8, 9, 12], "dagger_i": 1, "dagger_p": 0, "dagger_q": 0, "data": [0, 5, 13, 15, 16, 18, 20, 21, 23], "daunt": 8, "de": [0, 7], "decompos": [2, 4, 8, 13, 19], "decomposit": [0, 2, 4, 8, 10, 19, 21, 23], "decreas": [0, 18], "def": [2, 12, 15, 18, 23], "default": [0, 2, 3, 4, 5, 8, 9, 23], "default_rng": [0, 4, 5, 6, 9, 13, 15, 19, 20], "default_shot": [4, 20], "defaultdict": 18, "defin": [0, 2, 13, 15, 18, 20, 23], "definit": [0, 2, 3, 5, 14], "demonstr": [14, 18, 20], "denot": [0, 1, 2, 4, 12], "dens": 15, "densiti": [0, 5], "depend": [0, 2, 3, 22, 23], "depolar": 4, "depth": 11, "deriv": 8, "des_a": [0, 7, 16], "des_b": [0, 7, 16], "descend": [0, 16], "describ": [0, 1, 2, 8, 11, 12, 13, 16, 23], "descript": [0, 4], "design": [0, 2, 12], "desir": [0, 2, 5, 6], "destroi": [0, 16], "detail": [13, 19], "determin": [0, 2, 4, 14], "determinant": 0, "dev": 22, "devel": 22, "develop": [4, 21], "devic": [13, 19], "df_hamiltonian": [13, 19, 23], "df_hamiltonian_alt": 23, "diag": [0, 7], "diag_coulomb_indic": [0, 2], "diag_coulomb_jw": 13, "diag_coulomb_linop": [1, 7], "diag_coulomb_mat": [0, 2, 13, 19, 20, 23], "diagcoulombevolutionjw": [4, 7, 13, 19, 20], "diagcoulombevolutionspinlessjw": [4, 7], "diagon": [0, 1, 2, 4, 5, 8, 11, 23], "diagonal_coulomb_mat": 2, "diagonalcoulombhamiltonian": [0, 4, 5, 7], "dict": [0, 2, 3, 15, 18], "dictionari": [0, 16], "did": 0, "differ": [0, 1, 2, 3, 9, 11, 13, 18, 22, 23], "dim": [0, 5, 7, 14, 16], "dim_a": [0, 14], "dim_b": [0, 14], "dimens": [0, 2, 5, 14], "dimension": [0, 2, 4, 14], "dipol": 0, "dipole_integr": 0, "direct": [0, 23], "directli": [13, 18, 22, 23], "directori": 22, "discuss": [8, 12, 13], "disjoint": 2, "disk": 0, "displai": [13, 16, 20], "distinguish": 14, "distribut": [4, 5], "divid": 8, "divis": [0, 16], "dnf": 22, "do": [8, 13, 16], "doc": [15, 18, 21], "docker": 21, "dockerfil": 22, "document": [0, 2], "doe": [0, 4, 16, 18, 20], "don": 11, "dooh": [20, 21, 23], "dot": 0, "doubl": [0, 2, 4, 5, 10, 21, 24], "double_factor": [0, 2, 7], "double_factorized_t2": [2, 7], "double_factorized_t2_alpha_beta": [2, 7], "doublefactorizedhamiltonian": [0, 4, 5, 7, 23], "down": 14, "draw": [13, 19], "drop": [4, 15, 18], "dropneglig": [4, 7], "dtype": [2, 4, 5, 9, 15, 18], "due": 20, "dump": [15, 18], "duplic": 0, "dure": 4, "e": [0, 2, 4, 8, 9, 11, 15, 16, 18, 20], "e_corr": [18, 20], "each": [0, 2, 3, 4, 5, 8, 11, 14, 16, 18, 22, 23], "edg": 0, "effect": [0, 4, 13], "effici": [8, 13, 16], "eig": [9, 16], "eigendecomposit": 12, "eigenvalu": [0, 2, 3, 9], "eigenvector": [0, 2], "eigh": [12, 23], "eigsh": 9, "einsum": 23, "either": [0, 1, 2, 4, 5, 6, 11], "electon": 4, "electron": [0, 1, 4, 5, 9, 13, 14, 15, 19, 20, 23], "element": [0, 1, 2, 4, 20, 23], "ell": 2, "els": [0, 5, 14], "elsewher": 0, "enabl": 2, "encount": 20, "end": [0, 2, 11, 12, 20, 23], "energi": [0, 3, 9, 12, 18, 20, 21, 23], "energy_nuc": [15, 18], "enough": 4, "ensur": 9, "entangl": [0, 17, 21], "entir": [2, 8], "entri": [0, 2, 4, 5, 11, 14, 23], "enum": 0, "enumer": [0, 18], "environ": 22, "epsilon": 3, "epsmch": 18, "equal": [0, 2, 5, 6, 13], "equal_nan": 6, "equilibrium": 15, "equival": [0, 4], "err_msg": 6, "error": [0, 2, 4, 6, 23], "especi": 16, "estim": 9, "et": 2, "etc": 0, "ethen": 18, "evalu": [3, 15], "even": 13, "everi": 12, "everywher": 14, "evolut": [0, 4, 9, 23], "evolv": [0, 23], "evolved_vec": 9, "evolved_vec_2": 9, "exact": [2, 8, 9, 23], "exact_st": 23, "exampl": [0, 4, 9, 11, 13, 14, 15, 16, 18, 19, 22], "exce": [2, 15, 23], "except": [2, 3], "excit": 13, "exist": [2, 4], "exp": [0, 2, 4, 6], "expand": 0, "expanded_diag_coulomb_mat": 2, "expanded_orbital_rot": 2, "expans": [2, 3], "expect": [0, 3], "expectation_one_body_pow": [0, 7], "expectation_one_body_product": [0, 7], "expectation_product_st": 0, "expens": [0, 2], "explain": [9, 11, 13, 14, 18, 23], "explan": [0, 19, 21], "explicit": 0, "explicitli": 0, "exploit": 21, "expm": 2, "expm_multipli": [9, 23], "expm_multiply_taylor": [2, 7], "exponenti": [8, 9, 23], "expos": [4, 13], "express": [11, 14, 23], "extra": 8, "extract": 20, "f": [3, 14, 15, 18, 20, 23], "facilit": 11, "fact": 15, "factor": [0, 2, 4, 5, 10, 21, 24], "failur": 6, "fake_provid": [13, 19], "fals": [0, 1, 2, 4, 5, 15, 16, 18], "far": 16, "fast": 0, "faster": [18, 21], "fault": 11, "fci": [0, 14, 15, 18], "fci_energi": 0, "fci_vec": 0, "fcidump": 0, "fcivec": 0, "fedora": 22, "feenberg": 3, "fermi": 0, "fermi_hubbard_1d": [0, 7], "fermi_hubbard_2d": [0, 7], "fermion": [0, 4, 5, 6, 8, 10, 11, 12, 16, 19, 20, 21], "fermion_oper": [0, 7], "fermionact": [0, 7], "fermionoper": [0, 4, 5, 7, 17, 21], "few": [14, 22], "fewer": [13, 19, 23], "ffsim": [7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23], "ffsim_vec_to_qiskit_vec": [4, 7], "ffsimsampl": [4, 7], "fidel": 23, "field": [0, 2], "fifth": 13, "file": [0, 22], "filter": 0, "final": [0, 3, 4, 5, 13, 19, 23], "final_orbital_rot": 0, "final_st": [18, 23], "final_state_vector": [4, 7], "finish": 23, "finit": 3, "first": [0, 2, 4, 8, 13, 14, 18, 20, 23], "fix": 14, "flag": 0, "float": [0, 2, 3, 4, 5, 6, 9, 12, 23], "float64": [9, 15, 18], "fock": [0, 4, 11, 14, 18, 21, 23], "focu": 9, "follow": [0, 2, 3, 4, 9, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23], "foot": 0, "forg": [0, 17, 21], "form": [0, 1, 2, 4, 5, 8, 9, 11, 12, 16, 20, 23], "format": [0, 4], "formula": [0, 23], "fourth": [8, 13], "frac": [0, 2], "frac12": [0, 8, 9, 11], "frac18": 0, "framework": 22, "from": [0, 2, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 18, 19, 21, 23], "from_diag_coulomb_mat": 0, "from_fcidump": 0, "from_fermion_oper": 0, "from_json": 0, "from_molecular_hamiltonian": [0, 23], "from_orbital_rot": 0, "from_paramet": [0, 13, 18], "from_scf": [0, 15, 18, 20, 21, 23], "from_t_amplitud": [0, 18, 20], "frozen": [18, 20], "fsim": 0, "fswap": 0, "ftol": [3, 18], "full": [0, 2, 13, 14, 15], "fulli": 9, "fun": [3, 15, 18], "function": [0, 1, 2, 3, 8, 9, 12, 14, 15, 16, 18, 19, 23], "fundament": 12, "further": [13, 14], "furthermor": [0, 2], "g": [0, 4, 15], "g_": 2, "g_1": 2, "g_i": 3, "g_k": 2, "g_l": 2, "gate": [0, 4, 10, 11, 15, 20, 21], "gener": [0, 3, 4, 5, 6, 8, 13, 14, 15, 19, 20, 21], "generate_norb_nelec": [6, 7], "generate_norb_nelec_spin": [6, 7], "generate_norb_nocc": [6, 7], "generate_norb_spin": [6, 7], "generate_preset_pass_manag": [13, 19], "genericbackendv2": [13, 19], "get": [0, 14, 15, 18, 20, 21, 23], "get_count": 20, "get_hcor": [15, 18], "get_ovlp": [15, 18], "git": 22, "github": [21, 22], "give": [0, 2, 8, 14, 19], "given": [0, 2, 4, 6, 8, 12], "givens_ansatz_op": 4, "givens_decomposit": [2, 7], "givensansatzop": [0, 4, 7], "givensansatzopjw": [4, 7], "givensansatzopspinlessjw": [4, 7], "givensrot": [2, 7], "global": [4, 6], "global_depolar": 4, "go": [0, 13, 16], "good": 16, "gradient": [2, 3, 18], "greater": 3, "ground": [9, 18], "gt": [15, 18, 19, 20], "gto": [15, 18, 20, 21, 23], "gtol": 3, "guarante": [4, 19], "guess": [3, 18], "guid": [11, 15, 18, 19, 20, 21], "gzip": 0, "h": [0, 8, 9, 15, 18, 20, 23], "h1_x": 15, "h2_x": 15, "h2_y": 15, "h_": [0, 2, 8, 9], "h_0": [8, 23], "h_k": [8, 23], "ha": [0, 1, 2, 4, 5, 8, 11, 12, 13, 14, 18], "haar": 5, "ham": 14, "hamiltonian": [0, 3, 4, 5, 10, 15, 18, 20, 21, 24], "hand": 14, "handl": [20, 23], "happen": 13, "hardwar": 13, "hartre": [0, 4, 11, 14, 18, 21, 23], "hartree_fock": 0, "hartree_fock_jw": 13, "hartree_fock_st": [0, 7, 9, 14, 18, 21, 23], "hasattr": 18, "hash": 16, "have": [0, 2, 8, 9, 11, 12, 13, 14, 16, 18, 20, 22], "height": 5, "helper": 16, "here": [0, 2, 8, 12, 13, 15, 23], "hermitian": [0, 2, 5, 12], "hess_inv": [15, 18], "hf": [15, 18], "hf_energi": 0, "hf_mo_coeff": 0, "hf_mo_occ": 0, "high": 13, "higher": [0, 8, 23], "hilbert": 5, "ho": 20, "hold": [0, 3], "home": [15, 18, 22], "hop": [0, 15], "hopgateansatzoper": [0, 7, 15], "hot": 2, "how": [0, 8, 9, 11, 12, 13, 14, 21, 23], "howev": [8, 13, 21], "http": [0, 21, 22], "hubbard": 0, "hydroxyl": 20, "hyperparamet": [3, 18], "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "idea": 11, "ident": 0, "ignor": [0, 2, 8], "ij": [0, 1, 2, 4, 8, 11, 12], "ijab": 2, "ik": 12, "imag": 22, "implement": [0, 1, 3, 4, 8, 9, 11, 12, 13, 15, 18, 20, 21, 22, 24], "import": [0, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "impos": [11, 18], "improv": [3, 23], "includ": [0, 2, 4, 5, 8, 9, 12, 13, 14, 15, 18, 19, 21, 22], "incorpor": 0, "increas": [0, 14, 23], "increment": 3, "incur": 3, "independ": [0, 1, 4, 15], "index": [0, 2, 11, 14, 16], "indic": [0, 1, 2, 4, 5, 11, 14, 16], "individu": [8, 14, 16], "info": 18, "inform": [0, 9, 16, 18, 21, 23], "init_cach": [0, 7], "initi": [0, 3, 4, 5, 6, 9, 11, 13, 18, 19, 20, 23], "initial_st": 23, "initiali": 15, "input": [0, 1, 3, 4, 5, 6, 18, 20], "insert": 13, "instanc": [5, 9, 23], "instead": [0, 2, 4, 18, 23], "instruct": [21, 22], "instructionset": 19, "int": [0, 1, 2, 3, 4, 5, 6, 12, 15, 23], "integ": [0, 2, 4, 5, 6, 14], "integr": [0, 4], "interact": [0, 1, 2, 4, 5, 11, 13, 18, 20], "interaction_pair": [0, 5, 13, 15, 18, 20], "interfac": [18, 22], "interferomet": 2, "intermedi": 18, "intermediate_result": [3, 18], "intern": 16, "interpret": [0, 5, 11], "intor_symmetr": [15, 18], "introduc": [11, 12, 23], "invers": 4, "involv": [12, 13], "ip": 2, "ipykernel_4150": 9, "is_antihermitian": [2, 7], "is_hermitian": [2, 7], "is_orthogon": [2, 7], "is_real_symmetr": [2, 7], "is_special_orthogon": [2, 7], "is_unitari": [2, 7], "isclos": 0, "isn": 4, "issu": [9, 13], "item": 20, "iter": [0, 3, 4, 6, 18], "itertool": 2, "its": [0, 2, 4, 9, 13, 14, 15, 16, 23], "itself": [0, 14, 16], "j": [0, 1, 2, 4, 5, 8, 11, 12, 14, 15, 16], "jac": [3, 15, 18], "jastrow": [0, 3, 4, 5, 10, 17, 21], "ji": [0, 4, 11, 12], "jk": 12, "job": [4, 20], "jordan": [0, 4], "jordan_wign": [4, 7], "jq": 2, "json": [0, 15, 18], "jupyt": 22, "just": [0, 14, 18, 22, 23], "jwt": 4, "k": [0, 2, 3, 8, 9, 11, 16, 20, 23], "kappa": 0, "kappa_": 0, "keep": [0, 2], "kei": 20, "kij": 23, "know": 15, "known": [0, 8], "kpi": 23, "kqi": 23, "krj": 23, "kron": 0, "ksj": 23, "kwarg": [0, 4], "l": [0, 2, 3, 8, 11, 15, 18, 23], "label": [4, 14], "ladder": [8, 11], "lambda": [0, 4, 20], "lambda_i": [0, 1, 4, 12], "lambda_k": 12, "langl": 0, "larger": [0, 2, 3, 16], "last": [0, 2, 3, 4], "later": [19, 23], "lattic": [0, 11, 13, 18, 20], "layer": [0, 2, 13, 20], "lbfgsinvhessproduct": [15, 18], "ldot": [0, 2, 8, 11, 23], "lead": 0, "least": [2, 5], "left": [0, 4, 12, 14, 16], "len": [15, 18, 23], "length": [0, 4, 5, 14, 15], "leq": [0, 2, 5], "less": [2, 11], "let": [0, 13, 14, 16, 18, 19, 20, 23], "level": 23, "lexicograph": [0, 16], "lib": [15, 18], "libopenbla": 22, "librari": [0, 21], "like": [4, 11, 18, 22], "limit": [0, 2, 11, 13, 15, 18], "linalg": [0, 7, 9, 12, 16, 18, 21, 23], "lindep": 3, "line": [0, 11, 13, 18], "linear": [0, 1, 2, 3, 4, 9, 12, 13, 16], "linear_oper": [0, 7, 9, 16, 18, 21, 23], "linearli": 8, "linearoper": [0, 1, 3, 16, 18, 21, 23], "linop": [9, 16, 21, 23], "linux": 22, "list": [0, 2, 4, 5, 6, 11, 14, 15, 18, 20, 23], "ll": [9, 12, 13, 15, 18, 20, 23], "lm": 16, "load": 0, "local": [10, 17, 21], "localhost": 22, "log": [0, 4], "logarithm": 11, "logic": [12, 15], "longer": 11, "longest": 0, "lookup": 0, "losslessli": 0, "low": [0, 8, 23], "lower": [0, 2], "lowest": [0, 13, 14], "lt": [15, 18, 19, 20], "lu": 2, "lucj": [10, 13, 17, 21], "lup": [2, 7], "lvert": [0, 4, 11, 14], "lzma": 0, "m": [0, 1, 2, 12], "m_": [0, 1, 2], "maco": 22, "made": 23, "magnitud": 0, "mai": [0, 2, 3, 4, 11, 22, 23], "main": [18, 22], "maintain": 8, "make": [11, 13], "manag": [4, 13, 19, 22], "mani": [0, 9, 12, 14, 21], "manual": 23, "many_body_ord": 0, "map": [0, 4, 12, 13, 16], "mapsto": [0, 4, 12], "mat": [0, 1, 2, 4, 12, 14], "mat_aa": 2, "mat_ab": 2, "mat_alpha_beta": 1, "mat_bb": 2, "match": [0, 2], "match_global_phas": [2, 7], "math": [5, 15], "mathbf": [0, 8, 11, 12], "mathcal": [0, 1, 4, 8, 11, 12], "matric": [0, 1, 2, 4, 11, 12, 23], "matrix": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 14, 16], "max": [3, 23], "max_error": 23, "max_term_length": 5, "max_vec": [0, 2, 23], "maxfun": 15, "maximum": [0, 2, 3, 5, 23], "maxit": [3, 18], "mcscf": [15, 18], "mea": 20, "meant": [4, 19], "measur": [5, 8, 20], "measure_al": 20, "mention": 8, "merg": [4, 19], "mergeorbitalrot": [4, 7, 13], "messag": [6, 15, 18], "method": [0, 2, 3, 11, 15, 16, 20, 21], "mid": 20, "might": 2, "mind": 23, "minim": [0, 2, 3, 13, 15, 18], "minimize_linear_method": [3, 7, 18], "minimizz": 15, "minimum": 4, "mk": 2, "mkap": 2, "mkbq": 2, "mkip": 2, "mkjq": 2, "mkpq": 2, "mo_coeff": 0, "mo_occ": 0, "mode": 12, "model": 0, "modifi": [0, 2], "modified_choleski": [2, 7], "modul": [0, 14, 15, 19, 20], "mol": [15, 18, 20, 21, 23], "mol_data": [15, 18, 20, 21, 23], "mol_hamiltonian": [9, 15, 18, 20, 23], "mole": [0, 15, 18, 20, 21, 23], "molecul": [0, 18, 21, 23], "molecular": [0, 5, 9, 10, 14, 15, 18, 20, 21, 23], "moleculardata": [0, 7, 15, 18, 20, 21, 23], "molecularhamiltonian": [0, 5, 7, 9, 23], "more": [0, 2, 3, 4, 8, 9, 11, 13, 14, 19, 23], "most": [0, 2, 16, 20], "motiv": 13, "mp2": 0, "mp2_energi": 0, "mp2_t2": 0, "mpl": [13, 19], "msg": [15, 18], "mu": 0, "much": [0, 2, 8, 13, 21], "multipl": [0, 9, 16, 23], "multipli": [0, 16], "multiport": 2, "multirefer": 0, "multireference_st": [0, 7], "multireference_state_prod": [0, 7, 15], "must": [0, 2, 3, 4, 5, 16, 20], "n": [0, 2, 3, 8, 9, 11, 12, 14, 20, 21, 23], "n2": [20, 21, 23], "n_": [0, 1, 4, 8, 11, 12, 14], "n_alpha": [4, 6, 20], "n_beta": [4, 6, 20], "n_frozen": [20, 23], "n_i": 4, "n_j": 4, "n_layer": 15, "n_p": 0, "n_param": [0, 13], "n_qubit": 4, "n_rep": [0, 5, 13, 18, 19, 20], "n_sampl": 0, "n_step": [0, 4, 13, 19, 23], "n_term": 5, "n_vec": 2, "n_x": 0, "n_y": 0, "name": [0, 9, 13, 14, 19, 22], "namedtupl": [0, 2], "nan": 6, "nao_nr": [15, 18, 20, 21, 23], "nativ": 21, "navig": 22, "ndarrai": [0, 1, 2, 3, 4, 5, 6, 12, 18, 23], "nearest": 0, "nearest_neighbor_interact": 0, "need": [0, 4, 9, 11, 13, 20, 22, 23], "neg": [0, 4], "neglig": 4, "neighbor": [0, 13], "nelec": [0, 1, 4, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "nelectron": 18, "neq": 0, "nest": 2, "network": 11, "new": [0, 4, 12, 16], "newli": 0, "next": [13, 15, 23], "nfev": [3, 15, 18], "nit": [15, 18], "nitrogen": [20, 23], "njev": [15, 18], "nlinop": [3, 18], "nn": 0, "nocc": [0, 5, 6], "nocc_a": 2, "nocc_b": 2, "noisi": [4, 11], "non": [4, 11], "none": [0, 1, 2, 3, 4, 5, 6], "nonzero": [0, 2, 5, 11], "norb": [0, 1, 2, 4, 5, 6, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23], "norb_i": 0, "norb_rang": 6, "norb_x": 0, "norm": [0, 18], "normal": [0, 15, 16], "normal_ord": [0, 16], "note": [0, 2, 3, 13, 14, 16, 19, 21], "notebook": 22, "notic": 18, "notimplementederror": 4, "now": [9, 13, 15, 18, 20, 23], "np": [0, 2, 4, 5, 6, 9, 12, 13, 15, 18, 19, 20, 21, 23], "num_num_ansatz_op": 4, "num_op_sum_linop": [1, 7], "number": [0, 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 18, 21, 23], "number_oper": [0, 7], "numer": [0, 2, 4, 16], "numnumansatzopspinbalanc": [0, 4, 7], "numnumansatzopspinbalancedjw": [4, 7], "numopsumevolutionjw": [4, 7, 13, 19], "numopsumevolutionspinlessjw": [4, 7], "numpi": [0, 1, 2, 4, 6, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23], "o": [0, 15, 20], "o_1": 0, "o_2": 0, "o_k": 0, "obj": 0, "object": [0, 2, 3, 4, 5, 9, 16, 18, 20], "obtain": [0, 8, 9, 12, 13, 18, 23], "occ_a": 6, "occ_b": 6, "occup": [0, 6, 8, 12, 14], "occupi": [0, 4, 5, 6, 13, 14], "occupied_orbit": [0, 4, 13, 19, 20], "often": [8, 11, 18], "onc": [12, 13, 22], "one": [0, 1, 2, 4, 5, 8, 9, 13, 14, 18, 20, 22, 23], "one_body_basis_chang": 23, "one_body_energi": 23, "one_body_integr": 0, "one_body_linop": [1, 7], "one_body_squar": 0, "one_body_tensor": [0, 9, 23], "one_hot": [2, 7], "one_rdm": 0, "ones": 9, "onli": [0, 2, 4, 8, 11, 12, 13, 20, 22], "onsit": 0, "onto": [13, 16], "op": [0, 4, 16], "op1": [0, 16], "op2": [0, 16], "op3": 16, "op4": 16, "opaqu": 13, "open": [0, 11], "openbla": 22, "oper": [0, 1, 2, 3, 4, 5, 8, 11, 12, 16, 18, 22, 23], "oppos": 13, "opposit": [18, 20], "optim": [0, 2, 4, 7, 11, 13, 19, 21], "optimization_level": [13, 19], "optimize_kwarg": 3, "optimize_regular": 3, "optimize_vari": 3, "optimizeresult": [3, 18], "option": [0, 1, 2, 3, 4, 5, 9, 15, 18, 22], "orb": [0, 16], "orbit": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 18, 20, 21, 23], "orbital_rot": [0, 1, 2, 4, 12, 13, 14, 19, 20, 21, 23], "orbital_rotation_a": 2, "orbital_rotation_b": 2, "orbital_symmetri": 0, "orbitalrotationjw": [4, 7, 13, 19, 20], "orbitalrotationspinlessjw": [4, 7], "order": [0, 1, 2, 4, 5, 8, 9, 13, 14, 16, 19, 20, 23], "ordereddict": [13, 19], "org": 0, "origin": [0, 2, 11, 13, 23], "orthogon": [2, 5], "other": [0, 4, 11, 14, 18, 19, 20], "otherwis": 0, "our": [15, 18, 20, 23], "out": [2, 23], "output": [0, 3, 4, 13, 18, 20], "over": 0, "overrid": [0, 2], "overwritten": [0, 15, 18], "own": 4, "p": [0, 2, 8, 9, 11, 13, 18, 19, 20], "packag": [15, 18, 22], "pacman": 22, "pad": 0, "page": [8, 9, 11, 12, 13, 14], "pair": [0, 1, 2, 4, 5, 6, 11, 13, 14], "pairs_aa": [13, 18, 20], "pairs_ab": [13, 18, 20], "pairs_bb": 20, "paper": 11, "parallel": [2, 11, 13], "param": 0, "paramet": [0, 1, 2, 3, 4, 5, 6, 11, 15, 18], "parameter_valu": 4, "params_to_vec": [3, 18], "pars": [15, 18], "part": [0, 5, 8, 12, 14, 15], "particl": [0, 5, 6, 12, 16, 21], "pass": [0, 1, 2, 4, 9, 12, 13, 14, 15, 16, 18, 19], "pass_manag": [13, 19], "passmanag": [4, 13], "path": 0, "pathlik": 0, "pattern": [13, 15], "pauli": 0, "per": 23, "perform": [0, 2, 3, 8, 9, 12, 13, 20, 23], "period": 0, "periodic_i": 0, "periodic_x": 0, "permut": 2, "persist": 22, "ph": 5, "phase": [0, 2, 4, 6, 13], "phase_angl": 0, "phaseg": 13, "phi": [0, 2, 6], "phi_0": 11, "pi": [0, 15], "piec": [9, 16], "pip": 21, "pipelin": 13, "pivot": 2, "pk": 2, "place": [0, 2, 11, 13, 16, 22], "plain": 14, "pmatrix": [0, 2], "point": 0, "polar": 0, "posit": [2, 3, 5, 14], "possibl": [0, 2, 6, 20, 21], "possibli": [0, 18], "potenti": 0, "power": 0, "pq": [0, 2, 8, 9], "pqr": [0, 2, 8, 9, 23], "practic": 8, "pre": [11, 19], "pre_init": [4, 7, 13, 19], "pre_init_pass": [4, 7, 19], "precis": 6, "prepar": [0, 4, 20], "preparehartreefockjw": [4, 7, 13, 19, 20], "preparehartreefockspinlessjw": [4, 7, 20], "prepareslaterdeterminantjw": [4, 7, 13, 19, 20], "prepareslaterdeterminantspinlessjw": [4, 7, 20], "present": 3, "preserv": [16, 20], "preset_passmanag": [13, 19], "previou": [18, 20], "previous": [8, 13, 14, 18], "primit": [4, 17, 21], "primitivejob": 4, "primitiveresult": 4, "print": [0, 6, 13, 14, 15, 16, 18, 20, 21, 23], "probabl": [0, 4], "problem": 3, "process": 0, "processor": 11, "prod": 15, "prod_": [0, 4, 11], "prod_k": 8, "prod_state_sum": 0, "produc": [0, 13], "product": [0, 2, 8, 14, 15, 16], "productstatesum": [0, 7], "programmat": 16, "properti": [0, 2, 12], "proport": [0, 8], "protocol": 0, "provid": [9, 13, 19, 22], "pseudorandom": [0, 4, 5, 6], "psi": [0, 11], "pub": [4, 20], "pub_result": 20, "put": 15, "py": [9, 15, 18], "pypi": 22, "pyscf": [0, 4, 14, 15, 18, 20, 21, 23], "python3": [15, 18], "q": [0, 8, 9, 13, 19], "qdrift": 0, "qi": 0, "qiskit": [7, 13, 17, 21, 22], "qiskit_vec_to_ffsim_vec": [4, 7], "qk": 2, "quadrat": [8, 10, 21, 23], "qualnam": 0, "quantifi": 2, "quantiti": 0, "quantum": [0, 4, 8, 11, 13, 14, 17, 20, 21], "quantumcircuit": [4, 13, 19, 20], "quantumregist": [13, 19, 20], "qubit": [0, 4, 10, 11, 15, 19, 20, 21], "r": [0, 2, 8, 9], "radic": 20, "radius_1": 15, "radius_2": 15, "rais": [0, 2, 4, 5, 6], "random": [0, 4, 6, 7, 9, 13, 14, 15, 16, 19, 20, 21], "random_antihermitian": [5, 7], "random_density_matrix": [5, 7], "random_diagonal_coulomb_hamiltonian": [5, 7], "random_double_factorized_hamiltonian": [5, 7, 13, 19], "random_fermion_hamiltonian": [5, 7], "random_fermion_oper": [5, 7], "random_hermitian": [5, 7], "random_molecular_hamiltonian": [5, 7], "random_nelec": [6, 7], "random_occupied_orbit": [6, 7], "random_orthogon": [5, 7], "random_real_symmetric_matrix": [5, 7, 9, 13, 19, 20], "random_special_orthogon": [5, 7], "random_state_vector": [5, 7, 16], "random_t2_amplitud": [5, 7], "random_two_body_tensor": [5, 7, 9], "random_uccsd_restrict": [5, 7], "random_ucj_op_spin_balanc": [5, 7, 13, 19], "random_ucj_op_spin_unbalanc": [5, 7, 19], "random_ucj_op_spinless": [5, 7], "random_unitari": [5, 7, 13, 14, 19, 20, 21], "rang": [0, 2, 6, 13, 14, 15, 18, 20, 21, 23], "rangl": [0, 4, 11, 14], "rank": [0, 2, 5, 8, 13], "rather": [0, 5, 12, 14], "rccsd": 20, "rdm": [0, 7], "rdm1": 0, "rdm2": 0, "rdm3": 0, "rdm4": 0, "reach": 18, "read": 0, "real": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 18, 21], "reason": [4, 12], "recal": 13, "recommend": [4, 13, 16, 19, 21], "reconstruct": [0, 2, 23], "reconstruct_t2_alpha_beta": 2, "recover": 0, "reduc": [0, 2, 13], "reduced_matrix": [2, 7], "reduced_matrix_product_st": 0, "reduct": 18, "redund": 11, "refer": [0, 2, 3, 4, 5, 6, 11, 12, 14, 18, 21], "reference_occup": [0, 15], "reference_occupations_spati": 15, "reference_st": 18, "regress": 0, "regular": [3, 18], "rel": [0, 2, 4, 6, 18], "rel_reduction_of_f_": 18, "relat": 12, "releas": 21, "reorder": [0, 8], "rep": 13, "repeat": 15, "repeatedli": 12, "repetit": [0, 5, 11, 13, 18], "repositori": 22, "repr": 16, "repres": [0, 2, 3, 4, 5, 6, 9, 11, 14, 16, 18, 19], "represent": [0, 1, 2, 4, 5, 10, 14, 16, 21, 23], "reproduc": 23, "request": 0, "requir": [0, 9, 11, 13, 14, 22], "reshap": 14, "respect": [0, 2, 3, 23], "rest": [0, 13], "restrict": [0, 5, 13, 18], "result": [0, 1, 2, 3, 4, 5, 8, 9, 11, 13, 15, 18, 19, 20, 23], "retain": [0, 13], "retriev": 20, "return": [0, 1, 2, 3, 4, 5, 6, 12, 15, 16, 18, 23], "revers": 20, "rewrit": 0, "rewritten": 12, "rhf": [15, 18, 20, 21, 23], "right": [0, 4, 12, 14, 16], "ring": 0, "rise": [2, 8], "rng": [9, 13, 15, 19, 20], "rohf": 20, "root": 0, "rotat": [0, 1, 2, 4, 5, 8, 10, 11, 14, 21, 23], "rotated_vec": 14, "routin": [2, 9, 16], "row": [0, 2, 14], "rtol": [0, 2, 4, 6], "rtype": [2, 4], "run": [0, 4, 13, 15, 18, 19, 20, 21, 22, 23], "run_ccsd": 0, "run_cisd": 0, "run_fci": [0, 15, 18], "run_mp2": 0, "run_sci": 0, "rung": 11, "runner": [15, 18], "rust": 22, "rvert": 0, "s_": [0, 14], "s_a": 0, "s_b": 0, "sa": 9, "same": [0, 9, 11, 12, 13, 14, 15, 18, 20], "sampl": [0, 4, 5, 6, 9], "sample_slater_determin": [0, 7], "sample_state_vector": [0, 7], "sampler": [0, 4, 17, 21], "samplerpubresult": 4, "sandwich": 13, "satisfi": [0, 12, 16, 20, 22], "save": [0, 18, 22], "scalar": [0, 16], "scale": [8, 13, 15, 19], "scf": [0, 15, 18, 20, 21, 23], "scheme": 8, "schmidt": 5, "sci": 0, "sci_energi": 0, "sci_vec": 0, "scipi": [0, 2, 3, 15, 16, 18, 21, 23], "search": 14, "second": [0, 2, 4, 8], "section": [8, 19], "sector": [0, 1, 2, 4, 15], "see": [0, 2, 4, 11, 13, 14, 19, 22, 23], "seed": [0, 4, 5, 6, 9, 13, 14, 19, 20, 21], "seen": 20, "select": 3, "semi": 5, "sens": [13, 23], "separ": [11, 14], "sequenc": [0, 2, 4, 13], "seri": 2, "serial": 0, "serializ": [15, 18], "set": [0, 1, 2, 4, 5, 8, 11, 12, 13, 19, 23], "setup": 11, "sever": [9, 13], "shape": [0, 2, 5, 11, 23], "share": 11, "shell": [11, 18], "shot": [0, 4, 20], "should": [0, 1, 2, 4, 5, 6, 9, 12, 22], "show": [13, 15, 16, 18, 19, 20], "shown": 16, "side": 0, "sigma": [0, 1, 4, 8, 9, 11, 12], "sign": 0, "signatur": 3, "signific": 23, "significantli": 13, "similar": 18, "simpl": [20, 22], "simpler": 0, "simpli": [4, 13, 14], "simplist": 23, "simul": [0, 4, 8, 11, 12, 14, 17, 21, 24], "simulate_qdrift_double_factor": [0, 7], "simulate_trotter_diag_coulomb_split_op": [0, 7], "simulate_trotter_double_factor": [0, 7, 8, 23], "simulate_trotter_step_double_factor": 23, "simulatetrotterdiagcoulombsplitopjw": [4, 7], "simulatetrotterdoublefactorizedjw": [4, 7, 13, 19], "sin": [0, 15], "sinc": [0, 2, 11, 12, 15, 18], "singl": [0, 1, 4, 6, 8, 13, 23], "singlefactorizedhamiltonian": [0, 7], "singular": [0, 2], "site": [0, 15, 18], "size": [0, 3, 15], "slater": [0, 4], "slater_determin": [0, 7], "slater_determinant_amplitud": [0, 7], "slater_determinant_rdm": [0, 7], "slice": 2, "small": 2, "smaller": [0, 2, 8, 16, 23], "so": [0, 2, 6, 8, 11, 12, 13, 15, 16, 22, 23], "softwar": [0, 21], "solv": 3, "some": [0, 2, 6, 9, 13, 14, 16, 18, 20], "sometim": [0, 14], "sort": 20, "sourc": [0, 1, 2, 3, 4, 5, 6, 21], "space": [0, 9, 14, 15, 18, 20, 23], "span": [0, 2], "spars": [9, 16, 23], "sparsepauliop": 4, "sparsiti": 11, "spatial": [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 23], "speci": [4, 6], "special": [2, 5, 11, 13, 21], "specif": 14, "specifi": [0, 1, 2, 3, 4, 5, 6, 9, 11, 13, 15, 23], "spectral": 0, "spin": [0, 1, 2, 4, 5, 6, 7, 12, 13, 14, 15, 16, 18, 20, 21], "spin_squar": [0, 7], "spin_sum": 0, "spinless": [0, 4, 5, 6], "split": [0, 4, 23], "squar": [0, 2, 11, 13, 18, 20], "stack": 0, "stage": [4, 13, 19], "standard": 18, "standard_norm": [9, 13, 19], "star": 2, "start": 0, "state": [0, 1, 3, 4, 5, 9, 10, 11, 12, 13, 18, 20, 21, 23], "statevector": [0, 4, 7], "static": 0, "statist": 20, "statu": [15, 18], "step": [0, 4, 8, 12, 15, 19, 23], "step_tim": 23, "still": [0, 8], "sto": [0, 15, 18, 23], "stop": [3, 15, 18], "store": [0, 2, 4, 6, 9, 11, 13, 18, 19, 23], "store_cisd_vec": 0, "store_fci_vec": 0, "store_sci_vec": 0, "store_t1": 0, "store_t2": 0, "str": [0, 2, 4, 6], "straightforward": 2, "strategi": 0, "strength": 0, "strictli": 3, "string": [0, 14, 16], "strings_a": 0, "strings_b": 0, "strings_to_address": [0, 7], "structur": [0, 8], "sub": 0, "subdirectori": 22, "submit": 20, "subroutin": 12, "subspac": [0, 2, 16], "substitut": [0, 5], "subsystem": [14, 22], "subtract": [0, 16], "success": [15, 18], "sudo": 22, "suffix": 15, "suggest": 19, "sum": [0, 4, 8, 23], "sum_": [0, 1, 2, 4, 8, 9, 11, 12, 23], "sum_j": 12, "sum_k": [8, 12], "sum_p": 0, "sum_t": 0, "summat": 0, "support": [0, 2, 9, 14, 16, 20, 22], "supportsapplyunitari": [0, 7], "supportsapproximateequ": [0, 7], "supportsdiagon": [0, 7], "supportsfermionoper": [0, 7], "supportslinearoper": [0, 7], "supportstrac": [0, 7], "suzuki": [0, 23], "swap": [0, 11, 13], "symmetr": [0, 2, 4, 5, 8, 11], "symmetri": [0, 12, 15, 18, 20, 21, 23], "system": [0, 4, 6, 12, 14, 22], "t": [0, 2, 4, 8, 11, 12, 20, 21], "t1": 0, "t1a": 0, "t1b": 0, "t2": [0, 2, 5, 18, 20], "t2_amplitud": 2, "t2aa": 0, "t2ab": 0, "t2bb": 0, "t_": 2, "tabl": [0, 16], "take": [0, 3, 18, 19], "taken": 11, "target": [2, 13], "target_orb": 0, "tau": [0, 1, 4, 8, 9, 11], "taylor": 2, "tensor": [0, 1, 2, 5, 8, 9, 18, 23], "term": [0, 2, 5, 8, 11, 16, 23], "test": [7, 21, 23], "text": [0, 8, 9], "th": [2, 12], "than": [0, 4, 5, 12, 13, 14, 18, 21], "thei": [0, 9, 11, 12, 16], "them": [11, 13, 14], "therefor": [0, 2, 11], "theta": [0, 15], "thi": [0, 2, 4, 8, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23], "think": 2, "third": [0, 2], "those": [3, 18], "though": 13, "three": [0, 1, 4, 9, 16], "threshold": [0, 2, 3], "thu": 8, "time": [0, 2, 3, 4, 9, 13, 14, 19, 20, 23], "titl": 21, "tmp": [9, 15, 18], "tmp4297rm90": 18, "tmpolu6mcs3": 15, "to_diag_coulomb_mat": 0, "to_fcidump": 0, "to_json": 0, "to_molecular_hamiltonian": 0, "to_number_represent": 0, "to_orbital_rot": 0, "to_paramet": [0, 18], "to_z_represent": 0, "tol": [0, 2, 23], "toler": [0, 2, 4, 6, 11, 23], "too": 2, "top": 20, "topologi": [11, 13, 18], "toru": 0, "total": [4, 8, 15, 18, 23], "tox": [15, 18], "trace": [0, 5, 7, 9, 23], "tracea": [9, 23], "trajectori": 0, "transform": [0, 1, 4], "transformationpass": 4, "transpil": [4, 13, 17, 21], "transpiled_opt": 13, "treat": 0, "triangl": 11, "trianglular": [0, 2], "triangular": [0, 2, 4, 5], "triplet": 6, "trotter": [0, 4, 21, 24], "true": [0, 2, 3, 4, 6, 16, 18, 20], "truncat": 8, "try": 23, "tunnel": 0, "tupl": [0, 1, 2, 4, 5, 6, 12, 15, 16, 23], "tutori": [21, 23], "twice": [0, 15, 19], "two": [0, 2, 5, 8, 9, 11, 13, 14, 15, 18, 22, 23], "two_body_integr": 0, "two_body_tensor": [0, 2, 9, 23], "type": [0, 1, 2, 3, 4, 5, 6, 20, 22], "typeerror": 0, "typic": 0, "u": [0, 1, 2, 4, 8, 11, 12], "u_": 4, "u_k": 0, "ubuntu": 22, "uccsd": [0, 5, 20], "uccsdoprestrictedr": [0, 5, 7], "ucj": [0, 4, 5], "ucj_balanced_jw": 13, "ucj_op": [4, 13, 19, 20], "ucjoperatorjw": 4, "ucjopspinbalanc": [0, 4, 5, 7, 11, 13, 18, 20], "ucjopspinbalancedjw": [4, 7, 13, 19, 20], "ucjopspinless": [0, 4, 5, 7], "ucjopspinlessjw": [4, 7], "ucjopspinunbalanc": [0, 4, 5, 7, 11, 20], "ucjopspinunbalancedjw": [4, 7, 13, 19, 20], "uhf": 20, "unbalanc": [0, 4, 5, 20], "uncorrel": 0, "under": [0, 4], "underli": 4, "unifi": 20, "uniform": [0, 4, 5], "unimpl": 4, "union": [2, 4], "unit": 2, "unitari": [0, 1, 2, 4, 5, 8, 10, 12, 14, 17, 21], "univers": 2, "unlik": 0, "unord": 0, "untouch": 0, "up": [0, 2, 6, 8, 14, 22], "updat": [0, 8], "upon": 16, "upper": [0, 2, 4, 5, 11], "url": 21, "us": [0, 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23], "usag": [0, 2, 16, 19], "user": 22, "userwarn": [9, 15, 18], "usual": 0, "util": [2, 5, 6, 8], "v": [0, 20], "v_": 0, "v_i": 2, "v_j": 2, "vacuum": 4, "valid": [0, 4, 5, 6], "valu": [0, 1, 2, 3, 4, 5, 6, 9, 11, 18, 19, 23], "valueerror": [0, 2, 4, 5], "vari": [0, 4], "variabl": [14, 23], "variant": [11, 13, 18], "variat": [0, 3, 11, 18], "variation": 18, "varphi": 0, "vdot": [18, 21, 23], "ve": 23, "vec": [0, 1, 2, 4, 9, 12, 14, 16, 21, 23], "vec_a": 0, "vec_b": 0, "vector": [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 15, 16, 18, 21], "verbos": 6, "verifi": 2, "version": 4, "vertic": 0, "via": [0, 23], "view": [0, 16], "volum": 22, "w": 0, "wa": [0, 3, 4, 11], "wai": 11, "want": 13, "warn": [9, 15, 18, 20], "water": 15, "wavefunct": [3, 18], "we": [0, 2, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23], "web": 22, "weight": 14, "well": [3, 14, 21, 22, 23], "when": [0, 3, 4, 9, 11, 13, 14, 16, 19, 21], "whenev": 0, "where": [0, 1, 2, 3, 4, 5, 8, 11, 12, 14, 22, 23], "whether": [0, 1, 2, 3, 4, 5, 16], "which": [0, 2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 22, 23], "while": [8, 11], "whose": [0, 2, 14], "width": 5, "wigner": [0, 4], "william": 2, "window": [21, 22], "wise": 2, "with_final_orbital_rot": [0, 5], "with_phase_angl": 0, "with_phi": 0, "within": [0, 2, 13, 16, 18, 21], "without": [11, 13, 18], "won": 21, "word": [0, 11, 20], "work": [9, 13, 15, 18, 19, 21, 22], "workflow": 20, "would": [13, 14], "wrapper": 23, "write": 23, "written": 8, "wrote": 23, "wsl": 22, "x": [0, 3, 4, 13, 15, 18, 19, 20], "x0": [3, 15, 18], "xx_plus_yi": [13, 19], "xxplusyyg": [13, 19], "y": 0, "yaml": 22, "yet": [9, 18], "yield": [0, 2, 4, 8, 11, 15, 23], "you": [0, 1, 2, 4, 9, 14, 18, 21, 22, 23], "your": [19, 22], "z": [0, 1, 2, 4, 5, 12, 16, 21], "z_represent": [0, 1, 4, 5], "zero": [0, 2, 4, 9, 19], "zip": [0, 15, 18, 23], "\u03c8": 18}, "titles": ["ffsim", "ffsim.contract", "ffsim.linalg", "ffsim.optimize", "ffsim.qiskit", "ffsim.random", "ffsim.testing", "API reference", "Double-factorized representation of the molecular Hamiltonian", "Hamiltonians", "Explanations", "The local unitary cluster Jastrow (LUCJ) ansatz", "Orbital rotations and quadratic Hamiltonians", "Qubit gate decompositions of fermionic gates", "State vectors and gates", "How to simulate entanglement forging", "How to use the FermionOperator class", "How-to guides", "How to simulate the local unitary cluster Jastrow (LUCJ) ansatz", "How to build and transpile Qiskit quantum circuits", "How to use ffsim\u2019s Qiskit Sampler primitive", "ffsim", "Installation", "Implementing Trotter simulation of the double-factorized Hamiltonian", "Tutorials"], "titleterms": {"": 20, "The": 11, "action": 9, "an": 20, "ansatz": [11, 15, 18], "api": 7, "applic": 8, "background": 8, "balanc": [11, 19], "brief": 8, "build": [15, 19, 23], "can": 20, "choos": 15, "circuit": [19, 20], "cite": 21, "class": 16, "close": 20, "cluster": [11, 13, 18, 19], "code": 21, "comput": 15, "content": 21, "contract": 1, "coulomb": [13, 19], "criteria": 20, "data": 9, "decomposit": 13, "determin": [13, 19], "diagon": [13, 19], "docker": 22, "doubl": [8, 13, 19, 23], "energi": 15, "entangl": 15, "evolut": [8, 12, 13, 19], "exampl": [20, 21], "explan": 10, "factor": [8, 13, 19, 23], "fermion": [13, 14], "fermionoper": 16, "ffsim": [0, 1, 2, 3, 4, 5, 6, 20, 21], "ffsimsampl": 20, "fock": [13, 19], "forg": 15, "formula": 8, "from": [20, 22], "gate": [13, 14, 19], "gener": [11, 18], "guid": 17, "hamiltonian": [8, 9, 12, 13, 19, 23], "hartre": [13, 19], "how": [15, 16, 17, 18, 19, 20], "implement": 23, "initi": 15, "instal": [21, 22], "jastrow": [11, 13, 18, 19], "linalg": 2, "linear": 18, "linearoper": 9, "local": [11, 13, 18], "lucj": [11, 18, 20], "merg": 13, "method": 18, "molecul": [15, 20], "molecular": 8, "more": 20, "number": [13, 19], "occup": 15, "open": 20, "oper": [9, 13, 15, 19], "optim": [3, 15, 18], "orbit": [12, 13, 19], "overview": 19, "pip": 22, "prepar": [13, 19], "primit": 20, "qiskit": [4, 19, 20], "quadrat": 12, "quantum": 19, "qubit": 13, "random": 5, "refer": [7, 15], "represent": [8, 9], "rotat": [12, 13, 19], "sampl": 20, "sampler": 20, "scipi": 9, "shell": 20, "simul": [13, 15, 18, 19, 23], "slater": [13, 19], "sourc": 22, "spin": [11, 19], "spinless": 14, "state": [14, 19], "sum": [13, 19], "suzuki": 8, "test": 6, "time": [8, 12], "transform": 19, "transpil": 19, "treat": 14, "trotter": [8, 13, 19, 23], "tutori": 24, "ucj": [11, 13, 18, 19], "unbalanc": [11, 19], "unitari": [11, 13, 18, 19], "us": [16, 20, 22], "vector": 14, "via": [8, 9], "within": 22}}) \ No newline at end of file diff --git a/dev/tutorials/double-factorized-trotter.html b/dev/tutorials/double-factorized-trotter.html index 70dc681d4..1ebe9a178 100644 --- a/dev/tutorials/double-factorized-trotter.html +++ b/dev/tutorials/double-factorized-trotter.html @@ -596,7 +596,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9402384004020212
+Fidelity of Trotter-evolved state with exact state: 0.9402428512433694
 

The fidelity of the final result can be improved by increasing the number of Trotter steps.

@@ -623,7 +623,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9985210983501476
+Fidelity of Trotter-evolved state with exact state: 0.9985212764981216
 

In the code cell below, we reproduce the results of our manually implemented function using ffsim’s built-in implementation.

@@ -651,7 +651,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9985210983500776
+Fidelity of Trotter-evolved state with exact state: 0.9985212764981467
 

A higher order formula achieves a higher fidelity with fewer Trotter steps:

@@ -679,7 +679,7 @@

Implement Trotter simulation
-Fidelity of Trotter-evolved state with exact state: 0.9996731173183298
+Fidelity of Trotter-evolved state with exact state: 0.9996731172098104
 

You’ve made it to the end of this tutorial!

diff --git a/dev/tutorials/double-factorized-trotter.ipynb b/dev/tutorials/double-factorized-trotter.ipynb index 213690f93..dce5050cd 100644 --- a/dev/tutorials/double-factorized-trotter.ipynb +++ b/dev/tutorials/double-factorized-trotter.ipynb @@ -18,10 +18,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:40.284956Z", - "iopub.status.busy": "2024-11-08T22:01:40.284746Z", - "iopub.status.idle": "2024-11-08T22:01:41.053945Z", - "shell.execute_reply": "2024-11-08T22:01:41.053327Z" + "iopub.execute_input": "2024-11-08T22:06:57.424217Z", + "iopub.status.busy": "2024-11-08T22:06:57.424020Z", + "iopub.status.idle": "2024-11-08T22:06:58.186709Z", + "shell.execute_reply": "2024-11-08T22:06:58.186089Z" } }, "outputs": [ @@ -80,10 +80,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.057417Z", - "iopub.status.busy": "2024-11-08T22:01:41.056510Z", - "iopub.status.idle": "2024-11-08T22:01:41.061425Z", - "shell.execute_reply": "2024-11-08T22:01:41.060954Z" + "iopub.execute_input": "2024-11-08T22:06:58.190383Z", + "iopub.status.busy": "2024-11-08T22:06:58.189303Z", + "iopub.status.idle": "2024-11-08T22:06:58.194778Z", + "shell.execute_reply": "2024-11-08T22:06:58.194190Z" } }, "outputs": [], @@ -106,10 +106,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.063510Z", - "iopub.status.busy": "2024-11-08T22:01:41.063073Z", - "iopub.status.idle": "2024-11-08T22:01:41.067627Z", - "shell.execute_reply": "2024-11-08T22:01:41.067142Z" + "iopub.execute_input": "2024-11-08T22:06:58.197069Z", + "iopub.status.busy": "2024-11-08T22:06:58.196562Z", + "iopub.status.idle": "2024-11-08T22:06:58.201371Z", + "shell.execute_reply": "2024-11-08T22:06:58.200890Z" } }, "outputs": [ @@ -172,10 +172,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.069538Z", - "iopub.status.busy": "2024-11-08T22:01:41.069193Z", - "iopub.status.idle": "2024-11-08T22:01:41.073653Z", - "shell.execute_reply": "2024-11-08T22:01:41.073054Z" + "iopub.execute_input": "2024-11-08T22:06:58.203120Z", + "iopub.status.busy": "2024-11-08T22:06:58.202936Z", + "iopub.status.idle": "2024-11-08T22:06:58.207036Z", + "shell.execute_reply": "2024-11-08T22:06:58.206562Z" } }, "outputs": [ @@ -208,10 +208,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.075600Z", - "iopub.status.busy": "2024-11-08T22:01:41.075265Z", - "iopub.status.idle": "2024-11-08T22:01:41.079257Z", - "shell.execute_reply": "2024-11-08T22:01:41.078651Z" + "iopub.execute_input": "2024-11-08T22:06:58.208899Z", + "iopub.status.busy": "2024-11-08T22:06:58.208701Z", + "iopub.status.idle": "2024-11-08T22:06:58.212282Z", + "shell.execute_reply": "2024-11-08T22:06:58.211825Z" } }, "outputs": [ @@ -242,10 +242,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.081046Z", - "iopub.status.busy": "2024-11-08T22:01:41.080860Z", - "iopub.status.idle": "2024-11-08T22:01:41.098634Z", - "shell.execute_reply": "2024-11-08T22:01:41.098163Z" + "iopub.execute_input": "2024-11-08T22:06:58.214090Z", + "iopub.status.busy": "2024-11-08T22:06:58.213749Z", + "iopub.status.idle": "2024-11-08T22:06:58.236983Z", + "shell.execute_reply": "2024-11-08T22:06:58.236471Z" } }, "outputs": [ @@ -302,10 +302,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.100553Z", - "iopub.status.busy": "2024-11-08T22:01:41.100086Z", - "iopub.status.idle": "2024-11-08T22:01:41.104547Z", - "shell.execute_reply": "2024-11-08T22:01:41.103939Z" + "iopub.execute_input": "2024-11-08T22:06:58.239159Z", + "iopub.status.busy": "2024-11-08T22:06:58.238665Z", + "iopub.status.idle": "2024-11-08T22:06:58.243140Z", + "shell.execute_reply": "2024-11-08T22:06:58.242665Z" } }, "outputs": [], @@ -360,10 +360,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.106463Z", - "iopub.status.busy": "2024-11-08T22:01:41.106124Z", - "iopub.status.idle": "2024-11-08T22:01:41.109825Z", - "shell.execute_reply": "2024-11-08T22:01:41.109224Z" + "iopub.execute_input": "2024-11-08T22:06:58.245288Z", + "iopub.status.busy": "2024-11-08T22:06:58.244816Z", + "iopub.status.idle": "2024-11-08T22:06:58.248360Z", + "shell.execute_reply": "2024-11-08T22:06:58.247895Z" } }, "outputs": [], @@ -400,10 +400,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.111938Z", - "iopub.status.busy": "2024-11-08T22:01:41.111598Z", - "iopub.status.idle": "2024-11-08T22:01:41.209340Z", - "shell.execute_reply": "2024-11-08T22:01:41.208776Z" + "iopub.execute_input": "2024-11-08T22:06:58.250430Z", + "iopub.status.busy": "2024-11-08T22:06:58.250104Z", + "iopub.status.idle": "2024-11-08T22:06:58.348726Z", + "shell.execute_reply": "2024-11-08T22:06:58.348100Z" } }, "outputs": [], @@ -439,10 +439,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.211584Z", - "iopub.status.busy": "2024-11-08T22:01:41.211171Z", - "iopub.status.idle": "2024-11-08T22:01:41.259484Z", - "shell.execute_reply": "2024-11-08T22:01:41.259009Z" + "iopub.execute_input": "2024-11-08T22:06:58.351471Z", + "iopub.status.busy": "2024-11-08T22:06:58.350836Z", + "iopub.status.idle": "2024-11-08T22:06:58.399852Z", + "shell.execute_reply": "2024-11-08T22:06:58.399338Z" } }, "outputs": [ @@ -450,7 +450,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9402384004020212\n" + "Fidelity of Trotter-evolved state with exact state: 0.9402428512433694\n" ] } ], @@ -480,10 +480,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.261498Z", - "iopub.status.busy": "2024-11-08T22:01:41.261144Z", - "iopub.status.idle": "2024-11-08T22:01:41.471900Z", - "shell.execute_reply": "2024-11-08T22:01:41.471413Z" + "iopub.execute_input": "2024-11-08T22:06:58.401821Z", + "iopub.status.busy": "2024-11-08T22:06:58.401450Z", + "iopub.status.idle": "2024-11-08T22:06:58.611761Z", + "shell.execute_reply": "2024-11-08T22:06:58.611226Z" } }, "outputs": [ @@ -491,7 +491,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985210983501476\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985212764981216\n" ] } ], @@ -521,10 +521,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.474016Z", - "iopub.status.busy": "2024-11-08T22:01:41.473658Z", - "iopub.status.idle": "2024-11-08T22:01:41.597130Z", - "shell.execute_reply": "2024-11-08T22:01:41.596624Z" + "iopub.execute_input": "2024-11-08T22:06:58.613926Z", + "iopub.status.busy": "2024-11-08T22:06:58.613537Z", + "iopub.status.idle": "2024-11-08T22:06:58.740178Z", + "shell.execute_reply": "2024-11-08T22:06:58.739480Z" } }, "outputs": [ @@ -532,7 +532,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9985210983500776\n" + "Fidelity of Trotter-evolved state with exact state: 0.9985212764981467\n" ] } ], @@ -563,10 +563,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-11-08T22:01:41.599143Z", - "iopub.status.busy": "2024-11-08T22:01:41.598788Z", - "iopub.status.idle": "2024-11-08T22:01:41.698526Z", - "shell.execute_reply": "2024-11-08T22:01:41.697935Z" + "iopub.execute_input": "2024-11-08T22:06:58.742511Z", + "iopub.status.busy": "2024-11-08T22:06:58.742079Z", + "iopub.status.idle": "2024-11-08T22:06:58.856213Z", + "shell.execute_reply": "2024-11-08T22:06:58.855611Z" } }, "outputs": [ @@ -574,7 +574,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Fidelity of Trotter-evolved state with exact state: 0.9996731173183298\n" + "Fidelity of Trotter-evolved state with exact state: 0.9996731172098104" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" ] } ],