-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathtrain.py
188 lines (161 loc) · 8.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""
Train a model on TACRED.
"""
import os
import sys
from datetime import datetime
import time
import numpy as np
import random
import argparse
from shutil import copyfile
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from data.loader import DataLoader
from model.trainer import GCNTrainer
from utils import torch_utils, scorer, constant, helper
from utils.vocab import Vocab
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='dataset/tacred')
parser.add_argument('--vocab_dir', type=str, default='dataset/vocab')
parser.add_argument('--emb_dim', type=int, default=300, help='Word embedding dimension.')
parser.add_argument('--ner_dim', type=int, default=30, help='NER embedding dimension.')
parser.add_argument('--pos_dim', type=int, default=30, help='POS embedding dimension.')
parser.add_argument('--hidden_dim', type=int, default=200, help='RNN hidden state size.')
parser.add_argument('--num_layers', type=int, default=2, help='Num of RNN layers.')
parser.add_argument('--input_dropout', type=float, default=0.5, help='Input dropout rate.')
parser.add_argument('--gcn_dropout', type=float, default=0.5, help='GCN layer dropout rate.')
parser.add_argument('--word_dropout', type=float, default=0.04, help='The rate at which randomly set a word to UNK.')
parser.add_argument('--topn', type=int, default=1e10, help='Only finetune top N word embeddings.')
parser.add_argument('--lower', dest='lower', action='store_true', help='Lowercase all words.')
parser.add_argument('--no-lower', dest='lower', action='store_false')
parser.set_defaults(lower=False)
parser.add_argument('--prune_k', default=-1, type=int, help='Prune the dependency tree to <= K distance off the dependency path; set to -1 for no pruning.')
parser.add_argument('--conv_l2', type=float, default=0, help='L2-weight decay on conv layers only.')
parser.add_argument('--pooling', choices=['max', 'avg', 'sum'], default='max', help='Pooling function type. Default max.')
parser.add_argument('--pooling_l2', type=float, default=0, help='L2-penalty for all pooling output.')
parser.add_argument('--mlp_layers', type=int, default=2, help='Number of output mlp layers.')
parser.add_argument('--no_adj', dest='no_adj', action='store_true', help="Zero out adjacency matrix for ablation.")
parser.add_argument('--no-rnn', dest='rnn', action='store_false', help='Do not use RNN layer.')
parser.add_argument('--rnn_hidden', type=int, default=200, help='RNN hidden state size.')
parser.add_argument('--rnn_layers', type=int, default=1, help='Number of RNN layers.')
parser.add_argument('--rnn_dropout', type=float, default=0.5, help='RNN dropout rate.')
parser.add_argument('--lr', type=float, default=1.0, help='Applies to sgd and adagrad.')
parser.add_argument('--lr_decay', type=float, default=0.9, help='Learning rate decay rate.')
parser.add_argument('--decay_epoch', type=int, default=5, help='Decay learning rate after this epoch.')
parser.add_argument('--optim', choices=['sgd', 'adagrad', 'adam', 'adamax'], default='sgd', help='Optimizer: sgd, adagrad, adam or adamax.')
parser.add_argument('--num_epoch', type=int, default=100, help='Number of total training epochs.')
parser.add_argument('--batch_size', type=int, default=50, help='Training batch size.')
parser.add_argument('--max_grad_norm', type=float, default=5.0, help='Gradient clipping.')
parser.add_argument('--log_step', type=int, default=20, help='Print log every k steps.')
parser.add_argument('--log', type=str, default='logs.txt', help='Write training log to file.')
parser.add_argument('--save_epoch', type=int, default=100, help='Save model checkpoints every k epochs.')
parser.add_argument('--save_dir', type=str, default='./saved_models', help='Root dir for saving models.')
parser.add_argument('--id', type=str, default='00', help='Model ID under which to save models.')
parser.add_argument('--info', type=str, default='', help='Optional info for the experiment.')
parser.add_argument('--seed', type=int, default=1234)
parser.add_argument('--cuda', type=bool, default=torch.cuda.is_available())
parser.add_argument('--cpu', action='store_true', help='Ignore CUDA.')
parser.add_argument('--load', dest='load', action='store_true', help='Load pretrained model.')
parser.add_argument('--model_file', type=str, help='Filename of the pretrained model.')
args = parser.parse_args()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(1234)
if args.cpu:
args.cuda = False
elif args.cuda:
torch.cuda.manual_seed(args.seed)
init_time = time.time()
# make opt
opt = vars(args)
label2id = constant.LABEL_TO_ID
opt['num_class'] = len(label2id)
# load vocab
vocab_file = opt['vocab_dir'] + '/vocab.pkl'
vocab = Vocab(vocab_file, load=True)
opt['vocab_size'] = vocab.size
emb_file = opt['vocab_dir'] + '/embedding.npy'
emb_matrix = np.load(emb_file)
assert emb_matrix.shape[0] == vocab.size
assert emb_matrix.shape[1] == opt['emb_dim']
# load data
print("Loading data from {} with batch size {}...".format(opt['data_dir'], opt['batch_size']))
train_batch = DataLoader(opt['data_dir'] + '/train.json', opt['batch_size'], opt, vocab, evaluation=False)
dev_batch = DataLoader(opt['data_dir'] + '/dev.json', opt['batch_size'], opt, vocab, evaluation=True)
model_id = opt['id'] if len(opt['id']) > 1 else '0' + opt['id']
model_save_dir = opt['save_dir'] + '/' + model_id
opt['model_save_dir'] = model_save_dir
helper.ensure_dir(model_save_dir, verbose=True)
# save config
helper.save_config(opt, model_save_dir + '/config.json', verbose=True)
vocab.save(model_save_dir + '/vocab.pkl')
file_logger = helper.FileLogger(model_save_dir + '/' + opt['log'], header="# epoch\ttrain_loss\tdev_loss\tdev_score\tbest_dev_score")
# print model info
helper.print_config(opt)
# model
if not opt['load']:
trainer = GCNTrainer(opt, emb_matrix=emb_matrix)
else:
# load pretrained model
model_file = opt['model_file']
print("Loading model from {}".format(model_file))
model_opt = torch_utils.load_config(model_file)
model_opt['optim'] = opt['optim']
trainer = GCNTrainer(model_opt)
trainer.load(model_file)
id2label = dict([(v,k) for k,v in label2id.items()])
dev_score_history = []
current_lr = opt['lr']
global_step = 0
global_start_time = time.time()
format_str = '{}: step {}/{} (epoch {}/{}), loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}'
max_steps = len(train_batch) * opt['num_epoch']
# start training
for epoch in range(1, opt['num_epoch']+1):
train_loss = 0
for i, batch in enumerate(train_batch):
start_time = time.time()
global_step += 1
loss = trainer.update(batch)
train_loss += loss
if global_step % opt['log_step'] == 0:
duration = time.time() - start_time
print(format_str.format(datetime.now(), global_step, max_steps, epoch,\
opt['num_epoch'], loss, duration, current_lr))
# eval on dev
print("Evaluating on dev set...")
predictions = []
dev_loss = 0
for i, batch in enumerate(dev_batch):
preds, _, loss = trainer.predict(batch)
predictions += preds
dev_loss += loss
predictions = [id2label[p] for p in predictions]
train_loss = train_loss / train_batch.num_examples * opt['batch_size'] # avg loss per batch
dev_loss = dev_loss / dev_batch.num_examples * opt['batch_size']
dev_p, dev_r, dev_f1 = scorer.score(dev_batch.gold(), predictions)
print("epoch {}: train_loss = {:.6f}, dev_loss = {:.6f}, dev_f1 = {:.4f}".format(epoch,\
train_loss, dev_loss, dev_f1))
dev_score = dev_f1
file_logger.log("{}\t{:.6f}\t{:.6f}\t{:.4f}\t{:.4f}".format(epoch, train_loss, dev_loss, dev_score, max([dev_score] + dev_score_history)))
# save
model_file = model_save_dir + '/checkpoint_epoch_{}.pt'.format(epoch)
trainer.save(model_file, epoch)
if epoch == 1 or dev_score > max(dev_score_history):
copyfile(model_file, model_save_dir + '/best_model.pt')
print("new best model saved.")
file_logger.log("new best model saved at epoch {}: {:.2f}\t{:.2f}\t{:.2f}"\
.format(epoch, dev_p*100, dev_r*100, dev_score*100))
if epoch % opt['save_epoch'] != 0:
os.remove(model_file)
# lr schedule
if len(dev_score_history) > opt['decay_epoch'] and dev_score <= dev_score_history[-1] and \
opt['optim'] in ['sgd', 'adagrad', 'adadelta']:
current_lr *= opt['lr_decay']
trainer.update_lr(current_lr)
dev_score_history += [dev_score]
print("")
print("Training ended with {} epochs.".format(epoch))