diff --git a/_sphinx/searchindex.js b/_sphinx/searchindex.js index 5efb0d95b..35a2f1b14 100644 --- a/_sphinx/searchindex.js +++ b/_sphinx/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"API Reference": [[13, null]], "Attack Comparator": [[28, "attack-comparator"]], "Attribution": [[0, null], [1, "attribution"]], "AttributionVisualizer": [[16, "attributionvisualizer"]], "Base Classes": [[1, null]], "BaseFeature": [[16, "basefeature"]], "Baselines": [[31, "baselines"]], "Batch": [[16, "batch"]], "BinaryConcreteStochasticGates": [[2, null]], "Captum API Reference": [[13, null]], "Classifier": [[3, "classifier"]], "Concept": [[3, "concept"]], "Concept-based Interpretability": [[3, null]], "ConceptInterpreter": [[3, "conceptinterpreter"]], "DataInfluence": [[14, "datainfluence"]], "Deconvolution": [[4, null]], "DeepLift": [[5, null]], "DeepLiftShap": [[6, null]], "FGSM": [[28, "fgsm"]], "Feature Ablation": [[7, null]], "Feature Permutation": [[8, null]], "Features": [[16, "features"]], "GaussianStochasticGates": [[9, null]], "GeneralFeature": [[16, "generalfeature"]], "GradCAM": [[19, "gradcam"]], "Gradient Attribution": [[1, "gradient-attribution"]], "GradientShap": [[10, null]], "Guided Backprop": [[11, null]], "Guided GradCAM": [[12, null]], "ImageFeature": [[16, "imagefeature"]], "Indices and Tables": [[13, "indices-and-tables"]], "Infidelity": [[23, "infidelity"]], "Influential Examples": [[14, null]], "Input X Gradient": [[15, null]], "Insights": [[16, null]], "Insights API Reference": [[13, null]], "Integrated Gradients": [[17, null]], "Internal Influence": [[19, "internal-influence"]], "Interpretable Embeddings": [[31, "interpretable-embeddings"]], "Interpretable Input": [[31, "interpretable-input"]], "KernelShap": [[18, null]], "LLM Attribution Classes": [[21, null]], "LLMAttribution": [[21, "llmattribution"]], "LLMAttributionResult": [[21, "llmattributionresult"]], "LLMGradientAttribution": [[21, "llmgradientattribution"]], "LRP": [[22, null]], "Layer Activation": [[19, "layer-activation"]], "Layer Attribution": [[1, "layer-attribution"], [19, null]], "Layer Conductance": [[19, "layer-conductance"]], "Layer DeepLift": [[19, "layer-deeplift"]], "Layer DeepLiftShap": [[19, "layer-deepliftshap"]], "Layer Feature Ablation": [[19, "layer-feature-ablation"]], "Layer Feature Permutation": [[19, "layer-feature-permutation"]], "Layer Gradient X Activation": [[19, "layer-gradient-x-activation"]], "Layer GradientShap": [[19, "layer-gradientshap"]], "Layer Integrated Gradients": [[19, "layer-integrated-gradients"]], "Layer LRP": [[19, "layer-lrp"]], "Lime": [[20, null]], "Linear Models": [[31, "linear-models"]], "Metrics": [[23, null]], "Min Param Perturbation": [[28, "min-param-perturbation"]], "Module": [[24, null]], "Neuron Attribution": [[1, "neuron-attribution"], [25, null]], "Neuron Conductance": [[25, "neuron-conductance"]], "Neuron Deconvolution": [[25, "neuron-deconvolution"]], "Neuron DeepLift": [[25, "neuron-deeplift"]], "Neuron DeepLiftShap": [[25, "neuron-deepliftshap"]], "Neuron Feature Ablation": [[25, "neuron-feature-ablation"]], "Neuron Gradient": [[25, "neuron-gradient"]], "Neuron GradientShap": [[25, "neuron-gradientshap"]], "Neuron Guided Backprop": [[25, "neuron-guided-backprop"]], "Neuron Integrated Gradients": [[25, "neuron-integrated-gradients"]], "NoiseTunnel": [[26, null]], "Occlusion": [[27, null]], "PGD": [[28, "pgd"]], "Perturbation Attribution": [[1, "perturbation-attribution"]], "Robustness": [[28, null]], "Saliency": [[29, null]], "Sensitivity": [[23, "sensitivity"]], "Shapley Value Sampling": [[30, null]], "SimilarityInfluence": [[14, "similarityinfluence"]], "TCAV": [[3, "tcav"]], "TextFeature": [[16, "textfeature"]], "Token Reference Base": [[31, "token-reference-base"]], "TracInCP": [[14, "tracincp"]], "TracInCPBase": [[14, "tracincpbase"]], "TracInCPFast": [[14, "tracincpfast"]], "TracInCPFastRandProj": [[14, "tracincpfastrandproj"]], "Utilities": [[31, null]], "Visualization": [[31, "visualization"]]}, "docnames": ["attribution", "base_classes", "binary_concrete_stg", "concept", "deconvolution", "deep_lift", "deep_lift_shap", "feature_ablation", "feature_permutation", "gaussian_stg", "gradient_shap", "guided_backprop", "guided_grad_cam", "index", "influence", "input_x_gradient", "insights", "integrated_gradients", "kernel_shap", "layer", "lime", "llm_attr", "lrp", "metrics", "module", "neuron", "noise_tunnel", "occlusion", "robust", "saliency", "shapley_value_sampling", "utilities"], "envversion": {"sphinx": 62, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["attribution.rst", "base_classes.rst", "binary_concrete_stg.rst", "concept.rst", "deconvolution.rst", "deep_lift.rst", "deep_lift_shap.rst", "feature_ablation.rst", "feature_permutation.rst", "gaussian_stg.rst", "gradient_shap.rst", "guided_backprop.rst", "guided_grad_cam.rst", "index.rst", "influence.rst", "input_x_gradient.rst", "insights.rst", "integrated_gradients.rst", "kernel_shap.rst", "layer.rst", "lime.rst", "llm_attr.rst", "lrp.rst", "metrics.rst", "module.rst", "neuron.rst", "noise_tunnel.rst", "occlusion.rst", "robust.rst", "saliency.rst", "shapley_value_sampling.rst", "utilities.rst"], "indexentries": {"add_attack() (captum.robust.attackcomparator method)": [[28, "captum.robust.AttackComparator.add_attack", false]], "attackcomparator (class in captum.robust)": [[28, "captum.robust.AttackComparator", false]], "attribute (captum.attr.attribution attribute)": [[1, "captum.attr.Attribution.attribute", false]], "attribute (captum.attr.neuronattribution attribute)": [[1, "captum.attr.NeuronAttribution.attribute", false]], "attribute() (captum.attr.deconvolution method)": [[4, "captum.attr.Deconvolution.attribute", false]], "attribute() (captum.attr.deeplift method)": [[5, "captum.attr.DeepLift.attribute", false]], "attribute() (captum.attr.deepliftshap method)": [[6, "captum.attr.DeepLiftShap.attribute", false]], "attribute() (captum.attr.featureablation method)": [[7, "captum.attr.FeatureAblation.attribute", false]], "attribute() (captum.attr.featurepermutation method)": [[8, "captum.attr.FeaturePermutation.attribute", false]], "attribute() (captum.attr.gradientshap method)": [[10, "captum.attr.GradientShap.attribute", false]], "attribute() (captum.attr.guidedbackprop method)": [[11, "captum.attr.GuidedBackprop.attribute", false]], "attribute() (captum.attr.guidedgradcam method)": [[12, "captum.attr.GuidedGradCam.attribute", false]], "attribute() (captum.attr.inputxgradient method)": [[15, "captum.attr.InputXGradient.attribute", false]], "attribute() (captum.attr.integratedgradients method)": [[17, "captum.attr.IntegratedGradients.attribute", false]], "attribute() (captum.attr.internalinfluence method)": [[19, "captum.attr.InternalInfluence.attribute", false]], "attribute() (captum.attr.kernelshap method)": [[18, "captum.attr.KernelShap.attribute", false]], "attribute() (captum.attr.layeractivation method)": [[19, "captum.attr.LayerActivation.attribute", false]], "attribute() (captum.attr.layerconductance method)": [[19, "captum.attr.LayerConductance.attribute", false]], "attribute() (captum.attr.layerdeeplift method)": [[19, "captum.attr.LayerDeepLift.attribute", false]], "attribute() (captum.attr.layerdeepliftshap method)": [[19, "captum.attr.LayerDeepLiftShap.attribute", false]], "attribute() (captum.attr.layerfeatureablation method)": [[19, "captum.attr.LayerFeatureAblation.attribute", false]], "attribute() (captum.attr.layerfeaturepermutation method)": [[19, "captum.attr.LayerFeaturePermutation.attribute", false]], "attribute() (captum.attr.layergradcam method)": [[19, "captum.attr.LayerGradCam.attribute", false]], "attribute() (captum.attr.layergradientshap method)": [[19, "captum.attr.LayerGradientShap.attribute", false]], "attribute() (captum.attr.layergradientxactivation method)": [[19, "captum.attr.LayerGradientXActivation.attribute", false]], "attribute() (captum.attr.layerintegratedgradients method)": [[19, "captum.attr.LayerIntegratedGradients.attribute", false]], "attribute() (captum.attr.layerlrp method)": [[19, "captum.attr.LayerLRP.attribute", false]], "attribute() (captum.attr.lime method)": [[20, "captum.attr.Lime.attribute", false]], "attribute() (captum.attr.limebase method)": [[20, "captum.attr.LimeBase.attribute", false]], "attribute() (captum.attr.llmattribution method)": [[21, "captum.attr.LLMAttribution.attribute", false]], "attribute() (captum.attr.llmgradientattribution method)": [[21, "captum.attr.LLMGradientAttribution.attribute", false]], "attribute() (captum.attr.lrp method)": [[22, "captum.attr.LRP.attribute", false]], "attribute() (captum.attr.neuronconductance method)": [[25, "captum.attr.NeuronConductance.attribute", false]], "attribute() (captum.attr.neurondeconvolution method)": [[25, "captum.attr.NeuronDeconvolution.attribute", false]], "attribute() (captum.attr.neurondeeplift method)": [[25, "captum.attr.NeuronDeepLift.attribute", false]], "attribute() (captum.attr.neurondeepliftshap method)": [[25, "captum.attr.NeuronDeepLiftShap.attribute", false]], "attribute() (captum.attr.neuronfeatureablation method)": [[25, "captum.attr.NeuronFeatureAblation.attribute", false]], "attribute() (captum.attr.neurongradient method)": [[25, "captum.attr.NeuronGradient.attribute", false]], "attribute() (captum.attr.neurongradientshap method)": [[25, "captum.attr.NeuronGradientShap.attribute", false]], "attribute() (captum.attr.neuronguidedbackprop method)": [[25, "captum.attr.NeuronGuidedBackprop.attribute", false]], "attribute() (captum.attr.neuronintegratedgradients method)": [[25, "captum.attr.NeuronIntegratedGradients.attribute", false]], "attribute() (captum.attr.noisetunnel method)": [[26, "captum.attr.NoiseTunnel.attribute", false]], "attribute() (captum.attr.occlusion method)": [[27, "captum.attr.Occlusion.attribute", false]], "attribute() (captum.attr.saliency method)": [[29, "captum.attr.Saliency.attribute", false]], "attribute() (captum.attr.shapleyvalues method)": [[30, "captum.attr.ShapleyValues.attribute", false]], "attribute() (captum.attr.shapleyvaluesampling method)": [[30, "captum.attr.ShapleyValueSampling.attribute", false]], "attribution (class in captum.attr)": [[1, "captum.attr.Attribution", false]], "attributionvisualizer (class in captum.insights)": [[16, "captum.insights.AttributionVisualizer", false]], "basefeature (class in captum.insights.features)": [[16, "captum.insights.features.BaseFeature", false]], "batch (class in captum.insights)": [[16, "captum.insights.Batch", false]], "binaryconcretestochasticgates (class in captum.module)": [[2, "captum.module.BinaryConcreteStochasticGates", false]], "bound (captum.robust.fgsm attribute)": [[28, "captum.robust.FGSM.bound", false]], "bound (captum.robust.pgd attribute)": [[28, "captum.robust.PGD.bound", false]], "classes() (captum.concept.classifier method)": [[3, "captum.concept.Classifier.classes", false]], "classifier (class in captum.concept)": [[3, "captum.concept.Classifier", false]], "compute_cavs() (captum.concept.tcav method)": [[3, "captum.concept.TCAV.compute_cavs", false]], "compute_convergence_delta (captum.attr.attribution attribute)": [[1, "captum.attr.Attribution.compute_convergence_delta", false]], "compute_convergence_delta() (captum.attr.gradientattribution method)": [[1, "captum.attr.GradientAttribution.compute_convergence_delta", false]], "compute_convergence_delta() (captum.attr.lrp method)": [[22, "captum.attr.LRP.compute_convergence_delta", false]], "compute_intermediate_quantities() (captum.influence.tracincp method)": [[14, "captum.influence.TracInCP.compute_intermediate_quantities", false]], "compute_intermediate_quantities() (captum.influence.tracincpfastrandproj method)": [[14, "captum.influence.TracInCPFastRandProj.compute_intermediate_quantities", false]], "concept (class in captum.concept)": [[3, "captum.concept.Concept", false]], "conceptinterpreter (class in captum.concept)": [[3, "captum.concept.ConceptInterpreter", false]], "configure_interpretable_embedding_layer() (in module captum.attr)": [[31, "captum.attr.configure_interpretable_embedding_layer", false]], "datainfluence (class in captum.influence)": [[14, "captum.influence.DataInfluence", false]], "deconvolution (class in captum.attr)": [[4, "captum.attr.Deconvolution", false]], "deeplift (class in captum.attr)": [[5, "captum.attr.DeepLift", false]], "deepliftshap (class in captum.attr)": [[6, "captum.attr.DeepLiftShap", false]], "evaluate() (captum.robust.attackcomparator method)": [[28, "captum.robust.AttackComparator.evaluate", false]], "evaluate() (captum.robust.minparamperturbation method)": [[28, "captum.robust.MinParamPerturbation.evaluate", false]], "featureablation (class in captum.attr)": [[7, "captum.attr.FeatureAblation", false]], "featurepermutation (class in captum.attr)": [[8, "captum.attr.FeaturePermutation", false]], "fgsm (class in captum.robust)": [[28, "captum.robust.FGSM", false]], "fit() (captum._utils.models.linear_model.sgdlasso method)": [[31, "captum._utils.models.linear_model.SGDLasso.fit", false]], "fit() (captum._utils.models.linear_model.sgdridge method)": [[31, "captum._utils.models.linear_model.SGDRidge.fit", false]], "fit() (captum._utils.models.linear_model.sklearnlasso method)": [[31, "captum._utils.models.linear_model.SkLearnLasso.fit", false]], "fit() (captum._utils.models.linear_model.sklearnlinearmodel method)": [[31, "captum._utils.models.linear_model.SkLearnLinearModel.fit", false]], "fit() (captum._utils.models.linear_model.sklearnlinearregression method)": [[31, "captum._utils.models.linear_model.SkLearnLinearRegression.fit", false]], "fit() (captum._utils.models.linear_model.sklearnridge method)": [[31, "captum._utils.models.linear_model.SkLearnRidge.fit", false]], "fit() (captum._utils.models.model.model method)": [[31, "captum._utils.models.model.Model.fit", false]], "format_attr() (captum.attr.interpretableinput method)": [[31, "captum.attr.InterpretableInput.format_attr", false]], "format_attr() (captum.attr.texttemplateinput method)": [[31, "captum.attr.TextTemplateInput.format_attr", false]], "format_attr() (captum.attr.texttokeninput method)": [[31, "captum.attr.TextTokenInput.format_attr", false]], "forward() (captum.attr.interpretableembeddingbase method)": [[31, "captum.attr.InterpretableEmbeddingBase.forward", false]], "forward() (captum.module.binaryconcretestochasticgates method)": [[2, "captum.module.BinaryConcreteStochasticGates.forward", false]], "forward() (captum.module.gaussianstochasticgates method)": [[9, "captum.module.GaussianStochasticGates.forward", false]], "gaussianstochasticgates (class in captum.module)": [[9, "captum.module.GaussianStochasticGates", false]], "generalfeature (class in captum.insights.features)": [[16, "captum.insights.features.GeneralFeature", false]], "generate_activation() (captum.concept.tcav method)": [[3, "captum.concept.TCAV.generate_activation", false]], "generate_activations() (captum.concept.tcav method)": [[3, "captum.concept.TCAV.generate_activations", false]], "generate_all_activations() (captum.concept.tcav method)": [[3, "captum.concept.TCAV.generate_all_activations", false]], "generate_reference() (captum.attr.tokenreferencebase method)": [[31, "captum.attr.TokenReferenceBase.generate_reference", false]], "get_exp_kernel_similarity_function() (in module captum.attr._core.lime)": [[20, "captum.attr._core.lime.get_exp_kernel_similarity_function", false]], "get_gate_active_probs() (captum.module.binaryconcretestochasticgates method)": [[2, "captum.module.BinaryConcreteStochasticGates.get_gate_active_probs", false]], "get_gate_active_probs() (captum.module.gaussianstochasticgates method)": [[9, "captum.module.GaussianStochasticGates.get_gate_active_probs", false]], "get_gate_values() (captum.module.binaryconcretestochasticgates method)": [[2, "captum.module.BinaryConcreteStochasticGates.get_gate_values", false]], "get_gate_values() (captum.module.gaussianstochasticgates method)": [[9, "captum.module.GaussianStochasticGates.get_gate_values", false]], "get_name() (captum.attr.attribution class method)": [[1, "captum.attr.Attribution.get_name", false]], "get_name() (captum.influence.datainfluence class method)": [[14, "captum.influence.DataInfluence.get_name", false]], "get_name() (captum.influence.tracincpbase class method)": [[14, "captum.influence.TracInCPBase.get_name", false]], "gradientattribution (class in captum.attr)": [[1, "captum.attr.GradientAttribution", false]], "gradientshap (class in captum.attr)": [[10, "captum.attr.GradientShap", false]], "guidedbackprop (class in captum.attr)": [[11, "captum.attr.GuidedBackprop", false]], "guidedgradcam (class in captum.attr)": [[12, "captum.attr.GuidedGradCam", false]], "has_convergence_delta() (captum.attr.attribution method)": [[1, "captum.attr.Attribution.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.deeplift method)": [[5, "captum.attr.DeepLift.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.gradientshap method)": [[10, "captum.attr.GradientShap.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.integratedgradients method)": [[17, "captum.attr.IntegratedGradients.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.layerconductance method)": [[19, "captum.attr.LayerConductance.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.layergradientshap method)": [[19, "captum.attr.LayerGradientShap.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.layerintegratedgradients method)": [[19, "captum.attr.LayerIntegratedGradients.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.limebase method)": [[20, "captum.attr.LimeBase.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.lrp method)": [[22, "captum.attr.LRP.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.noisetunnel method)": [[26, "captum.attr.NoiseTunnel.has_convergence_delta", false]], "imagefeature (class in captum.insights.features)": [[16, "captum.insights.features.ImageFeature", false]], "indices_to_embeddings() (captum.attr.interpretableembeddingbase method)": [[31, "captum.attr.InterpretableEmbeddingBase.indices_to_embeddings", false]], "infidelity (class in captum.metrics)": [[23, "captum.metrics.infidelity", false]], "influence() (captum.influence.datainfluence method)": [[14, "captum.influence.DataInfluence.influence", false]], "influence() (captum.influence.similarityinfluence method)": [[14, "captum.influence.SimilarityInfluence.influence", false]], "influence() (captum.influence.tracincp method)": [[14, "captum.influence.TracInCP.influence", false]], "influence() (captum.influence.tracincpbase method)": [[14, "captum.influence.TracInCPBase.influence", false]], "influence() (captum.influence.tracincpfast method)": [[14, "captum.influence.TracInCPFast.influence", false]], "influence() (captum.influence.tracincpfastrandproj method)": [[14, "captum.influence.TracInCPFastRandProj.influence", false]], "inputxgradient (class in captum.attr)": [[15, "captum.attr.InputXGradient", false]], "integratedgradients (class in captum.attr)": [[17, "captum.attr.IntegratedGradients", false]], "internalinfluence (class in captum.attr)": [[19, "captum.attr.InternalInfluence", false]], "interpolate() (captum.attr.layerattribution static method)": [[1, "captum.attr.LayerAttribution.interpolate", false]], "interpret (captum.concept.conceptinterpreter attribute)": [[3, "captum.concept.ConceptInterpreter.interpret", false]], "interpret() (captum.concept.tcav method)": [[3, "captum.concept.TCAV.interpret", false]], "interpretableembeddingbase (class in captum.attr)": [[31, "captum.attr.InterpretableEmbeddingBase", false]], "interpretableinput (class in captum.attr)": [[31, "captum.attr.InterpretableInput", false]], "kernel_shap_perturb_generator() (captum.attr.kernelshap method)": [[18, "captum.attr.KernelShap.kernel_shap_perturb_generator", false]], "kernelshap (class in captum.attr)": [[18, "captum.attr.KernelShap", false]], "layeractivation (class in captum.attr)": [[19, "captum.attr.LayerActivation", false]], "layerattribution (class in captum.attr)": [[1, "captum.attr.LayerAttribution", false]], "layerconductance (class in captum.attr)": [[19, "captum.attr.LayerConductance", false]], "layerdeeplift (class in captum.attr)": [[19, "captum.attr.LayerDeepLift", false]], "layerdeepliftshap (class in captum.attr)": [[19, "captum.attr.LayerDeepLiftShap", false]], "layerfeatureablation (class in captum.attr)": [[19, "captum.attr.LayerFeatureAblation", false]], "layerfeaturepermutation (class in captum.attr)": [[19, "captum.attr.LayerFeaturePermutation", false]], "layergradcam (class in captum.attr)": [[19, "captum.attr.LayerGradCam", false]], "layergradientshap (class in captum.attr)": [[19, "captum.attr.LayerGradientShap", false]], "layergradientxactivation (class in captum.attr)": [[19, "captum.attr.LayerGradientXActivation", false]], "layerintegratedgradients (class in captum.attr)": [[19, "captum.attr.LayerIntegratedGradients", false]], "layerlrp (class in captum.attr)": [[19, "captum.attr.LayerLRP", false]], "lime (class in captum.attr)": [[20, "captum.attr.Lime", false]], "limebase (class in captum.attr)": [[20, "captum.attr.LimeBase", false]], "llmattribution (class in captum.attr)": [[21, "captum.attr.LLMAttribution", false]], "llmattributionresult (class in captum.attr)": [[21, "captum.attr.LLMAttributionResult", false]], "llmgradientattribution (class in captum.attr)": [[21, "captum.attr.LLMGradientAttribution", false]], "load_cavs() (captum.concept.tcav method)": [[3, "captum.concept.TCAV.load_cavs", false]], "lrp (class in captum.attr)": [[22, "captum.attr.LRP", false]], "minparamperturbation (class in captum.robust)": [[28, "captum.robust.MinParamPerturbation", false]], "model (class in captum._utils.models.model)": [[31, "captum._utils.models.model.Model", false]], "neuronattribution (class in captum.attr)": [[1, "captum.attr.NeuronAttribution", false]], "neuronconductance (class in captum.attr)": [[25, "captum.attr.NeuronConductance", false]], "neurondeconvolution (class in captum.attr)": [[25, "captum.attr.NeuronDeconvolution", false]], "neurondeeplift (class in captum.attr)": [[25, "captum.attr.NeuronDeepLift", false]], "neurondeepliftshap (class in captum.attr)": [[25, "captum.attr.NeuronDeepLiftShap", false]], "neuronfeatureablation (class in captum.attr)": [[25, "captum.attr.NeuronFeatureAblation", false]], "neurongradient (class in captum.attr)": [[25, "captum.attr.NeuronGradient", false]], "neurongradientshap (class in captum.attr)": [[25, "captum.attr.NeuronGradientShap", false]], "neuronguidedbackprop (class in captum.attr)": [[25, "captum.attr.NeuronGuidedBackprop", false]], "neuronintegratedgradients (class in captum.attr)": [[25, "captum.attr.NeuronIntegratedGradients", false]], "noisetunnel (class in captum.attr)": [[26, "captum.attr.NoiseTunnel", false]], "occlusion (class in captum.attr)": [[27, "captum.attr.Occlusion", false]], "perturb() (captum.robust.fgsm method)": [[28, "captum.robust.FGSM.perturb", false]], "perturb() (captum.robust.pgd method)": [[28, "captum.robust.PGD.perturb", false]], "perturbationattribution (class in captum.attr)": [[1, "captum.attr.PerturbationAttribution", false]], "pgd (class in captum.robust)": [[28, "captum.robust.PGD", false]], "plot_seq_attr() (captum.attr.llmattributionresult method)": [[21, "captum.attr.LLMAttributionResult.plot_seq_attr", false]], "plot_token_attr() (captum.attr.llmattributionresult method)": [[21, "captum.attr.LLMAttributionResult.plot_token_attr", false]], "productbaselines (class in captum.attr)": [[31, "captum.attr.ProductBaselines", false]], "remove_interpretable_embedding_layer() (in module captum.attr)": [[31, "captum.attr.remove_interpretable_embedding_layer", false]], "representation() (captum._utils.models.model.model method)": [[31, "captum._utils.models.model.Model.representation", false]], "reset() (captum.robust.attackcomparator method)": [[28, "captum.robust.AttackComparator.reset", false]], "saliency (class in captum.attr)": [[29, "captum.attr.Saliency", false]], "self_influence() (captum.influence.tracincp method)": [[14, "captum.influence.TracInCP.self_influence", false]], "self_influence() (captum.influence.tracincpbase method)": [[14, "captum.influence.TracInCPBase.self_influence", false]], "self_influence() (captum.influence.tracincpfast method)": [[14, "captum.influence.TracInCPFast.self_influence", false]], "self_influence() (captum.influence.tracincpfastrandproj method)": [[14, "captum.influence.TracInCPFastRandProj.self_influence", false]], "sensitivity_max (class in captum.metrics)": [[23, "captum.metrics.sensitivity_max", false]], "sgdlasso (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SGDLasso", false]], "sgdlinearmodel (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SGDLinearModel", false]], "sgdridge (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SGDRidge", false]], "shapleyvalues (class in captum.attr)": [[30, "captum.attr.ShapleyValues", false]], "shapleyvaluesampling (class in captum.attr)": [[30, "captum.attr.ShapleyValueSampling", false]], "similarityinfluence (class in captum.influence)": [[14, "captum.influence.SimilarityInfluence", false]], "sklearnlasso (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SkLearnLasso", false]], "sklearnlinearmodel (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SkLearnLinearModel", false]], "sklearnlinearregression (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SkLearnLinearRegression", false]], "sklearnridge (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SkLearnRidge", false]], "summary() (captum.robust.attackcomparator method)": [[28, "captum.robust.AttackComparator.summary", false]], "tcav (class in captum.concept)": [[3, "captum.concept.TCAV", false]], "test_reduction_type (captum.influence.tracincp attribute)": [[14, "captum.influence.TracInCP.test_reduction_type", false]], "textfeature (class in captum.insights.features)": [[16, "captum.insights.features.TextFeature", false]], "texttemplateinput (class in captum.attr)": [[31, "captum.attr.TextTemplateInput", false]], "texttokeninput (class in captum.attr)": [[31, "captum.attr.TextTokenInput", false]], "to_model_input() (captum.attr.interpretableinput method)": [[31, "captum.attr.InterpretableInput.to_model_input", false]], "to_model_input() (captum.attr.texttemplateinput method)": [[31, "captum.attr.TextTemplateInput.to_model_input", false]], "to_model_input() (captum.attr.texttokeninput method)": [[31, "captum.attr.TextTokenInput.to_model_input", false]], "to_tensor() (captum.attr.interpretableinput method)": [[31, "captum.attr.InterpretableInput.to_tensor", false]], "to_tensor() (captum.attr.texttemplateinput method)": [[31, "captum.attr.TextTemplateInput.to_tensor", false]], "to_tensor() (captum.attr.texttokeninput method)": [[31, "captum.attr.TextTokenInput.to_tensor", false]], "tokenreferencebase (class in captum.attr)": [[31, "captum.attr.TokenReferenceBase", false]], "tracincp (class in captum.influence)": [[14, "captum.influence.TracInCP", false]], "tracincpbase (class in captum.influence)": [[14, "captum.influence.TracInCPBase", false]], "tracincpfast (class in captum.influence)": [[14, "captum.influence.TracInCPFast", false]], "tracincpfastrandproj (class in captum.influence)": [[14, "captum.influence.TracInCPFastRandProj", false]], "train_and_eval() (captum.concept.classifier method)": [[3, "captum.concept.Classifier.train_and_eval", false]], "visualize_image_attr() (in module captum.attr.visualization)": [[31, "captum.attr.visualization.visualize_image_attr", false]], "visualize_image_attr_multiple() (in module captum.attr.visualization)": [[31, "captum.attr.visualization.visualize_image_attr_multiple", false]], "visualize_timeseries_attr() (in module captum.attr.visualization)": [[31, "captum.attr.visualization.visualize_timeseries_attr", false]], "weights() (captum.concept.classifier method)": [[3, "captum.concept.Classifier.weights", false]], "zero_thresh (captum.robust.fgsm attribute)": [[28, "captum.robust.FGSM.zero_thresh", false]]}, "objects": {"captum._utils.models.linear_model": [[31, 0, 1, "", "SGDLasso"], [31, 0, 1, "", "SGDLinearModel"], [31, 0, 1, "", "SGDRidge"], [31, 0, 1, "", "SkLearnLasso"], [31, 0, 1, "", "SkLearnLinearModel"], [31, 0, 1, "", "SkLearnLinearRegression"], [31, 0, 1, "", "SkLearnRidge"]], "captum._utils.models.linear_model.SGDLasso": [[31, 1, 1, "", "fit"]], "captum._utils.models.linear_model.SGDRidge": [[31, 1, 1, "", "fit"]], "captum._utils.models.linear_model.SkLearnLasso": [[31, 1, 1, "", "fit"]], "captum._utils.models.linear_model.SkLearnLinearModel": [[31, 1, 1, "", "fit"]], "captum._utils.models.linear_model.SkLearnLinearRegression": [[31, 1, 1, "", "fit"]], "captum._utils.models.linear_model.SkLearnRidge": [[31, 1, 1, "", "fit"]], "captum._utils.models.model": [[31, 0, 1, "", "Model"]], "captum._utils.models.model.Model": [[31, 1, 1, "", "fit"], [31, 1, 1, "", "representation"]], "captum.attr": [[1, 0, 1, "", "Attribution"], [4, 0, 1, "", "Deconvolution"], [5, 0, 1, "", "DeepLift"], [6, 0, 1, "", "DeepLiftShap"], [7, 0, 1, "", "FeatureAblation"], [8, 0, 1, "", "FeaturePermutation"], [1, 0, 1, "", "GradientAttribution"], [10, 0, 1, "", "GradientShap"], [11, 0, 1, "", "GuidedBackprop"], [12, 0, 1, "", "GuidedGradCam"], [15, 0, 1, "", "InputXGradient"], [17, 0, 1, "", "IntegratedGradients"], [19, 0, 1, "", "InternalInfluence"], [31, 0, 1, "", "InterpretableEmbeddingBase"], [31, 0, 1, "", "InterpretableInput"], [18, 0, 1, "", "KernelShap"], [21, 0, 1, "", "LLMAttribution"], [21, 0, 1, "", "LLMAttributionResult"], [21, 0, 1, "", "LLMGradientAttribution"], [22, 0, 1, "", "LRP"], [19, 0, 1, "", "LayerActivation"], [1, 0, 1, "", "LayerAttribution"], [19, 0, 1, "", "LayerConductance"], [19, 0, 1, "", "LayerDeepLift"], [19, 0, 1, "", "LayerDeepLiftShap"], [19, 0, 1, "", "LayerFeatureAblation"], [19, 0, 1, "", "LayerFeaturePermutation"], [19, 0, 1, "", "LayerGradCam"], [19, 0, 1, "", "LayerGradientShap"], [19, 0, 1, "", "LayerGradientXActivation"], [19, 0, 1, "", "LayerIntegratedGradients"], [19, 0, 1, "", "LayerLRP"], [20, 0, 1, "", "Lime"], [20, 0, 1, "", "LimeBase"], [1, 0, 1, "", "NeuronAttribution"], [25, 0, 1, "", "NeuronConductance"], [25, 0, 1, "", "NeuronDeconvolution"], [25, 0, 1, "", "NeuronDeepLift"], [25, 0, 1, "", "NeuronDeepLiftShap"], [25, 0, 1, "", "NeuronFeatureAblation"], [25, 0, 1, "", "NeuronGradient"], [25, 0, 1, "", "NeuronGradientShap"], [25, 0, 1, "", "NeuronGuidedBackprop"], [25, 0, 1, "", "NeuronIntegratedGradients"], [26, 0, 1, "", "NoiseTunnel"], [27, 0, 1, "", "Occlusion"], [1, 0, 1, "", "PerturbationAttribution"], [31, 0, 1, "", "ProductBaselines"], [29, 0, 1, "", "Saliency"], [30, 0, 1, "", "ShapleyValueSampling"], [30, 0, 1, "", "ShapleyValues"], [31, 0, 1, "", "TextTemplateInput"], [31, 0, 1, "", "TextTokenInput"], [31, 0, 1, "", "TokenReferenceBase"], [31, 3, 1, "", "configure_interpretable_embedding_layer"], [31, 3, 1, "", "remove_interpretable_embedding_layer"]], "captum.attr.Attribution": [[1, 2, 1, "", "attribute"], [1, 2, 1, "", "compute_convergence_delta"], [1, 1, 1, "", "get_name"], [1, 1, 1, "", "has_convergence_delta"]], "captum.attr.Deconvolution": [[4, 1, 1, "", "attribute"]], "captum.attr.DeepLift": [[5, 1, 1, "", "attribute"], [5, 1, 1, "", "has_convergence_delta"]], "captum.attr.DeepLiftShap": [[6, 1, 1, "", "attribute"]], "captum.attr.FeatureAblation": [[7, 1, 1, "", "attribute"]], "captum.attr.FeaturePermutation": [[8, 1, 1, "", "attribute"]], "captum.attr.GradientAttribution": [[1, 1, 1, "", "compute_convergence_delta"]], "captum.attr.GradientShap": [[10, 1, 1, "", "attribute"], [10, 1, 1, "", "has_convergence_delta"]], "captum.attr.GuidedBackprop": [[11, 1, 1, "", "attribute"]], "captum.attr.GuidedGradCam": [[12, 1, 1, "", "attribute"]], "captum.attr.InputXGradient": [[15, 1, 1, "", "attribute"]], "captum.attr.IntegratedGradients": [[17, 1, 1, "", "attribute"], [17, 1, 1, "", "has_convergence_delta"]], "captum.attr.InternalInfluence": [[19, 1, 1, "", "attribute"]], "captum.attr.InterpretableEmbeddingBase": [[31, 1, 1, "", "forward"], [31, 1, 1, "", "indices_to_embeddings"]], "captum.attr.InterpretableInput": [[31, 1, 1, "", "format_attr"], [31, 1, 1, "", "to_model_input"], [31, 1, 1, "", "to_tensor"]], "captum.attr.KernelShap": [[18, 1, 1, "", "attribute"], [18, 1, 1, "", "kernel_shap_perturb_generator"]], "captum.attr.LLMAttribution": [[21, 1, 1, "", "attribute"]], "captum.attr.LLMAttributionResult": [[21, 1, 1, "", "plot_seq_attr"], [21, 1, 1, "", "plot_token_attr"]], "captum.attr.LLMGradientAttribution": [[21, 1, 1, "", "attribute"]], "captum.attr.LRP": [[22, 1, 1, "", "attribute"], [22, 1, 1, "", "compute_convergence_delta"], [22, 1, 1, "", "has_convergence_delta"]], "captum.attr.LayerActivation": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerAttribution": [[1, 1, 1, "", "interpolate"]], "captum.attr.LayerConductance": [[19, 1, 1, "", "attribute"], [19, 1, 1, "", "has_convergence_delta"]], "captum.attr.LayerDeepLift": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerDeepLiftShap": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerFeatureAblation": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerFeaturePermutation": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerGradCam": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerGradientShap": [[19, 1, 1, "", "attribute"], [19, 1, 1, "", "has_convergence_delta"]], "captum.attr.LayerGradientXActivation": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerIntegratedGradients": [[19, 1, 1, "", "attribute"], [19, 1, 1, "", "has_convergence_delta"]], "captum.attr.LayerLRP": [[19, 1, 1, "", "attribute"]], "captum.attr.Lime": [[20, 1, 1, "", "attribute"]], "captum.attr.LimeBase": [[20, 1, 1, "", "attribute"], [20, 1, 1, "", "has_convergence_delta"]], "captum.attr.NeuronAttribution": [[1, 2, 1, "", "attribute"]], "captum.attr.NeuronConductance": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronDeconvolution": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronDeepLift": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronDeepLiftShap": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronFeatureAblation": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronGradient": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronGradientShap": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronGuidedBackprop": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronIntegratedGradients": [[25, 1, 1, "", "attribute"]], "captum.attr.NoiseTunnel": [[26, 1, 1, "", "attribute"], [26, 1, 1, "", "has_convergence_delta"]], "captum.attr.Occlusion": [[27, 1, 1, "", "attribute"]], "captum.attr.Saliency": [[29, 1, 1, "", "attribute"]], "captum.attr.ShapleyValueSampling": [[30, 1, 1, "", "attribute"]], "captum.attr.ShapleyValues": [[30, 1, 1, "", "attribute"]], "captum.attr.TextTemplateInput": [[31, 1, 1, "", "format_attr"], [31, 1, 1, "", "to_model_input"], [31, 1, 1, "", "to_tensor"]], "captum.attr.TextTokenInput": [[31, 1, 1, "", "format_attr"], [31, 1, 1, "", "to_model_input"], [31, 1, 1, "", "to_tensor"]], "captum.attr.TokenReferenceBase": [[31, 1, 1, "", "generate_reference"]], "captum.attr._core.lime": [[20, 3, 1, "", "get_exp_kernel_similarity_function"]], "captum.attr.visualization": [[31, 3, 1, "", "visualize_image_attr"], [31, 3, 1, "", "visualize_image_attr_multiple"], [31, 3, 1, "", "visualize_timeseries_attr"]], "captum.concept": [[3, 0, 1, "", "Classifier"], [3, 0, 1, "", "Concept"], [3, 0, 1, "", "ConceptInterpreter"], [3, 0, 1, "", "TCAV"]], "captum.concept.Classifier": [[3, 1, 1, "", "classes"], [3, 1, 1, "", "train_and_eval"], [3, 1, 1, "", "weights"]], "captum.concept.ConceptInterpreter": [[3, 2, 1, "", "interpret"]], "captum.concept.TCAV": [[3, 1, 1, "", "compute_cavs"], [3, 1, 1, "", "generate_activation"], [3, 1, 1, "", "generate_activations"], [3, 1, 1, "", "generate_all_activations"], [3, 1, 1, "", "interpret"], [3, 1, 1, "", "load_cavs"]], "captum.influence": [[14, 0, 1, "", "DataInfluence"], [14, 0, 1, "", "SimilarityInfluence"], [14, 0, 1, "", "TracInCP"], [14, 0, 1, "", "TracInCPBase"], [14, 0, 1, "", "TracInCPFast"], [14, 0, 1, "", "TracInCPFastRandProj"]], "captum.influence.DataInfluence": [[14, 1, 1, "", "get_name"], [14, 1, 1, "", "influence"]], "captum.influence.SimilarityInfluence": [[14, 1, 1, "", "influence"]], "captum.influence.TracInCP": [[14, 1, 1, "", "compute_intermediate_quantities"], [14, 1, 1, "", "influence"], [14, 1, 1, "", "self_influence"], [14, 2, 1, "", "test_reduction_type"]], "captum.influence.TracInCPBase": [[14, 1, 1, "", "get_name"], [14, 1, 1, "", "influence"], [14, 1, 1, "", "self_influence"]], "captum.influence.TracInCPFast": [[14, 1, 1, "", "influence"], [14, 1, 1, "", "self_influence"]], "captum.influence.TracInCPFastRandProj": [[14, 1, 1, "", "compute_intermediate_quantities"], [14, 1, 1, "", "influence"], [14, 1, 1, "", "self_influence"]], "captum.insights": [[16, 0, 1, "", "AttributionVisualizer"], [16, 0, 1, "", "Batch"]], "captum.insights.features": [[16, 0, 1, "", "BaseFeature"], [16, 0, 1, "", "GeneralFeature"], [16, 0, 1, "", "ImageFeature"], [16, 0, 1, "", "TextFeature"]], "captum.metrics": [[23, 0, 1, "", "infidelity"], [23, 0, 1, "", "sensitivity_max"]], "captum.module": [[2, 0, 1, "", "BinaryConcreteStochasticGates"], [9, 0, 1, "", "GaussianStochasticGates"]], "captum.module.BinaryConcreteStochasticGates": [[2, 1, 1, "", "forward"], [2, 1, 1, "", "get_gate_active_probs"], [2, 1, 1, "", "get_gate_values"]], "captum.module.GaussianStochasticGates": [[9, 1, 1, "", "forward"], [9, 1, 1, "", "get_gate_active_probs"], [9, 1, 1, "", "get_gate_values"]], "captum.robust": [[28, 0, 1, "", "AttackComparator"], [28, 0, 1, "", "FGSM"], [28, 0, 1, "", "MinParamPerturbation"], [28, 0, 1, "", "PGD"]], "captum.robust.AttackComparator": [[28, 1, 1, "", "add_attack"], [28, 1, 1, "", "evaluate"], [28, 1, 1, "", "reset"], [28, 1, 1, "", "summary"]], "captum.robust.FGSM": [[28, 2, 1, "", "bound"], [28, 1, 1, "", "perturb"], [28, 2, 1, "", "zero_thresh"]], "captum.robust.MinParamPerturbation": [[28, 1, 1, "", "evaluate"]], "captum.robust.PGD": [[28, 2, 1, "", "bound"], [28, 1, 1, "", "perturb"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:attribute", "3": "py:function"}, "terms": {"": [1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "003": 23, "01": [2, 3, 9, 20, 28], "011": [19, 22], "0130140": [19, 22], "01312": 2, "01365": [17, 19, 25], "01713": 15, "02": 23, "02391": [12, 19], "02685": [5, 19, 25], "03292": 26, "03307": 26, "03788": 19, "03825": 26, "04247": 9, "04938": 20, "06083": 28, "06104": [5, 6, 10, 17, 19, 23, 25], "07874": 18, "08049": 23, "08484": 14, "09392": 23, "09946": 19, "1": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "10": [4, 5, 8, 14, 19, 22, 23, 25, 26], "1000": 3, "1007": [4, 25], "1016": [19, 22], "10758": 26, "108": 19, "11": 25, "11279": 3, "12233": [19, 25], "1311": [4, 25, 27], "1312": 29, "1371": [19, 22], "14": 14, "1412": [11, 25, 28], "15": 14, "16": [7, 8, 14, 18, 20, 25, 30], "1602": 20, "1605": 15, "1610": [12, 19], "1703": [17, 19, 25], "1704": [5, 19, 25], "1705": 18, "1706": [26, 28], "1711": [3, 5, 6, 10, 17, 19, 23, 25], "1712": 2, "1802": 19, "1805": [19, 25], "1806": [23, 26], "1807": 19, "1810": [9, 26], "1901": 23, "1d": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "1e": [2, 3, 5], "1st": 31, "2": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "20": [10, 19, 25], "200": [18, 20, 30], "2002": 14, "2017": [19, 22], "2293": 3, "23": [20, 31], "25": [18, 20, 21, 30], "255": [28, 31], "2901": [4, 25, 27], "2d": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "2x2": [7, 8, 18, 20, 25, 30], "2x3x3x32": [15, 29], "3": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31], "31": 25, "319": [4, 25], "3194": 3, "32": [4, 5, 6, 10, 11, 12, 15, 17, 19, 22, 23, 25, 26, 29], "3387": 3, "3437": 3, "36": 19, "3600": 3, "3800": 3, "3d": [1, 12], "3x3": 27, "3x3x32x32": [10, 19, 22, 25], "4": [7, 8, 15, 18, 19, 20, 25, 27, 30], "4200": 3, "4252": 23, "46466": [4, 25], "4_8": [4, 25], "4d": [1, 12], "5": [2, 9, 10, 14, 19, 20, 22, 25, 26, 28, 31], "50": [17, 18, 19, 20, 25], "5800": 3, "5d": [1, 12], "6": 31, "6034": 29, "604084": 30, "6200": 3, "6400": 3, "6563": 3, "6572": 28, "6613": 3, "6806": [3, 11, 25], "7": [30, 31], "7062": [6, 19, 25], "7707": 3, "7715": 30, "8": [2, 31], "8003": 23, "978": [4, 25], "A": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "As": [2, 5, 9, 14, 19, 25], "But": 31, "By": [7, 8, 14, 19, 23, 25, 27, 28, 30], "For": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "If": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "In": [1, 3, 5, 6, 7, 10, 14, 17, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31], "It": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "Its": 31, "NOT": [14, 25], "Not": 26, "On": 23, "One": [16, 20], "Such": [23, 31], "That": [14, 19], "The": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "Then": [2, 9, 14], "There": [14, 31], "These": [1, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "To": [2, 9, 14, 17, 19, 22, 25, 27, 31], "With": [7, 8, 18, 19, 20, 25, 26, 30], "_": [23, 31], "__class__": 28, "__init__": [3, 14], "__name__": 28, "_construct_model_param": 31, "_core": 20, "_get_k_most_influenti": 14, "_influenc": 14, "_inspect_forward": 21, "_load_flexible_state_dict": 14, "_permute_featur": 8, "_self_influ": 14, "_util": [20, 31], "aaai": 23, "ab": [2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 23, 25, 26, 27, 28, 29], "ablat": [0, 8, 13, 18, 20, 23, 27, 30], "about": [3, 6, 16, 19, 23, 25, 26, 29, 31], "abov": [1, 14, 17, 18, 19, 20, 23], "absenc": 31, "absolut": [14, 29, 31], "absolute_valu": 31, "absorb": 22, "abstract": [3, 14, 31], "acc": 3, "accept": [8, 14, 21, 23], "access": [3, 5, 14, 19, 20, 25, 31], "accord": 31, "accordingli": 1, "accur": 14, "accuraci": [3, 14], "accuracy_metr": 28, "across": [1, 3, 6, 7, 8, 12, 18, 19, 20, 25, 26, 28, 30], "activ": [1, 2, 3, 5, 9, 13, 14, 22, 25], "activation_dir": 14, "actual": [14, 23, 31], "ad": [10, 12, 18, 19, 20, 25, 26, 28, 30, 31], "adapt": 31, "add": [2, 9, 10, 14, 19, 25, 26, 28, 30], "add_attack": 28, "addit": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "additional_arg": [16, 28], "additional_attack_arg_nam": 28, "additional_forward_arg": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30], "additon": 1, "address": 31, "adher": 14, "adject": 3, "adjust": 5, "adopt": [2, 9], "advanc": [7, 8, 14, 18, 20, 27, 30], "adversari": [23, 28], "after": [10, 14, 19, 20, 25, 28, 30, 31], "aggreg": [1, 3, 7, 14, 25, 28], "aggregt": 28, "aka": [1, 3, 4, 5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31], "al": [5, 19, 22, 25], "algorithm": [1, 3, 4, 5, 6, 8, 10, 11, 17, 19, 20, 22, 23, 25, 26, 31], "algorthm": 21, "align": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "all": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "allign": 12, "allow": [1, 2, 3, 7, 8, 9, 12, 14, 18, 19, 20, 23, 25, 27, 28, 30, 31], "almost": 8, "alogrithm": 1, "along": [10, 17, 18, 19, 20, 25], "alpha": [3, 20, 28, 31], "alpha_overlai": 31, "alpha_sc": 31, "alreadi": [3, 14, 23, 31], "also": [1, 2, 3, 5, 6, 9, 10, 12, 14, 17, 18, 19, 20, 21, 23, 25, 26, 31], "altern": [7, 8, 18, 19, 20, 25, 30], "although": [5, 6, 19, 25], "alwai": [1, 4, 5, 6, 10, 11, 14, 15, 17, 19, 22, 23, 25, 26, 27, 29, 31], "among": [1, 7, 8, 17, 18, 19, 20, 25, 27, 28, 30], "amount": 25, "an": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "analysi": 14, "ancona": [5, 19, 22, 25], "angl": 28, "ani": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "annoynearestneighbor": 14, "anoth": [6, 19, 25], "anyth": 31, "api": [3, 20, 31], "app": [16, 30], "appendix": 14, "appli": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "applic": [12, 19, 22, 25, 31], "apply_before_preproc": 28, "approach": [3, 6, 7, 8, 10, 15, 17, 18, 19, 20, 23, 25, 27, 29, 30, 31], "appropri": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31], "approxim": [1, 2, 5, 6, 10, 14, 17, 19, 20, 22, 23, 25, 26], "ar": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "arbitrari": [1, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "area": [1, 12], "aren": [3, 14, 23], "arg": 1, "arg_max": 28, "arg_min": 28, "arg_nam": 28, "arg_step": 28, "argmax": 28, "argument": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "arithmet": 26, "around": [20, 28], "arrai": 31, "articl": [23, 30], "arxiv": [2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 23, 25, 26, 27, 28, 29], "assign": [5, 6, 7, 8, 17, 18, 19, 20, 25, 30, 31], "associ": [3, 14], "assum": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31], "assumpt": [10, 14, 19, 25, 31], "attack": [13, 23], "attack_kwarg": 28, "attack_metr": 28, "attackcompar": 28, "attempt": 28, "attr": [1, 4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31], "attr_coef": 20, "attr_dim_summ": 19, "attr_method": 21, "attr_target": 21, "attribibut": 21, "attribut": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 26, 27, 28, 29, 30, 31], "attribute_to_layer_input": [3, 12, 19, 25], "attribute_to_neuron_input": 25, "attribution_method": 26, "attributionvisu": 13, "augment": 28, "author": [10, 19, 25], "autograd": [14, 19], "av": 3, "av_src": 14, "av_test": 14, "avail": [7, 8, 14, 17, 18, 19, 20, 21, 25, 27, 28, 30, 31], "avanti": [5, 19, 25], "averag": [6, 19, 21, 25, 26, 27, 28, 30, 31], "avoid": [5, 26], "axi": [21, 31], "axiom": 1, "axiomat": [17, 19], "back": [2, 9, 14, 30, 31], "backprop": [0, 12, 13, 23], "backpropag": [11, 12, 25], "backward": [17, 19, 22, 25], "ball": [23, 28], "base": [5, 6, 7, 8, 10, 12, 13, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30], "basefeatur": 13, "baselin": [5, 6, 7, 8, 10, 13, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27, 29, 30], "baseline_error": 8, "baseline_transform": 16, "baseline_valu": 31, "batch": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 23, 25, 26, 27, 28, 29, 30, 31], "batch_label": 8, "batch_result": 28, "batch_siz": [14, 23, 25], "batch_size_1": 14, "batch_size_2": 14, "batch_size_i": 14, "batch_size_j": 14, "bb1070691455d1fcfc6346ff458dbca77b2c": 30, "bceloss": 14, "becaus": [14, 18, 20], "been": [14, 23], "befor": [1, 16, 23, 28], "begin": 14, "behavior": [8, 14, 28], "being": [5, 6, 10, 14, 17, 19, 20, 23, 25, 31], "below": [3, 14, 19, 28, 30, 31], "benefit": 14, "bernoulli": [2, 9], "besid": 1, "best": [14, 28, 31], "beta": 23, "better": [5, 19, 25], "between": [2, 3, 5, 6, 8, 10, 14, 17, 19, 20, 22, 23, 25, 31], "beyond": [2, 9], "bia": 31, "bicub": [1, 12], "bilinear": [1, 12], "binari": [2, 18, 20, 23, 28, 31], "binaryconcretestochasticg": [13, 24], "bit": 5, "black": [20, 31], "blend": 31, "blended_heat_map": 31, "blob": 27, "block": [5, 19, 25], "blog": [5, 19, 25], "blue": 31, "book": 8, "bool": [1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "boolean": 28, "border": 28, "both": [1, 2, 5, 10, 14, 17, 19, 20, 22, 26, 28, 31], "bound": [2, 28], "boundari": [2, 3, 9], "box": 27, "breakdown": 19, "bright": 31, "broadcast": [2, 5, 7, 8, 9, 17, 18, 19, 20, 23, 25, 27, 30], "broken": 31, "build": [5, 19, 25], "built": [5, 19, 25], "c": [3, 14, 16, 31], "calcul": [5, 6, 7, 8, 10, 14, 17, 18, 19, 20, 21, 22, 25, 28, 30], "call": [1, 3, 5, 6, 7, 8, 10, 14, 16, 17, 18, 19, 20, 21, 23, 25, 27, 28, 30, 31], "callabl": [1, 3, 5, 6, 7, 8, 10, 14, 15, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 30, 31], "can": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "cannot": [5, 8, 12, 19, 25, 31], "capit": 1, "captum": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "carlo": 23, "cartesian": 31, "case": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "categori": 16, "caus": [27, 28], "cav": 3, "cc": [6, 19, 23, 25], "center": 28, "certain": [1, 2, 9, 14, 31], "chang": [5, 7, 8, 14, 19, 23, 25, 28, 30], "channel": [1, 19, 31], "channel_label": 31, "channels_last": 31, "chapter": [4, 25], "charact": 1, "check": [3, 14], "checkpoint": 14, "checkpoints_load_func": 14, "chihkuanyeh": 23, "child": [1, 7, 8, 16, 20, 31], "choic": 31, "choos": [10, 14, 17, 18, 19, 25, 30], "chosen": [12, 14, 19, 22, 26, 28, 31], "christophm": 8, "chunk": [17, 19, 25], "clamp": [2, 9], "class": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "classes_": 3, "classif": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "classifi": [13, 16, 20, 31], "classifier_kwarg": 3, "classmethod": [1, 14], "cleaner": 5, "clip": 28, "clip_r": 28, "close": [1, 6, 10, 19], "cmap": 31, "coef_": 3, "coeffici": [18, 20], "collect": 28, "color": 31, "colorbar": 31, "colored_graph": 31, "colorjitt": 28, "colormap": 31, "column": 25, "com": [4, 19, 23, 25, 27, 30], "combin": [3, 14, 26], "combinatori": [2, 9], "come": 31, "command": 31, "common": [1, 16, 31], "commonli": [1, 21, 31], "compar": [5, 6, 13, 14, 19, 22, 23, 25], "complet": [1, 17, 19, 22, 23, 31], "complex": [6, 19, 25], "complic": 31, "compon": [18, 20], "composit": [6, 10, 19, 25], "comput": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "computation": [14, 23, 26, 30], "compute_cav": 3, "compute_convergence_delta": [0, 1, 5, 10, 17, 19, 20, 22, 26], "compute_intermediate_quant": 14, "concaten": [14, 20, 31], "concept": [13, 30, 31], "concept_id": 3, "concept_it": 3, "concept_lay": 3, "concept_nam": 3, "concept_object": 3, "concept_path": 3, "conceptinterpret": 13, "concepts_path": 3, "conceret": 2, "concret": [2, 9], "conduct": [13, 26], "configur": [3, 14, 21], "configure_interpretable_embedding_lay": [16, 31], "connect": 14, "conserv": 22, "consid": [5, 7, 14, 18, 19, 20, 31], "consist": [20, 31], "constant": 23, "constraint": 14, "construct": [7, 8, 14, 16, 18, 19, 20, 25, 28, 30, 31], "constructor": [3, 12, 19, 20, 23, 31], "consum": 31, "contain": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "context": 3, "contigu": 27, "continu": [2, 9, 23], "contribut": 14, "control": [2, 31], "conv1": [19, 25], "conv2d": [12, 14, 19, 22, 25], "conv4": [12, 19, 25], "convei": [3, 20], "convent": 21, "converg": [1, 5, 6, 10, 17, 19, 20, 22, 26, 31], "convers": 31, "convert": [16, 20, 31], "convolut": [1, 12, 19], "cooper": 30, "copi": 14, "core": 1, "corner": 27, "correct": [1, 5, 10, 14, 16, 17, 19, 20, 22, 26, 28], "correct_fn": 28, "correct_fn_kwarg": 28, "correl": 23, "correspond": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "cosin": 20, "cosine_similar": 14, "could": [3, 8, 14, 16, 20, 23, 25, 31], "cover": 27, "creat": [1, 3, 7, 8, 14, 18, 19, 20, 21, 25, 26, 30, 31], "crucial": 14, "cuda": [5, 19, 25], "curr_sampl": 20, "current": [5, 10, 12, 14, 16, 19, 25, 26, 31], "custom": [3, 5, 6, 8, 16, 19, 20, 22, 23, 25, 28, 31], "custom_attribution_func": [5, 6, 19, 25], "customclassifi": 3, "cut": 27, "d": [14, 16, 27], "data": [3, 14, 16, 17, 19, 21, 23, 25, 26, 31], "data_it": 3, "datainflu": 13, "dataload": [3, 14, 20, 28, 31], "dataparallel": [1, 7, 8, 12, 17, 18, 19, 20, 25, 27, 28, 30], "dataset": [3, 5, 14, 16, 19, 25, 31], "dataset_to_dataload": 3, "decid": [3, 19], "decis": 31, "decompos": [19, 22], "decomposit": [19, 22], "deconv": 4, "deconvolut": [0, 13, 23], "decor": 23, "deep": [5, 19, 25], "deepexplain": 27, "deeplift": [0, 6, 13, 23, 31], "deepliftshap": [0, 13], "def": [3, 20, 23, 28], "default": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "default_model_id": 3, "default_perturb_func": 23, "defin": [1, 3, 5, 6, 7, 8, 10, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "definit": [3, 23], "degre": 2, "delta": [1, 5, 6, 10, 17, 19, 20, 22, 25, 26, 31], "denot": 28, "dens": 16, "depend": [1, 4, 5, 6, 12, 14, 19, 25, 26, 31], "dependen": 31, "depress": 31, "depth": 5, "deriv": [1, 5, 10, 17, 19, 20, 22, 23, 26], "descend": 31, "descent": 28, "describ": [3, 5, 6, 7, 14, 17, 18, 19, 20, 23, 27, 31], "descript": [8, 14, 30], "design": [12, 19], "desir": [1, 8, 14, 23, 25, 28, 31], "detach": 3, "detail": [2, 4, 5, 6, 9, 10, 11, 12, 14, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30], "determin": [2, 9, 14, 18, 20, 28], "determinist": 28, "deviat": [9, 10, 19, 25, 26], "devic": [1, 7, 8, 12, 17, 18, 19, 20, 25, 27, 28, 30, 31], "device_id": [1, 12, 19, 25], "dict": [3, 8, 14, 19, 21, 28, 31], "dictionai": 3, "dictionari": [3, 28], "differ": [1, 3, 5, 6, 7, 8, 10, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 30, 31], "differenti": [2, 9, 31], "dim": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "dimens": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "dimension": [1, 3, 10, 14, 19, 20, 23, 26, 28], "direct": 27, "directli": [2, 7, 8, 9, 14, 16, 18, 20, 21, 28, 31], "directori": [3, 14], "displai": [7, 8, 14, 18, 20, 27, 30, 31], "distanc": [20, 28], "distance_mod": 20, "distribut": [2, 6, 9, 10, 18, 19, 25, 26], "divid": [2, 9, 17, 19, 23, 25], "dl": [5, 6, 19, 25, 31], "do": [1, 8, 14, 21, 23, 31], "do_sampl": 21, "doc": 3, "document": [14, 23, 31], "documentclassifi": 31, "doe": [2, 7, 9, 12, 14, 31], "doesn": 31, "doi": [19, 22], "done": [7, 8, 14, 18, 19, 20, 23, 25, 30], "dot": [3, 14, 23], "draw": [10, 19, 25, 26], "draw_baseline_from_distrib": 26, "dsp": [19, 22], "dtic": 30, "du": 23, "due": [14, 19], "dure": [3, 5, 19, 22], "e": [2, 7, 8, 9, 12, 14, 16, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31], "each": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "easier": 23, "effect": [6, 10, 19, 25], "effici": [14, 18, 23], "either": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "element": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "els": [3, 28], "embed": [13, 14, 16], "embedding_layer_nam": 31, "embedding_tensor": 31, "empti": [3, 12, 27], "emptri": 31, "enabl": [3, 14], "encapsul": 31, "encod": 3, "encourag": 31, "end": [1, 31], "end_point": 1, "enforc": [1, 7, 16, 30], "ensur": [4, 11, 12, 14, 25, 27, 31], "entir": [7, 8, 14, 19, 20, 25, 27, 30, 31], "entri": 19, "environ": 26, "ep": [2, 5], "epsilon": [22, 23, 28], "equal": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "equidist": 31, "equival": [8, 18, 19, 25], "error": [1, 5, 8, 10, 14, 17, 19, 20, 22, 23, 26], "error_metr": 8, "essenti": [4, 25], "estim": [7, 8, 14, 18, 20, 23, 27, 30], "et": [5, 19, 22, 25], "etc": 31, "euclidean": 20, "evalu": [3, 7, 8, 17, 18, 19, 20, 25, 27, 28, 30], "everi": [14, 31], "ex": 3, "exact": 30, "exactli": [5, 7, 14, 16, 17, 18, 19, 20, 23, 25, 27, 30], "exampl": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "exce": 23, "except": 19, "execut": [26, 31], "exp": 20, "expand": [5, 14, 19, 23, 25], "expect": [2, 9, 10, 14, 16, 19, 20, 23, 25, 31], "expected_output": 20, "expens": 26, "experiment": [3, 14, 31], "experimental_set": 3, "experiments_set": 3, "explain": [18, 20, 23, 31], "explan": [6, 10, 19, 23, 25], "explanation_func": 23, "explicitli": [2, 9], "exponenti": 20, "expos": [3, 20], "extend": [1, 3, 5, 6, 16, 19, 25, 30], "extent": 23, "extern": 28, "extra": [3, 21], "extract": 3, "f": [1, 3, 14, 23], "factor": [5, 6, 10, 17, 19, 23, 25], "factori": 31, "fallback": [7, 8, 14, 18, 20, 27, 30], "fals": [3, 5, 6, 7, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "fast": [14, 28], "faster": [5, 19, 25], "feasibl": 30, "featur": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 17, 18, 20, 22, 23, 26, 27, 28, 29, 30, 31], "feature_mask": [7, 8, 18, 20, 25, 30], "feature_perm": 8, "featureabl": [0, 7, 8, 19, 21], "featurepermut": [0, 8, 19], "feed": 31, "feel": 31, "fgsm": 13, "fidel": 23, "fig_siz": 31, "figur": [21, 31], "file": 3, "filepath": 14, "final": [3, 5, 6, 10, 14, 16, 17, 19, 23, 25, 27, 31], "final_fc_lay": 14, "find": 14, "finish": 31, "first": [1, 3, 5, 6, 7, 8, 10, 14, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31], "fit": [3, 14, 20, 31], "fix": [7, 9, 14, 23], "flag": [3, 5, 6, 14, 19, 23, 25], "flatten": [14, 20], "flexibl": 19, "float": [1, 2, 3, 5, 9, 10, 19, 20, 23, 25, 26, 28, 31], "fold": [2, 9], "follow": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "fool": 28, "forc": 14, "force_train": 3, "form": [1, 3, 14, 21, 22, 25, 31], "format": [3, 16, 20, 23, 31], "format_attr": 31, "former": 19, "formul": [5, 19, 25, 28], "forum": [19, 22], "forward": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31], "forward_fn": [7, 8, 18, 19, 20, 25, 27, 28, 30], "forward_func": [1, 7, 8, 10, 14, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 29, 30], "found": [2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30], "frac": 23, "fragil": 23, "framework": [18, 20], "friendli": 3, "fro": 23, "from": [1, 3, 6, 10, 12, 14, 16, 17, 18, 19, 20, 23, 25, 26, 28, 30, 31], "from_interp_rep_transform": 20, "frontend": 16, "full": [7, 8, 18, 20, 21, 28, 30], "full_nam": 31, "fulli": 14, "fulltext": 30, "function": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31], "furthemor": 14, "furthermor": 14, "futur": [5, 14, 19, 25, 30], "g": [2, 7, 8, 9, 12, 14, 16, 18, 19, 20, 25, 26, 27, 28, 30, 31], "game": 30, "gate": [2, 9], "gate_valu": [2, 9], "gated_input": [2, 9], "gauss": [17, 19], "gaussian": [2, 9, 10, 19, 20, 25, 26], "gaussian_nois": 28, "gaussianstochasticg": [13, 24], "gausslegendr": [17, 19, 25], "gbp": 11, "gen_arg": 21, "gener": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "generalfeatur": 13, "generate_activ": 3, "generate_all_activ": 3, "generate_refer": 31, "get": [2, 9, 14, 31], "get_active_prob": [2, 9], "get_exp_kernel_similarity_funct": [0, 20], "get_gate_active_prob": [2, 9, 24], "get_gate_valu": [2, 9, 24], "get_nam": [1, 14], "get_tensor_from_filenam": 3, "github": [8, 19, 23, 25, 27], "give": 14, "given": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "global": [5, 6, 10, 17, 19, 23, 25], "grad": 19, "grad_kwarg": [19, 25], "grad_requir": 14, "gradcam": [0, 13, 23], "gradient": [0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 21, 22, 23, 26, 28, 29, 31], "gradient_shap": 10, "gradientattribut": 1, "gradientexplain": [19, 25], "gradientshap": [0, 13], "graph": [19, 31], "green": 31, "grei": 27, "greyscal": [16, 31], "grid": 31, "group": [2, 7, 8, 9, 18, 19, 20, 22, 25, 28, 30, 31], "grow": 7, "gru": [5, 19, 25], "guarante": [5, 6, 19, 28, 31], "guid": [0, 13, 23], "guided_gc": 12, "guidedbackprop": [0, 11], "guidedgradcam": [0, 12], "h": [14, 31], "h_x": 31, "ha": [3, 7, 8, 12, 14, 16, 18, 19, 20, 22, 23, 25, 30, 31], "happen": 3, "happi": 3, "hard": [2, 9], "has_convergence_delta": [0, 1, 5, 10, 17, 19, 20, 22, 26], "have": [1, 2, 5, 6, 7, 8, 9, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "he": 31, "heat": 31, "heat_map": 31, "heatmap": 31, "help": [2, 3, 9, 21, 26, 28], "helper": 23, "here": [1, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 19, 22, 23, 25, 26, 30, 31], "hidden": [19, 25, 31], "high": [1, 23], "highest": 14, "hood": [19, 23], "hook": 19, "how": [5, 19, 20, 23, 25, 31], "howev": [14, 22, 23, 26, 31], "html": [3, 8], "http": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30], "huggingfac": 21, "human": 3, "hyperplan": 3, "hyperrectangl": 27, "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "id": [1, 3, 5, 12, 19, 22, 25, 31], "idea": 23, "identifi": [3, 14, 25, 28], "ig": [17, 23, 26, 31], "ignor": [7, 8, 14], "illustr": 3, "imag": [3, 4, 5, 6, 7, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31], "imageclassifi": [4, 5, 6, 10, 11, 12, 15, 17, 19, 22, 23, 25, 26, 29, 31], "imagefeatur": 13, "imagenet": 3, "implement": [1, 3, 5, 10, 14, 16, 19, 20, 22, 23, 25, 27, 30, 31], "implementaion": 1, "import": [1, 2, 3, 5, 7, 8, 9, 17, 19, 20, 23, 25, 30], "improv": [2, 14], "inception4c": 3, "inception4d": 3, "includ": [1, 2, 4, 5, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "incorrect": 28, "increas": [7, 14, 28], "incur": 14, "independ": [6, 7, 8, 10, 18, 19, 20, 25, 30, 31], "index": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "indic": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31], "indices_to_embed": 31, "individu": [18, 20, 23, 25, 27, 31], "ineffici": 14, "inf": [23, 28], "infer": 16, "infid": 23, "infidel": 13, "infidelity_perturb_func_decor": 23, "infin": 23, "influenc": [13, 14], "influence_scor": 14, "influence_src_dataset": 14, "influenti": 13, "inform": [1, 3, 5, 8, 10, 16, 17, 18, 19, 20, 22, 26, 31], "inher": 23, "inherit": [14, 31], "initi": [14, 19, 22, 28, 31], "inner": 14, "inp": [21, 28], "input": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30], "input_emb": 31, "input_indic": 31, "input_s": 14, "input_tensor": [2, 9], "input_token": 21, "input_transform": 16, "input_x_gradi": 15, "inputs_id": 14, "inputxgradi": [0, 15], "insert": 1, "insid": [6, 10, 19, 25], "inspir": [19, 22], "instal": 31, "instanc": [1, 3, 4, 5, 6, 11, 12, 14, 16, 19, 21, 23, 25, 26, 28, 31], "instead": [14, 19], "int": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "integ": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "integr": [0, 1, 3, 5, 10, 13, 18, 20, 23, 26, 31], "integratedgradi": [0, 1, 16, 17, 23, 26, 31], "intemedi": 25, "intens": [14, 30], "intepret": 20, "interact": 14, "interest": 21, "interfac": [20, 21, 31], "intermedi": [1, 12, 14, 19, 25], "intermediate_quant": 14, "intermedit": 25, "intern": [3, 5, 7, 12, 13, 14, 17, 18, 20, 23, 25, 27, 30, 31], "internal_batch_s": [17, 19, 25], "internalinflu": 19, "interp": [18, 20], "interpol": [1, 12, 19], "interpolate_dim": 1, "interpolate_mod": [1, 12], "interpreat": [18, 20], "interpret": [1, 6, 7, 8, 10, 13, 15, 16, 17, 18, 19, 20, 23, 25, 27, 29, 30], "interpretable_emb": 31, "interpretable_input": 20, "interpretable_model": 20, "interpretableembeddingbas": [16, 31], "interpretableinput": [21, 31], "interpretal": [18, 20], "interv": 28, "inth": 31, "introduc": 31, "intuit": 14, "invari": 23, "involv": [7, 14, 19, 22, 25, 27, 30], "io": 8, "isn": [5, 6, 10, 17, 19, 23, 25], "issu": 5, "iter": [3, 14, 16, 27, 28, 31], "itp_attr": 31, "itp_tensor": 31, "its": [1, 2, 14, 16, 19, 20, 22, 23, 28, 30, 31], "itself": [1, 12, 19, 25, 28], "j": [14, 16, 19, 22], "jacobian": 14, "jitter": 28, "join": 3, "journal": [19, 22], "just": [14, 19, 23], "k": [14, 18, 31], "keep": 5, "kei": [14, 28, 31], "kernel": [18, 20, 26], "kernel_shap_perturb_gener": [0, 18], "kernel_width": 20, "kernelshap": [0, 13, 21], "keyword": [19, 20, 21, 28, 31], "kind": [14, 31], "kmostinfluentialresult": 14, "know": [5, 19, 25], "known": [5, 6, 10, 17, 19, 23, 25], "kwarg": [3, 7, 8, 14, 18, 20, 21, 23, 26, 28, 31], "l": [14, 23, 28], "l0": [2, 9], "l0_reg": [2, 9], "l1": [19, 31], "l2": [19, 20, 28, 31], "l2_dist": 20, "l3": 19, "l401": 27, "l_p": 23, "label": [3, 14, 16, 28, 31], "languag": [3, 21, 31], "larg": [5, 14, 19, 21, 25], "larger": [2, 3, 6, 9, 10, 19, 25], "lasso": [20, 31], "last": [12, 14, 19, 31], "later": [5, 12, 19, 25], "latter": [14, 19, 23], "layer": [3, 5, 12, 13, 14, 22, 25, 31], "layer_act": 19, "layer_attr_baselin": 19, "layer_attr_input": 19, "layer_attr_method": 3, "layer_attribut": 1, "layer_baselin": 19, "layer_cond": 19, "layer_ga": 19, "layer_gc": 19, "layer_grad_shap": 19, "layer_int_inf": 19, "layer_lrp": 19, "layer_mask": 19, "layer_nam": [3, 14], "layeractiv": 19, "layerattribut": [1, 3, 19], "layerconduct": 19, "layerdeeplift": [5, 19, 25], "layerdeepliftshap": [19, 25], "layerfeatureabl": 19, "layerfeaturepermut": 19, "layergradcam": [12, 19], "layergradientshap": 19, "layergradientxactiv": [3, 19], "layerintegratedgradi": 19, "layerlrp": 19, "lazi": 3, "lead": [14, 23, 28, 30], "learn": [2, 3, 5, 9, 14, 19, 25, 31], "least": [5, 6, 17, 19, 23, 25, 27, 28], "left": 14, "legendr": [17, 19], "len": 3, "length": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "less": [1, 14, 25, 27], "let": [14, 31], "lig": 19, "like": [18, 31], "lime": [0, 13, 18, 21], "lime_attr": 20, "limebas": [0, 20], "limit": [5, 14, 19, 25], "line": [17, 19, 31], "linear": [1, 3, 5, 6, 10, 12, 13, 14, 16, 19, 20, 25, 28], "linear1": 19, "linear2": 25, "linear_model": [3, 20, 31], "linearli": 2, "linearmodel": 31, "linearregress": 31, "linearsvc": 31, "linewidth": 31, "linf": 28, "link": [4, 19, 25], "lipschitz": 23, "list": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "literatur": [1, 5, 6, 10, 17, 19, 25], "llm": 13, "llmattribut": [13, 31], "llmattributionresult": 13, "llmgradientattribut": 13, "lm": 3, "load": [3, 14], "load_cav": 3, "load_input_from_disk": 14, "load_src_from_disk": 14, "local": [5, 6, 10, 17, 19, 23, 25], "locat": [3, 27], "log": [21, 28], "log_prob": 21, "logic": [1, 5, 6, 19, 20, 23, 25], "logit": [8, 14], "long": [14, 25], "loop": 14, "loss": [2, 9, 14, 18, 20, 28, 31], "loss_fn": 14, "loss_func": 28, "lower": [2, 14, 28, 31], "lower_bound": [2, 28], "lowest": 14, "lrp": [0, 13], "lstm": [5, 19, 25], "m": 18, "made": 14, "magnitud": [3, 23], "magnitude_scor": 3, "mai": [1, 3, 5, 7, 8, 10, 14, 16, 17, 19, 20, 22, 23, 25, 26, 27, 30, 31], "main": [8, 28], "mainli": 31, "maintain": 28, "make": [10, 14, 19, 25, 31], "mani": [14, 23], "manner": [3, 14], "map": [3, 14, 23, 28, 29, 31], "marco": [5, 19, 25], "marcoancona": 27, "mask": [2, 7, 8, 9, 18, 19, 20, 25, 28, 30, 31], "masked_imag": 31, "master": 27, "match": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "math": 14, "mathbb": 23, "matplotlib": [21, 31], "matric": 14, "matrix": [3, 14, 23], "max": [14, 23, 28], "max_examples_per_batch": 23, "max_it": 3, "max_length": 21, "maximum": [7, 8, 18, 19, 20, 23, 25, 27, 28, 30], "mean": [2, 3, 5, 6, 9, 10, 14, 17, 19, 22, 23, 25, 26, 28, 31], "meaning": [8, 12, 23], "measur": [7, 23, 25, 28, 30], "mechan": [19, 22], "memori": [3, 14, 26, 31], "method": [1, 3, 5, 6, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31], "metric": [8, 13, 14, 28], "metricresulttyp": 28, "mil": 30, "min": [13, 14], "min_pert": 28, "min_std": 28, "minim": 28, "minimum": [28, 31], "minparamperturb": 28, "misclassif": 28, "misclassifi": 28, "ml": 8, "mock": [2, 9], "mock_input": [2, 9], "modal": 16, "mode": [1, 3, 7, 12, 14, 20, 23, 28, 31], "model": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30], "model_id": [3, 14], "model_input": 31, "model_metr": 28, "model_out": [2, 9, 28], "modif": [1, 7, 8, 10, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "modifi": 28, "modul": [1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 16, 19, 22, 25, 28, 31], "moduleormodulelist": 19, "mont": 23, "more": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 29, 30, 31], "most": [1, 5, 6, 7, 8, 14, 16, 17, 18, 19, 20, 23, 25, 27, 28, 30], "mu_i": 23, "much": 14, "multi": 3, "multimod": 16, "multipl": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "multipli": [5, 6, 10, 14, 15, 17, 19, 22, 23, 25, 31], "multiply_by_input": [5, 6, 10, 17, 19, 25], "multiprocess": 3, "multipy_by_input": 23, "multupl": 1, "must": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "my": 23, "my_perturb_func": 23, "mytcav": 3, "n": [14, 16, 20, 23, 30, 31], "n_gate": [2, 9], "n_param": [2, 9], "n_perturb_sampl": 23, "n_sampl": [10, 18, 19, 20, 25, 30], "n_step": [3, 10, 17, 18, 19, 20, 25], "n_tree": 14, "nabla_": 14, "nabla_i": 14, "naiv": 14, "name": [1, 3, 14, 16, 28, 31], "namedtupl": 14, "nativ": 14, "natur": [3, 14], "nchw": 16, "nd": [10, 19, 25], "ndarrai": 31, "nearest": [1, 12, 14], "nearest_neighbor": 14, "nearestneighbor": 14, "necessari": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31], "necessarili": 14, "need": [2, 3, 8, 14, 19, 22, 23, 25, 28, 31], "neg": [4, 11, 12, 16, 19, 25, 28, 31], "neglig": 31, "neighbor": [14, 28], "net": [4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31], "network": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 29, 30], "neural": [2, 5, 9, 12, 19, 23, 25], "neuron": [5, 13, 16, 19, 22], "neuron_cond": 25, "neuron_deconv": 25, "neuron_gb": 25, "neuron_grad_shap": 25, "neuron_ig": 25, "neuron_ind": 25, "neuron_selector": [1, 25], "neuronattribut": [1, 25], "neuronconduct": [19, 25], "neurondeconvolut": 25, "neurondeeplift": [5, 25], "neurondeepliftshap": 25, "neuronfeatureabl": 25, "neurongradi": 25, "neurongradientshap": 25, "neuronguidedbackprop": 25, "neuronintegratedgradi": 25, "neutral": 31, "new": [21, 30, 31], "newer": 31, "nip": [6, 19, 23, 25], "nn": [1, 3, 4, 5, 6, 11, 12, 14, 16, 19, 25, 28, 31], "node": 31, "nois": [2, 9, 10, 19, 20, 23, 25, 26], "noised_imag": 28, "noisetunnel": [10, 13, 19, 25], "noisi": [10, 19], "non": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "none": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "nonetheless": [5, 19, 25], "norm": [2, 9, 20, 23, 28], "norm_ord": 23, "normal": [16, 18, 22, 23, 28, 31], "notat": 14, "note": [4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 27, 29, 30, 31], "notion": 23, "now": [14, 31], "np": 23, "nt": 26, "nt_sampl": 26, "nt_samples_batch_s": 26, "nt_type": 26, "nuc": 23, "num_attempt": 28, "num_devic": [7, 8, 17, 18, 19, 20, 25, 27, 28, 30], "num_dropout": 28, "num_featur": [7, 8, 25, 30], "num_group": 19, "num_interp_featur": [18, 20], "num_sampl": 20, "num_trial": 21, "number": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "numer": [2, 3, 5, 31], "numpi": [3, 31], "nx10": [4, 5, 6, 10, 11, 12, 15, 17, 19, 22, 23, 25, 26, 29, 31], "nx12x32x32": [19, 25], "nx12x3x3": [19, 25], "nx1x8x8": 19, "nx3": [7, 8, 18, 19, 20, 25, 27, 30], "nx3x32x32": [4, 5, 6, 10, 11, 12, 15, 17, 19, 22, 23, 25, 26, 29, 31], "nx4x4": [7, 8, 18, 19, 20, 25, 27, 30], "nx50x8x8": [12, 19], "o": 3, "object": [1, 3, 14, 16, 20, 25, 31], "obtain": [14, 16, 18, 19, 22, 23], "occlud": 27, "occlus": [0, 7, 8, 13, 18, 20, 30], "occur": 12, "off": [2, 9, 20, 27], "offer": 14, "offici": 23, "often": [1, 16, 19, 20, 31], "oj": 23, "onc": [14, 20], "one": [1, 3, 5, 6, 7, 8, 10, 14, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 30, 31], "ones": [5, 18, 19, 25, 28], "onli": [1, 3, 4, 5, 6, 8, 11, 12, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 28, 30, 31], "onto": 31, "openreview": [5, 19, 22, 25], "oper": [4, 11, 12, 19, 25, 31], "oppon": 14, "oppos": 14, "optim": [2, 5, 9, 14, 19, 25, 31], "option": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "order": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "org": [2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30], "orient": 31, "orig_imag": 31, "origin": [2, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 31], "original_imag": 31, "original_inp": [18, 20], "original_input": 20, "orthogon": 3, "other": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "otherwis": [3, 5, 6, 7, 8, 12, 14, 17, 18, 19, 20, 25, 27, 28, 29, 30], "our": [14, 31], "out": [3, 14, 23, 26, 28], "outer": 14, "outer_loop_by_checkpoint": 14, "outlier": 31, "outlier_perc": 31, "outout": 19, "output": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30], "output_dim": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "output_token": 21, "outsid": [14, 31], "over": [3, 14, 19, 21, 28, 30, 31], "overal": [6, 19, 25], "overhead": [14, 31], "overlai": 31, "overlaid": 31, "overlap": 30, "overlay_combin": 31, "overlay_individu": 31, "overrid": [1, 5, 10, 17, 19, 20, 22, 26, 31], "overridden": [4, 11, 12, 25], "overwritten": 28, "p": 18, "packag": 23, "pad": [16, 31], "page": [13, 14], "pair": [3, 6, 14, 19, 25, 31], "pairwis": 14, "panel": 31, "paper": [2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "parallel": 3, "param": 13, "param_v": 28, "paramet": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "parametr": 28, "paramter": 28, "part": [2, 9], "particular": [1, 3, 14, 19, 25, 28], "pass": [1, 3, 7, 8, 14, 16, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 30, 31], "patch": 27, "path": [3, 10, 14, 17, 18, 19, 20, 25], "pdf": [5, 6, 14, 19, 23, 25, 30], "penal": [2, 9], "per": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30], "percentag": [28, 31], "perform": [3, 4, 5, 8, 11, 12, 14, 19, 23, 25, 28, 31], "perm_feature_import": 8, "perm_func": 8, "permut": [0, 13, 30], "permuted_batch": 8, "persist": 14, "perturb": [7, 8, 13, 18, 19, 20, 21, 23, 25, 26, 27, 30, 31], "perturb1": 23, "perturb2": 23, "perturb_fn": 23, "perturb_func": [20, 23], "perturb_interpretable_spac": 20, "perturb_radiu": 23, "perturbationattribut": 1, "perturbations_per_ev": [7, 8, 18, 19, 20, 25, 27, 28, 30], "perturbed_input": [20, 23, 28], "perturbed_input1": 23, "perturbed_input2": 23, "perturbed_inputn": 23, "perturbed_interpretable_input": 20, "perturbed_tensor": 31, "perturbn": 23, "pgd": 13, "phi": 23, "photo": 16, "php": 23, "phrase": 31, "pick": 31, "pii": 30, "pil": 28, "pixel": [20, 28, 31], "pkl": 3, "place": [6, 14, 19, 31], "plan": [5, 19, 25, 30], "pleas": [3, 10, 14, 19, 20, 23, 25, 31], "plot": [21, 31], "plot_seq_attr": 21, "plot_token_attr": 21, "plt": 31, "plt_fig_axi": 31, "point": [1, 10, 17, 19, 20, 23, 25, 31], "pone": [19, 22], "posit": [12, 16, 19, 31], "possibl": [5, 12, 14, 19, 25, 30, 31], "postprocess": 16, "potenti": [14, 16], "practic": [2, 9, 14, 31], "pre": [3, 22, 28, 31], "preced": 31, "precomput": [1, 22, 31], "pred": 3, "predefin": 20, "predict": [3, 6, 10, 14, 18, 19, 20, 22, 23, 25, 28, 31], "predictor": 23, "prefer": [5, 19, 23, 25], "preproc": 28, "preproc_fn": 28, "preprocess": [14, 28], "presenc": 31, "present": [2, 3, 9, 21], "previou": [14, 23, 28], "primari": [10, 19, 25], "primarili": 23, "print": [19, 22], "prior": [14, 16], "pristin": 31, "privat": 14, "pro": 14, "prob": [2, 9, 21], "probabl": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31], "problem": [2, 9], "procedur": 19, "process": [3, 7, 8, 14, 17, 18, 19, 20, 23, 25, 26, 27, 28, 30], "produc": [14, 19, 21], "product": [3, 12, 14, 19, 23, 31], "productbaselin": 31, "progress": [7, 8, 14, 18, 20, 27, 30], "project": [14, 28], "projection_dim": 14, "prompt": 21, "prone": 23, "proof": 18, "propag": [4, 5, 14, 19, 22, 25], "propagationrul": [19, 22], "properli": 14, "properti": [1, 5, 6, 10, 14, 17, 19, 21, 22, 23], "propon": 14, "propos": [5, 19, 25], "provid": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "proxi": [1, 5, 10, 17, 19, 20, 22, 26], "prune": [2, 9], "pseudocod": 8, "public": [14, 19, 22], "purpos": 14, "py": 27, "pyplot": 31, "pyplot_kwarg": 31, "python": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "pytorch": [1, 3, 4, 5, 6, 11, 12, 14, 16, 19, 20, 25, 28, 31], "quadratur": [17, 19], "qualifi": 14, "qualiti": [5, 19, 25], "quantifi": 1, "quantiti": 14, "quickli": 14, "r": [3, 14, 28], "radiu": [23, 28], "randn": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30], "randn_lik": [20, 28], "random": [3, 7, 8, 10, 14, 15, 18, 19, 20, 23, 25, 26, 27, 28, 29, 30], "random_data_it": 3, "random_rot": 28, "random_start": 28, "randomli": [10, 18, 19, 25, 26], "randomrot": 28, "rang": [2, 7, 8, 9, 18, 19, 20, 23, 25, 27, 28, 30, 31], "rate": 14, "rather": [7, 25, 30], "ratio": 23, "raw": [2, 9, 16, 28, 31], "reach": 28, "read": 23, "readabl": [1, 14], "real": 23, "reason": [14, 22, 23], "recommend": [6, 10, 12, 18, 19, 20, 25, 28], "reconstruct": [1, 12, 19, 25], "rectangular": 27, "rectif": [2, 9], "red": 31, "reduc": [14, 26], "reduct": [2, 9, 14], "refer": [4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 20, 23, 25, 27, 30], "reference_token_idx": 31, "reg": [2, 9], "reg_reduct": [2, 9], "reg_weight": [2, 9], "regard": [4, 11, 12, 14, 17, 18, 19, 20, 25, 27, 30], "regardless": [3, 14, 20], "regener": 14, "region": [7, 25, 27, 30], "regress": 31, "regular": [2, 9, 18, 31], "relax": 2, "releas": [5, 19, 25], "relev": [1, 16, 19, 22], "reli": 14, "relu": [4, 11, 12, 19, 22, 25], "relu_attribut": 19, "remain": [1, 5, 6, 7, 8, 10, 17, 18, 19, 20, 23, 25, 27, 30, 31], "remov": [14, 31], "remove_interpretable_embedding_lay": 31, "reparameter": [2, 9], "repeat": [10, 17, 18, 19, 20, 23, 25, 28, 30], "replac": [7, 18, 19, 20, 25, 27, 30, 31], "repres": [2, 3, 9, 10, 14, 19, 20, 22, 23, 25, 26, 28, 31], "represent": [3, 14, 18, 20, 31], "requir": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "requires_grad": [4, 5, 6, 10, 11, 12, 15, 17, 19, 23, 25, 26, 29], "rescal": [2, 5, 6, 9, 19, 25], "resembl": 3, "reset": 28, "resnet18": 28, "resp": 14, "respect": [4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "respons": [1, 3, 21], "rest": 31, "restor": 14, "restrict": 14, "result": [1, 3, 6, 7, 8, 12, 14, 19, 20, 21, 25, 28, 30, 31], "retabl": [18, 20], "retain": 20, "retrain": 20, "retriev": 14, "return": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "return_convergence_delta": [5, 6, 10, 17, 19, 22, 26], "return_input_shap": [18, 20], "reus": 20, "revealcancel": [5, 19, 25], "rewrit": 14, "rgb": 16, "ridg": [20, 31], "riemann": [17, 19], "riemann_left": [17, 19, 25], "riemann_middl": [17, 19, 25], "riemann_right": [17, 19, 25], "riemann_trapezoid": [17, 19, 25], "right": [14, 31], "rnn": [5, 19, 25], "robust": [13, 23], "root": 14, "rotat": 28, "row": [14, 19], "rule": [5, 6, 17, 19, 22, 25], "run": [3, 5, 14, 19, 21, 25, 28], "s0305054808000804": 30, "salienc": [0, 13, 23, 26], "saliency_evalu": 23, "same": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "sampl": [0, 1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 16, 18, 19, 20, 23, 25, 26, 27, 28, 31], "sample_wise_grad_per_batch": 14, "sample_wise_grads_per_batch": 14, "sampler": 3, "satisfi": 14, "save": [3, 14], "save_path": 3, "scalar": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 29, 30], "scale": [10, 19, 23, 25, 31], "scatter": 31, "scienc": 30, "sciencedirect": 30, "score": [1, 3, 4, 5, 6, 10, 11, 14, 16, 17, 19, 20, 22, 23, 25], "score_func": 16, "scriptmodul": 31, "seamlessli": 31, "search": [13, 28], "second": [1, 6, 10, 14, 16, 19, 23, 25, 31], "see": [3, 14, 16, 30, 31], "seed": 14, "seek": 14, "seen": 31, "segment": [7, 20, 25, 30, 31], "segmentat": 31, "select": [2, 9, 10, 18, 19, 20, 23, 25, 28], "selector": 25, "self": [3, 14, 23, 31], "self_influ": 14, "self_influence_scor": 14, "semanticscholar": 30, "sen": [3, 23], "send": 31, "sens": [10, 19, 25], "sensit": [3, 5, 6, 10, 13, 17, 19, 25], "sensitivi": 23, "sensitivity_max": 23, "sentenc": 16, "separ": [2, 3, 5, 7, 8, 9, 14, 18, 19, 20, 25, 30, 31], "seq_attr": 21, "sequenc": [19, 21, 31], "sequence_length": 31, "sequenti": [3, 16, 17, 19, 22, 23, 25], "serv": [1, 5, 10, 17, 19, 20, 22, 23, 26, 31], "set": [3, 5, 6, 7, 8, 10, 12, 14, 17, 18, 19, 20, 22, 23, 25, 28, 29, 30, 31], "setup": 14, "sever": 14, "sgd": [20, 31], "sgd_train_linear_model": 31, "sgdclassifi": 3, "sgdlasso": 31, "sgdlinearmodel": 31, "sgdridg": 31, "shap": [6, 10, 18, 19, 25], "shape": [1, 2, 9, 10, 12, 14, 18, 19, 20, 23, 25, 27, 28, 31], "shaplei": [0, 13, 18], "shapleyvalu": [0, 21, 30], "shapleyvaluesampl": [0, 21, 30], "share": [2, 9, 31], "shift": 27, "should": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "show": [14, 19, 21, 25, 31], "show_colorbar": 31, "show_progress": [7, 8, 14, 18, 20, 27, 30], "shown": [19, 23], "shrikumar": [5, 19, 25], "shuffl": 8, "side": 31, "sigmoid": [2, 5, 9, 19, 25], "sign": [3, 4, 19, 25, 28, 29, 31], "sign_count": 3, "sign_count_scor": 3, "signatur": [5, 6, 19, 20, 25, 28], "signifi": 8, "signific": 5, "significantli": [5, 19, 25], "sim": 23, "similar": [5, 14, 18, 19, 20, 23, 25, 28, 31], "similarity_direct": 14, "similarity_fn": 20, "similarity_func": 20, "similarity_kernel": 20, "similarity_metr": 14, "similarityinflu": 13, "similarli": 14, "simpl": [7, 8, 14, 18, 19, 20, 27, 30], "simpleclassifi": [7, 8, 18, 19, 20, 25, 27, 30], "simpler": 20, "simpli": [4, 8, 14, 20, 25, 30, 31], "simplifi": 31, "simultan": [7, 8, 18, 19, 20, 25, 30], "sinc": [1, 7, 14, 18, 19, 20, 23, 25, 28, 30, 31], "singl": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "singleton": 1, "situat": 26, "size": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "skeleton": 14, "skip": 31, "skip_token": 31, "sklearn": [3, 20, 31], "sklearn_modul": 31, "sklearnlasso": [20, 31], "sklearnlinearmodel": [20, 31], "sklearnlinearregress": 31, "sklearnridg": 31, "slayer_attribut": 1, "slice": [23, 25], "slide": 27, "sliding_window_shap": 27, "slight": 31, "slightli": [23, 31], "slundberg": [19, 25], "small": [18, 20, 30], "smaller": [2, 9, 20, 27], "smooth": [2, 9, 26], "smoothgrad": [10, 19, 25, 26], "smoothgrad_sq": 26, "so": [2, 4, 7, 8, 9, 11, 14, 17, 18, 19, 20, 23, 25, 27, 28, 30, 31], "softmax": 16, "solut": [2, 9], "some": [3, 10, 14, 19, 20, 23, 25, 26, 28, 31], "someth": 31, "sometim": [1, 23], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "space": [1, 18, 20, 23], "spars": [16, 31], "spatial": [12, 19], "special": [14, 31], "specif": [1, 3, 5, 6, 8, 14, 16, 19, 20, 23, 25, 28, 31], "specifi": [3, 14, 16, 20, 22, 25, 28, 31], "spectrum": 31, "split": [3, 7, 8, 17, 18, 19, 20, 25, 27, 28, 30], "springer": [4, 25], "squar": [7, 8, 14, 18, 20, 23, 25, 26, 30], "stabil": [2, 22], "stabl": 3, "standard": [9, 10, 14, 19, 25, 26, 28], "start": [1, 6, 10, 17, 19, 25], "start_point": 1, "stat": 3, "state": [1, 14, 31], "static": 1, "statist": [3, 31], "std": [9, 28], "stdev": [10, 19, 25, 26, 28], "step": [16, 17, 19, 25, 27, 28], "step_num": 28, "step_siz": 28, "stg": [2, 9], "still": [3, 14, 18, 20, 30], "stochast": [2, 9], "storag": 3, "store": [3, 14, 28], "str": [1, 2, 3, 9, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 28, 31], "straight": [17, 19], "stretch": 2, "stride": 27, "string": [1, 14, 16, 23, 28, 31], "stripe": 3, "striped_data_it": 3, "structur": [3, 14, 19], "style": 21, "sub": [1, 16, 23], "subclass": 14, "subdirectori": 14, "subplot": 31, "subsequ": 14, "subset": [19, 23], "subtract": 31, "success": 28, "suffic": 25, "suffici": 14, "suffix": 28, "suitabl": 16, "sum": [1, 2, 3, 5, 6, 9, 10, 14, 17, 19, 22, 23, 25], "summar": 28, "summari": [14, 28], "super": 20, "superpixel": [18, 20], "supervis": 31, "suppli": 31, "support": [5, 12, 16, 19, 21, 25, 26, 28, 31], "suppos": [14, 31], "sure": 31, "surrog": [2, 9, 18, 20], "sv": 30, "svm": 31, "sy21r9jaw": [5, 19, 22, 25], "symbol": 23, "t": [3, 5, 6, 10, 14, 17, 19, 23, 25, 28, 31], "take": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "taken": [7, 8, 16, 22, 25, 30], "tanh": [5, 19, 25], "target": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "targettyp": 28, "task": 31, "tcav": 13, "techniqu": 23, "temperatur": 2, "templat": 31, "tensor": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "tensorflow": 27, "tensorflowkeraspytorch": [19, 25], "tensorortupleoftensorsgener": 22, "term": [2, 9, 14, 18], "test": [3, 14, 23, 28, 30, 31], "test_loss_fn": 14, "test_reduction_typ": 14, "test_split_ratio": 3, "text": [3, 16, 21, 28, 31], "text_inp": 31, "textfeatur": 13, "texttemplateinput": 31, "texttokeninput": 31, "th": 14, "than": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "thei": [3, 8, 14, 23, 31], "them": [1, 7, 8, 10, 14, 18, 19, 20, 25, 30, 31], "theoret": 18, "theori": 30, "therefor": [10, 14, 19, 22, 23], "theta": 28, "thi": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "think": 19, "thisi": 14, "thorough": 3, "those": [1, 3, 6, 10, 14, 18, 19, 20, 22, 23, 25, 30, 31], "though": 14, "three": [5, 6, 19, 20, 25], "threshold": [18, 28], "through": [2, 3, 5, 6, 8, 9, 10, 14, 19, 20, 22, 25, 28, 31], "throughout": [9, 14], "thu": [14, 27, 31], "time": [7, 8, 10, 14, 18, 19, 20, 23, 25, 26, 27, 30], "timeseri": 31, "titl": 31, "to_interp_rep_transform": 20, "to_interp_transform": 20, "to_model_input": 31, "to_tensor": 31, "todo": 14, "togeth": [2, 7, 8, 9, 18, 19, 20, 23, 25, 26, 30, 31], "token": [13, 16, 21], "token_attr": 21, "tokenreferencebas": [16, 31], "tol": 3, "too": 14, "took": 31, "top": [14, 18, 28, 31], "top_k": 14, "torch": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "torchscript": [5, 19, 25], "torchvis": 28, "total": [5, 6, 10, 14, 17, 18, 19, 25, 30, 31], "toward": [5, 19, 21, 23, 25], "tqdm": [7, 8, 14, 18, 20, 27, 30], "tr": 30, "tracin": 14, "tracincp": 13, "tracincpbas": 13, "tracincpfast": 13, "tracincpfastrandproj": 13, "track": 28, "train": [3, 14, 18, 20, 31], "train_and_ev": 3, "train_data": 31, "train_dataset": 14, "train_dataset_s": 14, "train_fn": 31, "train_interpretable_model_func": 20, "train_test_split": 3, "trainabl": 31, "transform": [14, 16, 20, 28, 31], "treat": [14, 28], "tree": 31, "trial": [21, 28, 30], "trilinear": [1, 12], "tripl": 31, "true": [2, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31], "trust": 31, "try": [7, 8, 14, 18, 20, 27, 30], "tunnel": 26, "tupl": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "turn": [2, 9], "tutori": [3, 19, 22], "two": [3, 14, 23, 31], "type": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "typevar": [22, 28], "typic": 31, "u": [3, 14, 23, 31], "u2": 30, "un": 8, "unbound": 23, "under": [3, 10, 14, 19, 23, 25, 31], "underli": [19, 21, 22, 31], "underneath": [2, 9], "understand": [5, 19, 25, 31], "understood": 16, "unexpect": 14, "unifi": [6, 10, 19, 25, 31], "uniformli": 20, "uninterest": 31, "union": [14, 19, 22, 28, 31], "uniqu": [3, 28], "unk": 31, "unknown": 31, "unless": 31, "unlik": [8, 18, 20, 25, 30], "unpack_input": 14, "until": 27, "updat": 14, "upper": [2, 28], "upper_bound": [2, 28], "upsampl": [1, 12, 19], "upsampled_attr": 19, "us": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31], "usag": 14, "use_cached_output": 21, "use_label_for_attr": 16, "use_pyplot": 31, "user": [1, 3, 5, 10, 17, 19, 20, 22, 23, 26, 31], "usual": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "util": [1, 13, 14, 19, 21, 25], "v": [5, 6, 10, 17, 19, 25], "valid": [1, 12, 14, 31], "valu": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31], "var_nam": 28, "vargrad": 26, "variabl": [2, 3, 9, 14, 28, 31], "varianc": 26, "variant": [17, 19], "variou": [3, 31], "vector": [1, 3, 14, 18, 20, 31], "verbos": [19, 22], "veri": [1, 6, 10, 19, 30, 31], "version": [14, 20, 28, 31], "via": [2, 9, 14], "view": [10, 14, 19, 23, 25, 31], "visual": [1, 13, 16, 19], "visualis": 21, "visualization_transform": 16, "visualization_typ": 16, "visualize_image_attr": 31, "visualize_image_attr_multipl": 31, "visualize_timeseries_attr": 31, "vocabulari": 31, "w": [3, 14, 31], "wa": [14, 31], "wai": [8, 14, 21, 23, 31], "want": [1, 3, 7, 8, 14, 19, 23, 25, 30, 31], "warn": [4, 11, 12, 25], "we": [1, 3, 5, 6, 7, 8, 12, 14, 17, 18, 19, 20, 22, 23, 25, 26, 27, 30, 31], "weight": [2, 3, 9, 18, 19, 20, 22, 31], "well": [14, 20, 23, 28], "what": 31, "when": [1, 2, 3, 5, 6, 7, 8, 9, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 30, 31], "where": [3, 7, 14, 16, 18, 20, 25, 28, 30, 31], "wherea": 23, "whether": [1, 2, 3, 5, 6, 9, 10, 12, 14, 17, 18, 19, 20, 21, 22, 25, 26, 28], "which": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "while": [9, 14, 16, 19, 31], "whilst": 31, "white": [10, 19, 25, 31], "whole": 21, "whose": 31, "why": 31, "width": 20, "window": 27, "wise": [3, 7, 12, 14, 19, 22, 30, 31], "within": [1, 2, 7, 8, 9, 14, 18, 19, 20, 23, 25, 28, 30, 31], "without": [2, 4, 25, 28, 31], "word": [1, 3, 14, 16, 31], "work": 31, "worst": 28, "would": [14, 19, 25, 31], "wrap": [3, 19, 21, 23, 31], "wrapper": [14, 20, 31], "www": [23, 30], "x": [0, 3, 7, 8, 13, 14, 18, 20, 23, 25, 27, 28, 30, 31], "x_": 28, "x_0": 28, "x_t": 28, "x_test": 3, "x_train": 3, "x_valu": 31, "y": [14, 28, 31], "y_test": 3, "y_train": 3, "yield": [14, 20], "you": [7, 8, 19, 31], "your": [5, 19, 31], "zero": [1, 2, 5, 7, 9, 10, 17, 18, 19, 20, 22, 25, 26, 27, 28, 30], "zero_thresh": 28}, "titles": ["Attribution", "Base Classes", "BinaryConcreteStochasticGates", "Concept-based Interpretability", "Deconvolution", "DeepLift", "DeepLiftShap", "Feature Ablation", "Feature Permutation", "GaussianStochasticGates", "GradientShap", "Guided Backprop", "Guided GradCAM", "Captum API Reference", "Influential Examples", "Input X Gradient", "Insights", "Integrated Gradients", "KernelShap", "Layer Attribution", "Lime", "LLM Attribution Classes", "LRP", "Metrics", "Module", "Neuron Attribution", "NoiseTunnel", "Occlusion", "Robustness", "Saliency", "Shapley Value Sampling", "Utilities"], "titleterms": {"ablat": [7, 19, 25], "activ": 19, "api": 13, "attack": 28, "attribut": [0, 1, 19, 21, 25], "attributionvisu": 16, "backprop": [11, 25], "base": [1, 3, 31], "basefeatur": 16, "baselin": 31, "batch": 16, "binaryconcretestochasticg": 2, "captum": 13, "class": [1, 21], "classifi": 3, "compar": 28, "concept": 3, "conceptinterpret": 3, "conduct": [19, 25], "datainflu": 14, "deconvolut": [4, 25], "deeplift": [5, 19, 25], "deepliftshap": [6, 19, 25], "embed": 31, "exampl": 14, "featur": [7, 8, 16, 19, 25], "fgsm": 28, "gaussianstochasticg": 9, "generalfeatur": 16, "gradcam": [12, 19], "gradient": [1, 15, 17, 19, 25], "gradientshap": [10, 19, 25], "guid": [11, 12, 25], "imagefeatur": 16, "indic": 13, "infidel": 23, "influenc": 19, "influenti": 14, "input": [15, 31], "insight": [13, 16], "integr": [17, 19, 25], "intern": 19, "interpret": [3, 31], "kernelshap": 18, "layer": [1, 19], "lime": 20, "linear": 31, "llm": 21, "llmattribut": 21, "llmattributionresult": 21, "llmgradientattribut": 21, "lrp": [19, 22], "metric": 23, "min": 28, "model": 31, "modul": 24, "neuron": [1, 25], "noisetunnel": 26, "occlus": 27, "param": 28, "permut": [8, 19], "perturb": [1, 28], "pgd": 28, "refer": [13, 31], "robust": 28, "salienc": 29, "sampl": 30, "sensit": 23, "shaplei": 30, "similarityinflu": 14, "tabl": 13, "tcav": 3, "textfeatur": 16, "token": 31, "tracincp": 14, "tracincpbas": 14, "tracincpfast": 14, "tracincpfastrandproj": 14, "util": 31, "valu": 30, "visual": 31, "x": [15, 19]}}) \ No newline at end of file +Search.setIndex({"alltitles": {"API Reference": [[13, null]], "Attack Comparator": [[28, "attack-comparator"]], "Attribution": [[0, null], [1, "attribution"]], "AttributionVisualizer": [[16, "attributionvisualizer"]], "Base Classes": [[1, null]], "BaseFeature": [[16, "basefeature"]], "Baselines": [[31, "baselines"]], "Batch": [[16, "batch"]], "BinaryConcreteStochasticGates": [[2, null]], "Captum API Reference": [[13, null]], "Classifier": [[3, "classifier"]], "Concept": [[3, "concept"]], "Concept-based Interpretability": [[3, null]], "ConceptInterpreter": [[3, "conceptinterpreter"]], "DataInfluence": [[14, "datainfluence"]], "Deconvolution": [[4, null]], "DeepLift": [[5, null]], "DeepLiftShap": [[6, null]], "FGSM": [[28, "fgsm"]], "Feature Ablation": [[7, null]], "Feature Permutation": [[8, null]], "Features": [[16, "features"]], "GaussianStochasticGates": [[9, null]], "GeneralFeature": [[16, "generalfeature"]], "GradCAM": [[19, "gradcam"]], "Gradient Attribution": [[1, "gradient-attribution"]], "GradientShap": [[10, null]], "Guided Backprop": [[11, null]], "Guided GradCAM": [[12, null]], "ImageFeature": [[16, "imagefeature"]], "Indices and Tables": [[13, "indices-and-tables"]], "Infidelity": [[23, "infidelity"]], "Influential Examples": [[14, null]], "Input X Gradient": [[15, null]], "Insights": [[16, null]], "Insights API Reference": [[13, null]], "Integrated Gradients": [[17, null]], "Internal Influence": [[19, "internal-influence"]], "Interpretable Embeddings": [[31, "interpretable-embeddings"]], "Interpretable Input": [[31, "interpretable-input"]], "KernelShap": [[18, null]], "LLM Attribution Classes": [[21, null]], "LLMAttribution": [[21, "llmattribution"]], "LLMAttributionResult": [[21, "llmattributionresult"]], "LLMGradientAttribution": [[21, "llmgradientattribution"]], "LRP": [[22, null]], "Layer Activation": [[19, "layer-activation"]], "Layer Attribution": [[1, "layer-attribution"], [19, null]], "Layer Conductance": [[19, "layer-conductance"]], "Layer DeepLift": [[19, "layer-deeplift"]], "Layer DeepLiftShap": [[19, "layer-deepliftshap"]], "Layer Feature Ablation": [[19, "layer-feature-ablation"]], "Layer Feature Permutation": [[19, "layer-feature-permutation"]], "Layer Gradient X Activation": [[19, "layer-gradient-x-activation"]], "Layer GradientShap": [[19, "layer-gradientshap"]], "Layer Integrated Gradients": [[19, "layer-integrated-gradients"]], "Layer LRP": [[19, "layer-lrp"]], "Lime": [[20, null]], "Linear Models": [[31, "linear-models"]], "Metrics": [[23, null]], "Min Param Perturbation": [[28, "min-param-perturbation"]], "Module": [[24, null]], "Neuron Attribution": [[1, "neuron-attribution"], [25, null]], "Neuron Conductance": [[25, "neuron-conductance"]], "Neuron Deconvolution": [[25, "neuron-deconvolution"]], "Neuron DeepLift": [[25, "neuron-deeplift"]], "Neuron DeepLiftShap": [[25, "neuron-deepliftshap"]], "Neuron Feature Ablation": [[25, "neuron-feature-ablation"]], "Neuron Gradient": [[25, "neuron-gradient"]], "Neuron GradientShap": [[25, "neuron-gradientshap"]], "Neuron Guided Backprop": [[25, "neuron-guided-backprop"]], "Neuron Integrated Gradients": [[25, "neuron-integrated-gradients"]], "NoiseTunnel": [[26, null]], "Occlusion": [[27, null]], "PGD": [[28, "pgd"]], "Perturbation Attribution": [[1, "perturbation-attribution"]], "Robustness": [[28, null]], "Saliency": [[29, null]], "Sensitivity": [[23, "sensitivity"]], "Shapley Value Sampling": [[30, null]], "SimilarityInfluence": [[14, "similarityinfluence"]], "TCAV": [[3, "tcav"]], "TextFeature": [[16, "textfeature"]], "Token Reference Base": [[31, "token-reference-base"]], "TracInCP": [[14, "tracincp"]], "TracInCPBase": [[14, "tracincpbase"]], "TracInCPFast": [[14, "tracincpfast"]], "TracInCPFastRandProj": [[14, "tracincpfastrandproj"]], "Utilities": [[31, null]], "Visualization": [[31, "visualization"]]}, "docnames": ["attribution", "base_classes", "binary_concrete_stg", "concept", "deconvolution", "deep_lift", "deep_lift_shap", "feature_ablation", "feature_permutation", "gaussian_stg", "gradient_shap", "guided_backprop", "guided_grad_cam", "index", "influence", "input_x_gradient", "insights", "integrated_gradients", "kernel_shap", "layer", "lime", "llm_attr", "lrp", "metrics", "module", "neuron", "noise_tunnel", "occlusion", "robust", "saliency", "shapley_value_sampling", "utilities"], "envversion": {"sphinx": 63, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["attribution.rst", "base_classes.rst", "binary_concrete_stg.rst", "concept.rst", "deconvolution.rst", "deep_lift.rst", "deep_lift_shap.rst", "feature_ablation.rst", "feature_permutation.rst", "gaussian_stg.rst", "gradient_shap.rst", "guided_backprop.rst", "guided_grad_cam.rst", "index.rst", "influence.rst", "input_x_gradient.rst", "insights.rst", "integrated_gradients.rst", "kernel_shap.rst", "layer.rst", "lime.rst", "llm_attr.rst", "lrp.rst", "metrics.rst", "module.rst", "neuron.rst", "noise_tunnel.rst", "occlusion.rst", "robust.rst", "saliency.rst", "shapley_value_sampling.rst", "utilities.rst"], "indexentries": {"add_attack() (captum.robust.attackcomparator method)": [[28, "captum.robust.AttackComparator.add_attack", false]], "attackcomparator (class in captum.robust)": [[28, "captum.robust.AttackComparator", false]], "attribute (captum.attr.attribution attribute)": [[1, "captum.attr.Attribution.attribute", false]], "attribute (captum.attr.neuronattribution attribute)": [[1, "captum.attr.NeuronAttribution.attribute", false]], "attribute() (captum.attr.deconvolution method)": [[4, "captum.attr.Deconvolution.attribute", false]], "attribute() (captum.attr.deeplift method)": [[5, "captum.attr.DeepLift.attribute", false]], "attribute() (captum.attr.deepliftshap method)": [[6, "captum.attr.DeepLiftShap.attribute", false]], "attribute() (captum.attr.featureablation method)": [[7, "captum.attr.FeatureAblation.attribute", false]], "attribute() (captum.attr.featurepermutation method)": [[8, "captum.attr.FeaturePermutation.attribute", false]], "attribute() (captum.attr.gradientshap method)": [[10, "captum.attr.GradientShap.attribute", false]], "attribute() (captum.attr.guidedbackprop method)": [[11, "captum.attr.GuidedBackprop.attribute", false]], "attribute() (captum.attr.guidedgradcam method)": [[12, "captum.attr.GuidedGradCam.attribute", false]], "attribute() (captum.attr.inputxgradient method)": [[15, "captum.attr.InputXGradient.attribute", false]], "attribute() (captum.attr.integratedgradients method)": [[17, "captum.attr.IntegratedGradients.attribute", false]], "attribute() (captum.attr.internalinfluence method)": [[19, "captum.attr.InternalInfluence.attribute", false]], "attribute() (captum.attr.kernelshap method)": [[18, "captum.attr.KernelShap.attribute", false]], "attribute() (captum.attr.layeractivation method)": [[19, "captum.attr.LayerActivation.attribute", false]], "attribute() (captum.attr.layerconductance method)": [[19, "captum.attr.LayerConductance.attribute", false]], "attribute() (captum.attr.layerdeeplift method)": [[19, "captum.attr.LayerDeepLift.attribute", false]], "attribute() (captum.attr.layerdeepliftshap method)": [[19, "captum.attr.LayerDeepLiftShap.attribute", false]], "attribute() (captum.attr.layerfeatureablation method)": [[19, "captum.attr.LayerFeatureAblation.attribute", false]], "attribute() (captum.attr.layerfeaturepermutation method)": [[19, "captum.attr.LayerFeaturePermutation.attribute", false]], "attribute() (captum.attr.layergradcam method)": [[19, "captum.attr.LayerGradCam.attribute", false]], "attribute() (captum.attr.layergradientshap method)": [[19, "captum.attr.LayerGradientShap.attribute", false]], "attribute() (captum.attr.layergradientxactivation method)": [[19, "captum.attr.LayerGradientXActivation.attribute", false]], "attribute() (captum.attr.layerintegratedgradients method)": [[19, "captum.attr.LayerIntegratedGradients.attribute", false]], "attribute() (captum.attr.layerlrp method)": [[19, "captum.attr.LayerLRP.attribute", false]], "attribute() (captum.attr.lime method)": [[20, "captum.attr.Lime.attribute", false]], "attribute() (captum.attr.limebase method)": [[20, "captum.attr.LimeBase.attribute", false]], "attribute() (captum.attr.llmattribution method)": [[21, "captum.attr.LLMAttribution.attribute", false]], "attribute() (captum.attr.llmgradientattribution method)": [[21, "captum.attr.LLMGradientAttribution.attribute", false]], "attribute() (captum.attr.lrp method)": [[22, "captum.attr.LRP.attribute", false]], "attribute() (captum.attr.neuronconductance method)": [[25, "captum.attr.NeuronConductance.attribute", false]], "attribute() (captum.attr.neurondeconvolution method)": [[25, "captum.attr.NeuronDeconvolution.attribute", false]], "attribute() (captum.attr.neurondeeplift method)": [[25, "captum.attr.NeuronDeepLift.attribute", false]], "attribute() (captum.attr.neurondeepliftshap method)": [[25, "captum.attr.NeuronDeepLiftShap.attribute", false]], "attribute() (captum.attr.neuronfeatureablation method)": [[25, "captum.attr.NeuronFeatureAblation.attribute", false]], "attribute() (captum.attr.neurongradient method)": [[25, "captum.attr.NeuronGradient.attribute", false]], "attribute() (captum.attr.neurongradientshap method)": [[25, "captum.attr.NeuronGradientShap.attribute", false]], "attribute() (captum.attr.neuronguidedbackprop method)": [[25, "captum.attr.NeuronGuidedBackprop.attribute", false]], "attribute() (captum.attr.neuronintegratedgradients method)": [[25, "captum.attr.NeuronIntegratedGradients.attribute", false]], "attribute() (captum.attr.noisetunnel method)": [[26, "captum.attr.NoiseTunnel.attribute", false]], "attribute() (captum.attr.occlusion method)": [[27, "captum.attr.Occlusion.attribute", false]], "attribute() (captum.attr.saliency method)": [[29, "captum.attr.Saliency.attribute", false]], "attribute() (captum.attr.shapleyvalues method)": [[30, "captum.attr.ShapleyValues.attribute", false]], "attribute() (captum.attr.shapleyvaluesampling method)": [[30, "captum.attr.ShapleyValueSampling.attribute", false]], "attribution (class in captum.attr)": [[1, "captum.attr.Attribution", false]], "attributionvisualizer (class in captum.insights)": [[16, "captum.insights.AttributionVisualizer", false]], "basefeature (class in captum.insights.features)": [[16, "captum.insights.features.BaseFeature", false]], "batch (class in captum.insights)": [[16, "captum.insights.Batch", false]], "binaryconcretestochasticgates (class in captum.module)": [[2, "captum.module.BinaryConcreteStochasticGates", false]], "bound (captum.robust.fgsm attribute)": [[28, "captum.robust.FGSM.bound", false]], "bound (captum.robust.pgd attribute)": [[28, "captum.robust.PGD.bound", false]], "classes() (captum.concept.classifier method)": [[3, "captum.concept.Classifier.classes", false]], "classifier (class in captum.concept)": [[3, "captum.concept.Classifier", false]], "compute_cavs() (captum.concept.tcav method)": [[3, "captum.concept.TCAV.compute_cavs", false]], "compute_convergence_delta (captum.attr.attribution attribute)": [[1, "captum.attr.Attribution.compute_convergence_delta", false]], "compute_convergence_delta() (captum.attr.gradientattribution method)": [[1, "captum.attr.GradientAttribution.compute_convergence_delta", false]], "compute_convergence_delta() (captum.attr.lrp method)": [[22, "captum.attr.LRP.compute_convergence_delta", false]], "compute_intermediate_quantities() (captum.influence.tracincp method)": [[14, "captum.influence.TracInCP.compute_intermediate_quantities", false]], "compute_intermediate_quantities() (captum.influence.tracincpfastrandproj method)": [[14, "captum.influence.TracInCPFastRandProj.compute_intermediate_quantities", false]], "concept (class in captum.concept)": [[3, "captum.concept.Concept", false]], "conceptinterpreter (class in captum.concept)": [[3, "captum.concept.ConceptInterpreter", false]], "configure_interpretable_embedding_layer() (in module captum.attr)": [[31, "captum.attr.configure_interpretable_embedding_layer", false]], "datainfluence (class in captum.influence)": [[14, "captum.influence.DataInfluence", false]], "deconvolution (class in captum.attr)": [[4, "captum.attr.Deconvolution", false]], "deeplift (class in captum.attr)": [[5, "captum.attr.DeepLift", false]], "deepliftshap (class in captum.attr)": [[6, "captum.attr.DeepLiftShap", false]], "evaluate() (captum.robust.attackcomparator method)": [[28, "captum.robust.AttackComparator.evaluate", false]], "evaluate() (captum.robust.minparamperturbation method)": [[28, "captum.robust.MinParamPerturbation.evaluate", false]], "featureablation (class in captum.attr)": [[7, "captum.attr.FeatureAblation", false]], "featurepermutation (class in captum.attr)": [[8, "captum.attr.FeaturePermutation", false]], "fgsm (class in captum.robust)": [[28, "captum.robust.FGSM", false]], "fit() (captum._utils.models.linear_model.sgdlasso method)": [[31, "captum._utils.models.linear_model.SGDLasso.fit", false]], "fit() (captum._utils.models.linear_model.sgdridge method)": [[31, "captum._utils.models.linear_model.SGDRidge.fit", false]], "fit() (captum._utils.models.linear_model.sklearnlasso method)": [[31, "captum._utils.models.linear_model.SkLearnLasso.fit", false]], "fit() (captum._utils.models.linear_model.sklearnlinearmodel method)": [[31, "captum._utils.models.linear_model.SkLearnLinearModel.fit", false]], "fit() (captum._utils.models.linear_model.sklearnlinearregression method)": [[31, "captum._utils.models.linear_model.SkLearnLinearRegression.fit", false]], "fit() (captum._utils.models.linear_model.sklearnridge method)": [[31, "captum._utils.models.linear_model.SkLearnRidge.fit", false]], "fit() (captum._utils.models.model.model method)": [[31, "captum._utils.models.model.Model.fit", false]], "format_attr() (captum.attr.interpretableinput method)": [[31, "captum.attr.InterpretableInput.format_attr", false]], "format_attr() (captum.attr.texttemplateinput method)": [[31, "captum.attr.TextTemplateInput.format_attr", false]], "format_attr() (captum.attr.texttokeninput method)": [[31, "captum.attr.TextTokenInput.format_attr", false]], "forward() (captum.attr.interpretableembeddingbase method)": [[31, "captum.attr.InterpretableEmbeddingBase.forward", false]], "forward() (captum.module.binaryconcretestochasticgates method)": [[2, "captum.module.BinaryConcreteStochasticGates.forward", false]], "forward() (captum.module.gaussianstochasticgates method)": [[9, "captum.module.GaussianStochasticGates.forward", false]], "gaussianstochasticgates (class in captum.module)": [[9, "captum.module.GaussianStochasticGates", false]], "generalfeature (class in captum.insights.features)": [[16, "captum.insights.features.GeneralFeature", false]], "generate_activation() (captum.concept.tcav method)": [[3, "captum.concept.TCAV.generate_activation", false]], "generate_activations() (captum.concept.tcav method)": [[3, "captum.concept.TCAV.generate_activations", false]], "generate_all_activations() (captum.concept.tcav method)": [[3, "captum.concept.TCAV.generate_all_activations", false]], "generate_reference() (captum.attr.tokenreferencebase method)": [[31, "captum.attr.TokenReferenceBase.generate_reference", false]], "get_exp_kernel_similarity_function() (in module captum.attr._core.lime)": [[20, "captum.attr._core.lime.get_exp_kernel_similarity_function", false]], "get_gate_active_probs() (captum.module.binaryconcretestochasticgates method)": [[2, "captum.module.BinaryConcreteStochasticGates.get_gate_active_probs", false]], "get_gate_active_probs() (captum.module.gaussianstochasticgates method)": [[9, "captum.module.GaussianStochasticGates.get_gate_active_probs", false]], "get_gate_values() (captum.module.binaryconcretestochasticgates method)": [[2, "captum.module.BinaryConcreteStochasticGates.get_gate_values", false]], "get_gate_values() (captum.module.gaussianstochasticgates method)": [[9, "captum.module.GaussianStochasticGates.get_gate_values", false]], "get_name() (captum.attr.attribution class method)": [[1, "captum.attr.Attribution.get_name", false]], "get_name() (captum.influence.datainfluence class method)": [[14, "captum.influence.DataInfluence.get_name", false]], "get_name() (captum.influence.tracincpbase class method)": [[14, "captum.influence.TracInCPBase.get_name", false]], "gradientattribution (class in captum.attr)": [[1, "captum.attr.GradientAttribution", false]], "gradientshap (class in captum.attr)": [[10, "captum.attr.GradientShap", false]], "guidedbackprop (class in captum.attr)": [[11, "captum.attr.GuidedBackprop", false]], "guidedgradcam (class in captum.attr)": [[12, "captum.attr.GuidedGradCam", false]], "has_convergence_delta() (captum.attr.attribution method)": [[1, "captum.attr.Attribution.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.deeplift method)": [[5, "captum.attr.DeepLift.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.gradientshap method)": [[10, "captum.attr.GradientShap.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.integratedgradients method)": [[17, "captum.attr.IntegratedGradients.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.layerconductance method)": [[19, "captum.attr.LayerConductance.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.layergradientshap method)": [[19, "captum.attr.LayerGradientShap.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.layerintegratedgradients method)": [[19, "captum.attr.LayerIntegratedGradients.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.limebase method)": [[20, "captum.attr.LimeBase.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.lrp method)": [[22, "captum.attr.LRP.has_convergence_delta", false]], "has_convergence_delta() (captum.attr.noisetunnel method)": [[26, "captum.attr.NoiseTunnel.has_convergence_delta", false]], "imagefeature (class in captum.insights.features)": [[16, "captum.insights.features.ImageFeature", false]], "indices_to_embeddings() (captum.attr.interpretableembeddingbase method)": [[31, "captum.attr.InterpretableEmbeddingBase.indices_to_embeddings", false]], "infidelity (class in captum.metrics)": [[23, "captum.metrics.infidelity", false]], "influence() (captum.influence.datainfluence method)": [[14, "captum.influence.DataInfluence.influence", false]], "influence() (captum.influence.similarityinfluence method)": [[14, "captum.influence.SimilarityInfluence.influence", false]], "influence() (captum.influence.tracincp method)": [[14, "captum.influence.TracInCP.influence", false]], "influence() (captum.influence.tracincpbase method)": [[14, "captum.influence.TracInCPBase.influence", false]], "influence() (captum.influence.tracincpfast method)": [[14, "captum.influence.TracInCPFast.influence", false]], "influence() (captum.influence.tracincpfastrandproj method)": [[14, "captum.influence.TracInCPFastRandProj.influence", false]], "inputxgradient (class in captum.attr)": [[15, "captum.attr.InputXGradient", false]], "integratedgradients (class in captum.attr)": [[17, "captum.attr.IntegratedGradients", false]], "internalinfluence (class in captum.attr)": [[19, "captum.attr.InternalInfluence", false]], "interpolate() (captum.attr.layerattribution static method)": [[1, "captum.attr.LayerAttribution.interpolate", false]], "interpret (captum.concept.conceptinterpreter attribute)": [[3, "captum.concept.ConceptInterpreter.interpret", false]], "interpret() (captum.concept.tcav method)": [[3, "captum.concept.TCAV.interpret", false]], "interpretableembeddingbase (class in captum.attr)": [[31, "captum.attr.InterpretableEmbeddingBase", false]], "interpretableinput (class in captum.attr)": [[31, "captum.attr.InterpretableInput", false]], "kernel_shap_perturb_generator() (captum.attr.kernelshap method)": [[18, "captum.attr.KernelShap.kernel_shap_perturb_generator", false]], "kernelshap (class in captum.attr)": [[18, "captum.attr.KernelShap", false]], "layeractivation (class in captum.attr)": [[19, "captum.attr.LayerActivation", false]], "layerattribution (class in captum.attr)": [[1, "captum.attr.LayerAttribution", false]], "layerconductance (class in captum.attr)": [[19, "captum.attr.LayerConductance", false]], "layerdeeplift (class in captum.attr)": [[19, "captum.attr.LayerDeepLift", false]], "layerdeepliftshap (class in captum.attr)": [[19, "captum.attr.LayerDeepLiftShap", false]], "layerfeatureablation (class in captum.attr)": [[19, "captum.attr.LayerFeatureAblation", false]], "layerfeaturepermutation (class in captum.attr)": [[19, "captum.attr.LayerFeaturePermutation", false]], "layergradcam (class in captum.attr)": [[19, "captum.attr.LayerGradCam", false]], "layergradientshap (class in captum.attr)": [[19, "captum.attr.LayerGradientShap", false]], "layergradientxactivation (class in captum.attr)": [[19, "captum.attr.LayerGradientXActivation", false]], "layerintegratedgradients (class in captum.attr)": [[19, "captum.attr.LayerIntegratedGradients", false]], "layerlrp (class in captum.attr)": [[19, "captum.attr.LayerLRP", false]], "lime (class in captum.attr)": [[20, "captum.attr.Lime", false]], "limebase (class in captum.attr)": [[20, "captum.attr.LimeBase", false]], "llmattribution (class in captum.attr)": [[21, "captum.attr.LLMAttribution", false]], "llmattributionresult (class in captum.attr)": [[21, "captum.attr.LLMAttributionResult", false]], "llmgradientattribution (class in captum.attr)": [[21, "captum.attr.LLMGradientAttribution", false]], "load_cavs() (captum.concept.tcav method)": [[3, "captum.concept.TCAV.load_cavs", false]], "lrp (class in captum.attr)": [[22, "captum.attr.LRP", false]], "minparamperturbation (class in captum.robust)": [[28, "captum.robust.MinParamPerturbation", false]], "model (class in captum._utils.models.model)": [[31, "captum._utils.models.model.Model", false]], "neuronattribution (class in captum.attr)": [[1, "captum.attr.NeuronAttribution", false]], "neuronconductance (class in captum.attr)": [[25, "captum.attr.NeuronConductance", false]], "neurondeconvolution (class in captum.attr)": [[25, "captum.attr.NeuronDeconvolution", false]], "neurondeeplift (class in captum.attr)": [[25, "captum.attr.NeuronDeepLift", false]], "neurondeepliftshap (class in captum.attr)": [[25, "captum.attr.NeuronDeepLiftShap", false]], "neuronfeatureablation (class in captum.attr)": [[25, "captum.attr.NeuronFeatureAblation", false]], "neurongradient (class in captum.attr)": [[25, "captum.attr.NeuronGradient", false]], "neurongradientshap (class in captum.attr)": [[25, "captum.attr.NeuronGradientShap", false]], "neuronguidedbackprop (class in captum.attr)": [[25, "captum.attr.NeuronGuidedBackprop", false]], "neuronintegratedgradients (class in captum.attr)": [[25, "captum.attr.NeuronIntegratedGradients", false]], "noisetunnel (class in captum.attr)": [[26, "captum.attr.NoiseTunnel", false]], "occlusion (class in captum.attr)": [[27, "captum.attr.Occlusion", false]], "perturb() (captum.robust.fgsm method)": [[28, "captum.robust.FGSM.perturb", false]], "perturb() (captum.robust.pgd method)": [[28, "captum.robust.PGD.perturb", false]], "perturbationattribution (class in captum.attr)": [[1, "captum.attr.PerturbationAttribution", false]], "pgd (class in captum.robust)": [[28, "captum.robust.PGD", false]], "plot_seq_attr() (captum.attr.llmattributionresult method)": [[21, "captum.attr.LLMAttributionResult.plot_seq_attr", false]], "plot_token_attr() (captum.attr.llmattributionresult method)": [[21, "captum.attr.LLMAttributionResult.plot_token_attr", false]], "productbaselines (class in captum.attr)": [[31, "captum.attr.ProductBaselines", false]], "remove_interpretable_embedding_layer() (in module captum.attr)": [[31, "captum.attr.remove_interpretable_embedding_layer", false]], "representation() (captum._utils.models.model.model method)": [[31, "captum._utils.models.model.Model.representation", false]], "reset() (captum.robust.attackcomparator method)": [[28, "captum.robust.AttackComparator.reset", false]], "saliency (class in captum.attr)": [[29, "captum.attr.Saliency", false]], "self_influence() (captum.influence.tracincp method)": [[14, "captum.influence.TracInCP.self_influence", false]], "self_influence() (captum.influence.tracincpbase method)": [[14, "captum.influence.TracInCPBase.self_influence", false]], "self_influence() (captum.influence.tracincpfast method)": [[14, "captum.influence.TracInCPFast.self_influence", false]], "self_influence() (captum.influence.tracincpfastrandproj method)": [[14, "captum.influence.TracInCPFastRandProj.self_influence", false]], "sensitivity_max (class in captum.metrics)": [[23, "captum.metrics.sensitivity_max", false]], "sgdlasso (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SGDLasso", false]], "sgdlinearmodel (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SGDLinearModel", false]], "sgdridge (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SGDRidge", false]], "shapleyvalues (class in captum.attr)": [[30, "captum.attr.ShapleyValues", false]], "shapleyvaluesampling (class in captum.attr)": [[30, "captum.attr.ShapleyValueSampling", false]], "similarityinfluence (class in captum.influence)": [[14, "captum.influence.SimilarityInfluence", false]], "sklearnlasso (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SkLearnLasso", false]], "sklearnlinearmodel (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SkLearnLinearModel", false]], "sklearnlinearregression (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SkLearnLinearRegression", false]], "sklearnridge (class in captum._utils.models.linear_model)": [[31, "captum._utils.models.linear_model.SkLearnRidge", false]], "summary() (captum.robust.attackcomparator method)": [[28, "captum.robust.AttackComparator.summary", false]], "tcav (class in captum.concept)": [[3, "captum.concept.TCAV", false]], "test_reduction_type (captum.influence.tracincp attribute)": [[14, "captum.influence.TracInCP.test_reduction_type", false]], "textfeature (class in captum.insights.features)": [[16, "captum.insights.features.TextFeature", false]], "texttemplateinput (class in captum.attr)": [[31, "captum.attr.TextTemplateInput", false]], "texttokeninput (class in captum.attr)": [[31, "captum.attr.TextTokenInput", false]], "to_model_input() (captum.attr.interpretableinput method)": [[31, "captum.attr.InterpretableInput.to_model_input", false]], "to_model_input() (captum.attr.texttemplateinput method)": [[31, "captum.attr.TextTemplateInput.to_model_input", false]], "to_model_input() (captum.attr.texttokeninput method)": [[31, "captum.attr.TextTokenInput.to_model_input", false]], "to_tensor() (captum.attr.interpretableinput method)": [[31, "captum.attr.InterpretableInput.to_tensor", false]], "to_tensor() (captum.attr.texttemplateinput method)": [[31, "captum.attr.TextTemplateInput.to_tensor", false]], "to_tensor() (captum.attr.texttokeninput method)": [[31, "captum.attr.TextTokenInput.to_tensor", false]], "tokenreferencebase (class in captum.attr)": [[31, "captum.attr.TokenReferenceBase", false]], "tracincp (class in captum.influence)": [[14, "captum.influence.TracInCP", false]], "tracincpbase (class in captum.influence)": [[14, "captum.influence.TracInCPBase", false]], "tracincpfast (class in captum.influence)": [[14, "captum.influence.TracInCPFast", false]], "tracincpfastrandproj (class in captum.influence)": [[14, "captum.influence.TracInCPFastRandProj", false]], "train_and_eval() (captum.concept.classifier method)": [[3, "captum.concept.Classifier.train_and_eval", false]], "visualize_image_attr() (in module captum.attr.visualization)": [[31, "captum.attr.visualization.visualize_image_attr", false]], "visualize_image_attr_multiple() (in module captum.attr.visualization)": [[31, "captum.attr.visualization.visualize_image_attr_multiple", false]], "visualize_timeseries_attr() (in module captum.attr.visualization)": [[31, "captum.attr.visualization.visualize_timeseries_attr", false]], "weights() (captum.concept.classifier method)": [[3, "captum.concept.Classifier.weights", false]], "zero_thresh (captum.robust.fgsm attribute)": [[28, "captum.robust.FGSM.zero_thresh", false]]}, "objects": {"captum._utils.models.linear_model": [[31, 0, 1, "", "SGDLasso"], [31, 0, 1, "", "SGDLinearModel"], [31, 0, 1, "", "SGDRidge"], [31, 0, 1, "", "SkLearnLasso"], [31, 0, 1, "", "SkLearnLinearModel"], [31, 0, 1, "", "SkLearnLinearRegression"], [31, 0, 1, "", "SkLearnRidge"]], "captum._utils.models.linear_model.SGDLasso": [[31, 1, 1, "", "fit"]], "captum._utils.models.linear_model.SGDRidge": [[31, 1, 1, "", "fit"]], "captum._utils.models.linear_model.SkLearnLasso": [[31, 1, 1, "", "fit"]], "captum._utils.models.linear_model.SkLearnLinearModel": [[31, 1, 1, "", "fit"]], "captum._utils.models.linear_model.SkLearnLinearRegression": [[31, 1, 1, "", "fit"]], "captum._utils.models.linear_model.SkLearnRidge": [[31, 1, 1, "", "fit"]], "captum._utils.models.model": [[31, 0, 1, "", "Model"]], "captum._utils.models.model.Model": [[31, 1, 1, "", "fit"], [31, 1, 1, "", "representation"]], "captum.attr": [[1, 0, 1, "", "Attribution"], [4, 0, 1, "", "Deconvolution"], [5, 0, 1, "", "DeepLift"], [6, 0, 1, "", "DeepLiftShap"], [7, 0, 1, "", "FeatureAblation"], [8, 0, 1, "", "FeaturePermutation"], [1, 0, 1, "", "GradientAttribution"], [10, 0, 1, "", "GradientShap"], [11, 0, 1, "", "GuidedBackprop"], [12, 0, 1, "", "GuidedGradCam"], [15, 0, 1, "", "InputXGradient"], [17, 0, 1, "", "IntegratedGradients"], [19, 0, 1, "", "InternalInfluence"], [31, 0, 1, "", "InterpretableEmbeddingBase"], [31, 0, 1, "", "InterpretableInput"], [18, 0, 1, "", "KernelShap"], [21, 0, 1, "", "LLMAttribution"], [21, 0, 1, "", "LLMAttributionResult"], [21, 0, 1, "", "LLMGradientAttribution"], [22, 0, 1, "", "LRP"], [19, 0, 1, "", "LayerActivation"], [1, 0, 1, "", "LayerAttribution"], [19, 0, 1, "", "LayerConductance"], [19, 0, 1, "", "LayerDeepLift"], [19, 0, 1, "", "LayerDeepLiftShap"], [19, 0, 1, "", "LayerFeatureAblation"], [19, 0, 1, "", "LayerFeaturePermutation"], [19, 0, 1, "", "LayerGradCam"], [19, 0, 1, "", "LayerGradientShap"], [19, 0, 1, "", "LayerGradientXActivation"], [19, 0, 1, "", "LayerIntegratedGradients"], [19, 0, 1, "", "LayerLRP"], [20, 0, 1, "", "Lime"], [20, 0, 1, "", "LimeBase"], [1, 0, 1, "", "NeuronAttribution"], [25, 0, 1, "", "NeuronConductance"], [25, 0, 1, "", "NeuronDeconvolution"], [25, 0, 1, "", "NeuronDeepLift"], [25, 0, 1, "", "NeuronDeepLiftShap"], [25, 0, 1, "", "NeuronFeatureAblation"], [25, 0, 1, "", "NeuronGradient"], [25, 0, 1, "", "NeuronGradientShap"], [25, 0, 1, "", "NeuronGuidedBackprop"], [25, 0, 1, "", "NeuronIntegratedGradients"], [26, 0, 1, "", "NoiseTunnel"], [27, 0, 1, "", "Occlusion"], [1, 0, 1, "", "PerturbationAttribution"], [31, 0, 1, "", "ProductBaselines"], [29, 0, 1, "", "Saliency"], [30, 0, 1, "", "ShapleyValueSampling"], [30, 0, 1, "", "ShapleyValues"], [31, 0, 1, "", "TextTemplateInput"], [31, 0, 1, "", "TextTokenInput"], [31, 0, 1, "", "TokenReferenceBase"], [31, 3, 1, "", "configure_interpretable_embedding_layer"], [31, 3, 1, "", "remove_interpretable_embedding_layer"]], "captum.attr.Attribution": [[1, 2, 1, "", "attribute"], [1, 2, 1, "", "compute_convergence_delta"], [1, 1, 1, "", "get_name"], [1, 1, 1, "", "has_convergence_delta"]], "captum.attr.Deconvolution": [[4, 1, 1, "", "attribute"]], "captum.attr.DeepLift": [[5, 1, 1, "", "attribute"], [5, 1, 1, "", "has_convergence_delta"]], "captum.attr.DeepLiftShap": [[6, 1, 1, "", "attribute"]], "captum.attr.FeatureAblation": [[7, 1, 1, "", "attribute"]], "captum.attr.FeaturePermutation": [[8, 1, 1, "", "attribute"]], "captum.attr.GradientAttribution": [[1, 1, 1, "", "compute_convergence_delta"]], "captum.attr.GradientShap": [[10, 1, 1, "", "attribute"], [10, 1, 1, "", "has_convergence_delta"]], "captum.attr.GuidedBackprop": [[11, 1, 1, "", "attribute"]], "captum.attr.GuidedGradCam": [[12, 1, 1, "", "attribute"]], "captum.attr.InputXGradient": [[15, 1, 1, "", "attribute"]], "captum.attr.IntegratedGradients": [[17, 1, 1, "", "attribute"], [17, 1, 1, "", "has_convergence_delta"]], "captum.attr.InternalInfluence": [[19, 1, 1, "", "attribute"]], "captum.attr.InterpretableEmbeddingBase": [[31, 1, 1, "", "forward"], [31, 1, 1, "", "indices_to_embeddings"]], "captum.attr.InterpretableInput": [[31, 1, 1, "", "format_attr"], [31, 1, 1, "", "to_model_input"], [31, 1, 1, "", "to_tensor"]], "captum.attr.KernelShap": [[18, 1, 1, "", "attribute"], [18, 1, 1, "", "kernel_shap_perturb_generator"]], "captum.attr.LLMAttribution": [[21, 1, 1, "", "attribute"]], "captum.attr.LLMAttributionResult": [[21, 1, 1, "", "plot_seq_attr"], [21, 1, 1, "", "plot_token_attr"]], "captum.attr.LLMGradientAttribution": [[21, 1, 1, "", "attribute"]], "captum.attr.LRP": [[22, 1, 1, "", "attribute"], [22, 1, 1, "", "compute_convergence_delta"], [22, 1, 1, "", "has_convergence_delta"]], "captum.attr.LayerActivation": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerAttribution": [[1, 1, 1, "", "interpolate"]], "captum.attr.LayerConductance": [[19, 1, 1, "", "attribute"], [19, 1, 1, "", "has_convergence_delta"]], "captum.attr.LayerDeepLift": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerDeepLiftShap": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerFeatureAblation": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerFeaturePermutation": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerGradCam": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerGradientShap": [[19, 1, 1, "", "attribute"], [19, 1, 1, "", "has_convergence_delta"]], "captum.attr.LayerGradientXActivation": [[19, 1, 1, "", "attribute"]], "captum.attr.LayerIntegratedGradients": [[19, 1, 1, "", "attribute"], [19, 1, 1, "", "has_convergence_delta"]], "captum.attr.LayerLRP": [[19, 1, 1, "", "attribute"]], "captum.attr.Lime": [[20, 1, 1, "", "attribute"]], "captum.attr.LimeBase": [[20, 1, 1, "", "attribute"], [20, 1, 1, "", "has_convergence_delta"]], "captum.attr.NeuronAttribution": [[1, 2, 1, "", "attribute"]], "captum.attr.NeuronConductance": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronDeconvolution": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronDeepLift": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronDeepLiftShap": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronFeatureAblation": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronGradient": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronGradientShap": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronGuidedBackprop": [[25, 1, 1, "", "attribute"]], "captum.attr.NeuronIntegratedGradients": [[25, 1, 1, "", "attribute"]], "captum.attr.NoiseTunnel": [[26, 1, 1, "", "attribute"], [26, 1, 1, "", "has_convergence_delta"]], "captum.attr.Occlusion": [[27, 1, 1, "", "attribute"]], "captum.attr.Saliency": [[29, 1, 1, "", "attribute"]], "captum.attr.ShapleyValueSampling": [[30, 1, 1, "", "attribute"]], "captum.attr.ShapleyValues": [[30, 1, 1, "", "attribute"]], "captum.attr.TextTemplateInput": [[31, 1, 1, "", "format_attr"], [31, 1, 1, "", "to_model_input"], [31, 1, 1, "", "to_tensor"]], "captum.attr.TextTokenInput": [[31, 1, 1, "", "format_attr"], [31, 1, 1, "", "to_model_input"], [31, 1, 1, "", "to_tensor"]], "captum.attr.TokenReferenceBase": [[31, 1, 1, "", "generate_reference"]], "captum.attr._core.lime": [[20, 3, 1, "", "get_exp_kernel_similarity_function"]], "captum.attr.visualization": [[31, 3, 1, "", "visualize_image_attr"], [31, 3, 1, "", "visualize_image_attr_multiple"], [31, 3, 1, "", "visualize_timeseries_attr"]], "captum.concept": [[3, 0, 1, "", "Classifier"], [3, 0, 1, "", "Concept"], [3, 0, 1, "", "ConceptInterpreter"], [3, 0, 1, "", "TCAV"]], "captum.concept.Classifier": [[3, 1, 1, "", "classes"], [3, 1, 1, "", "train_and_eval"], [3, 1, 1, "", "weights"]], "captum.concept.ConceptInterpreter": [[3, 2, 1, "", "interpret"]], "captum.concept.TCAV": [[3, 1, 1, "", "compute_cavs"], [3, 1, 1, "", "generate_activation"], [3, 1, 1, "", "generate_activations"], [3, 1, 1, "", "generate_all_activations"], [3, 1, 1, "", "interpret"], [3, 1, 1, "", "load_cavs"]], "captum.influence": [[14, 0, 1, "", "DataInfluence"], [14, 0, 1, "", "SimilarityInfluence"], [14, 0, 1, "", "TracInCP"], [14, 0, 1, "", "TracInCPBase"], [14, 0, 1, "", "TracInCPFast"], [14, 0, 1, "", "TracInCPFastRandProj"]], "captum.influence.DataInfluence": [[14, 1, 1, "", "get_name"], [14, 1, 1, "", "influence"]], "captum.influence.SimilarityInfluence": [[14, 1, 1, "", "influence"]], "captum.influence.TracInCP": [[14, 1, 1, "", "compute_intermediate_quantities"], [14, 1, 1, "", "influence"], [14, 1, 1, "", "self_influence"], [14, 2, 1, "", "test_reduction_type"]], "captum.influence.TracInCPBase": [[14, 1, 1, "", "get_name"], [14, 1, 1, "", "influence"], [14, 1, 1, "", "self_influence"]], "captum.influence.TracInCPFast": [[14, 1, 1, "", "influence"], [14, 1, 1, "", "self_influence"]], "captum.influence.TracInCPFastRandProj": [[14, 1, 1, "", "compute_intermediate_quantities"], [14, 1, 1, "", "influence"], [14, 1, 1, "", "self_influence"]], "captum.insights": [[16, 0, 1, "", "AttributionVisualizer"], [16, 0, 1, "", "Batch"]], "captum.insights.features": [[16, 0, 1, "", "BaseFeature"], [16, 0, 1, "", "GeneralFeature"], [16, 0, 1, "", "ImageFeature"], [16, 0, 1, "", "TextFeature"]], "captum.metrics": [[23, 0, 1, "", "infidelity"], [23, 0, 1, "", "sensitivity_max"]], "captum.module": [[2, 0, 1, "", "BinaryConcreteStochasticGates"], [9, 0, 1, "", "GaussianStochasticGates"]], "captum.module.BinaryConcreteStochasticGates": [[2, 1, 1, "", "forward"], [2, 1, 1, "", "get_gate_active_probs"], [2, 1, 1, "", "get_gate_values"]], "captum.module.GaussianStochasticGates": [[9, 1, 1, "", "forward"], [9, 1, 1, "", "get_gate_active_probs"], [9, 1, 1, "", "get_gate_values"]], "captum.robust": [[28, 0, 1, "", "AttackComparator"], [28, 0, 1, "", "FGSM"], [28, 0, 1, "", "MinParamPerturbation"], [28, 0, 1, "", "PGD"]], "captum.robust.AttackComparator": [[28, 1, 1, "", "add_attack"], [28, 1, 1, "", "evaluate"], [28, 1, 1, "", "reset"], [28, 1, 1, "", "summary"]], "captum.robust.FGSM": [[28, 2, 1, "", "bound"], [28, 1, 1, "", "perturb"], [28, 2, 1, "", "zero_thresh"]], "captum.robust.MinParamPerturbation": [[28, 1, 1, "", "evaluate"]], "captum.robust.PGD": [[28, 2, 1, "", "bound"], [28, 1, 1, "", "perturb"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "function", "Python function"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:attribute", "3": "py:function"}, "terms": {"": [1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "003": 23, "01": [2, 3, 9, 20, 28], "011": [19, 22], "0130140": [19, 22], "01312": 2, "01365": [17, 19, 25], "01713": 15, "02": 23, "02391": [12, 19], "02685": [5, 19, 25], "03292": 26, "03307": 26, "03788": 19, "03825": 26, "04247": 9, "04938": 20, "06083": 28, "06104": [5, 6, 10, 17, 19, 23, 25], "07874": 18, "08049": 23, "08484": 14, "09392": 23, "09946": 19, "1": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "10": [4, 5, 8, 14, 19, 22, 23, 25, 26], "1000": 3, "1007": [4, 25], "1016": [19, 22], "10758": 26, "108": 19, "11": 25, "11279": 3, "12233": [19, 25], "1311": [4, 25, 27], "1312": 29, "1371": [19, 22], "14": 14, "1412": [11, 25, 28], "15": 14, "16": [7, 8, 14, 18, 20, 25, 30], "1602": 20, "1605": 15, "1610": [12, 19], "1703": [17, 19, 25], "1704": [5, 19, 25], "1705": 18, "1706": [26, 28], "1711": [3, 5, 6, 10, 17, 19, 23, 25], "1712": 2, "1802": 19, "1805": [19, 25], "1806": [23, 26], "1807": 19, "1810": [9, 26], "1901": 23, "1d": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "1e": [2, 3, 5], "1st": 31, "2": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "20": [10, 19, 25], "200": [18, 20, 30], "2002": 14, "2017": [19, 22], "2293": 3, "23": [20, 31], "25": [18, 20, 21, 30], "255": [28, 31], "2901": [4, 25, 27], "2d": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "2x2": [7, 8, 18, 20, 25, 30], "2x3x3x32": [15, 29], "3": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31], "31": 25, "319": [4, 25], "3194": 3, "32": [4, 5, 6, 10, 11, 12, 15, 17, 19, 22, 23, 25, 26, 29], "3387": 3, "3437": 3, "36": 19, "3600": 3, "3800": 3, "3d": [1, 12], "3x3": 27, "3x3x32x32": [10, 19, 22, 25], "4": [7, 8, 15, 18, 19, 20, 25, 27, 30], "4200": 3, "4252": 23, "46466": [4, 25], "4_8": [4, 25], "4d": [1, 12], "5": [2, 9, 10, 14, 19, 20, 22, 25, 26, 28, 31], "50": [17, 18, 19, 20, 25], "5800": 3, "5d": [1, 12], "6": 31, "6034": 29, "604084": 30, "6200": 3, "6400": 3, "6563": 3, "6572": 28, "6613": 3, "6806": [3, 11, 25], "7": [30, 31], "7062": [6, 19, 25], "7707": 3, "7715": 30, "8": [2, 31], "8003": 23, "978": [4, 25], "A": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "As": [2, 5, 9, 14, 19, 25], "But": 31, "By": [7, 8, 14, 19, 23, 25, 27, 28, 30], "For": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "If": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "In": [1, 3, 5, 6, 7, 10, 14, 17, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31], "It": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "Its": 31, "NOT": [14, 25], "Not": 26, "On": 23, "One": [16, 20], "Such": [23, 31], "That": [14, 19], "The": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "Then": [2, 9, 14], "There": [14, 31], "These": [1, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "To": [2, 9, 14, 17, 19, 22, 25, 27, 31], "With": [7, 8, 18, 19, 20, 25, 26, 30], "_": [23, 31], "__class__": 28, "__init__": [3, 14], "__name__": 28, "_construct_model_param": 31, "_core": 20, "_get_k_most_influenti": 14, "_influenc": 14, "_inspect_forward": 21, "_load_flexible_state_dict": 14, "_permute_featur": 8, "_self_influ": 14, "_util": [20, 31], "aaai": 23, "ab": [2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 23, 25, 26, 27, 28, 29], "ablat": [0, 8, 13, 18, 20, 23, 27, 30], "about": [3, 6, 16, 19, 23, 25, 26, 29, 31], "abov": [1, 14, 17, 18, 19, 20, 23], "absenc": 31, "absolut": [14, 29, 31], "absolute_valu": 31, "absorb": 22, "abstract": [3, 14, 31], "acc": 3, "accept": [8, 14, 21, 23], "access": [3, 5, 14, 19, 20, 25, 31], "accord": 31, "accordingli": 1, "accur": 14, "accuraci": [3, 14], "accuracy_metr": 28, "across": [1, 3, 6, 7, 8, 12, 18, 19, 20, 25, 26, 28, 30], "activ": [1, 2, 3, 5, 9, 13, 14, 22, 25], "activation_dir": 14, "actual": [14, 23, 31], "ad": [10, 12, 18, 19, 20, 25, 26, 28, 30, 31], "adapt": 31, "add": [2, 9, 10, 14, 19, 25, 26, 28, 30], "add_attack": 28, "addit": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "additional_arg": [16, 28], "additional_attack_arg_nam": 28, "additional_forward_arg": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30], "additon": 1, "address": 31, "adher": 14, "adject": 3, "adjust": 5, "adopt": [2, 9], "advanc": [7, 8, 14, 18, 20, 27, 30], "adversari": [23, 28], "after": [10, 14, 19, 20, 25, 28, 30, 31], "aggreg": [1, 3, 7, 14, 25, 28], "aggregt": 28, "aka": [1, 3, 4, 5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31], "al": [5, 19, 22, 25], "algorithm": [1, 3, 4, 5, 6, 8, 10, 11, 17, 19, 20, 22, 23, 25, 26, 31], "algorthm": 21, "align": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "all": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "allign": 12, "allow": [1, 2, 3, 7, 8, 9, 12, 14, 18, 19, 20, 23, 25, 27, 28, 30, 31], "almost": 8, "alogrithm": 1, "along": [10, 17, 18, 19, 20, 25], "alpha": [3, 20, 28, 31], "alpha_overlai": 31, "alpha_sc": 31, "alreadi": [3, 14, 23, 31], "also": [1, 2, 3, 5, 6, 9, 10, 12, 14, 17, 18, 19, 20, 21, 23, 25, 26, 31], "altern": [7, 8, 18, 19, 20, 25, 30], "although": [5, 6, 19, 25], "alwai": [1, 4, 5, 6, 10, 11, 14, 15, 17, 19, 22, 23, 25, 26, 27, 29, 31], "among": [1, 7, 8, 17, 18, 19, 20, 25, 27, 28, 30], "amount": 25, "an": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "analysi": 14, "ancona": [5, 19, 22, 25], "angl": 28, "ani": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "annoynearestneighbor": 14, "anoth": [6, 19, 25], "anyth": 31, "api": [3, 20, 31], "app": [16, 30], "appendix": 14, "appli": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "applic": [12, 19, 22, 25, 31], "apply_before_preproc": 28, "approach": [3, 6, 7, 8, 10, 15, 17, 18, 19, 20, 23, 25, 27, 29, 30, 31], "appropri": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31], "approxim": [1, 2, 5, 6, 10, 14, 17, 19, 20, 22, 23, 25, 26], "ar": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "arbitrari": [1, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "area": [1, 12], "aren": [3, 14, 23], "arg": 1, "arg_max": 28, "arg_min": 28, "arg_nam": 28, "arg_step": 28, "argmax": 28, "argument": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "arithmet": 26, "around": [20, 28], "arrai": 31, "articl": [23, 30], "arxiv": [2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 23, 25, 26, 27, 28, 29], "assign": [5, 6, 7, 8, 17, 18, 19, 20, 25, 30, 31], "associ": [3, 14], "assum": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31], "assumpt": [10, 14, 19, 25, 31], "attack": [13, 23], "attack_kwarg": 28, "attack_metr": 28, "attackcompar": 28, "attempt": 28, "attr": [1, 4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31], "attr_coef": 20, "attr_dim_summ": 19, "attr_method": 21, "attr_target": 21, "attribibut": 21, "attribut": [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 26, 27, 28, 29, 30, 31], "attribute_to_layer_input": [3, 12, 19, 25], "attribute_to_neuron_input": 25, "attribution_method": 26, "attributionvisu": 13, "augment": 28, "author": [10, 19, 25], "autograd": [14, 19], "av": 3, "av_src": 14, "av_test": 14, "avail": [7, 8, 14, 17, 18, 19, 20, 21, 25, 27, 28, 30, 31], "avanti": [5, 19, 25], "averag": [6, 19, 21, 25, 26, 27, 28, 30, 31], "avoid": [5, 26], "axi": [21, 31], "axiom": 1, "axiomat": [17, 19], "back": [2, 9, 14, 30, 31], "backprop": [0, 12, 13, 23], "backpropag": [11, 12, 25], "backward": [17, 19, 22, 25], "ball": [23, 28], "base": [5, 6, 7, 8, 10, 12, 13, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30], "basefeatur": 13, "baselin": [5, 6, 7, 8, 10, 13, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27, 29, 30], "baseline_error": 8, "baseline_transform": 16, "baseline_valu": 31, "batch": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 23, 25, 26, 27, 28, 29, 30, 31], "batch_label": 8, "batch_result": 28, "batch_siz": [14, 23, 25], "batch_size_1": 14, "batch_size_2": 14, "batch_size_i": 14, "batch_size_j": 14, "bb1070691455d1fcfc6346ff458dbca77b2c": 30, "bceloss": 14, "becaus": [14, 18, 20], "been": [14, 23], "befor": [1, 16, 23, 28], "begin": 14, "behavior": [8, 14, 28], "being": [5, 6, 10, 14, 17, 19, 20, 23, 25, 31], "below": [3, 14, 19, 28, 30, 31], "benefit": 14, "bernoulli": [2, 9], "besid": 1, "best": [14, 28, 31], "beta": 23, "better": [5, 19, 25], "between": [2, 3, 5, 6, 8, 10, 14, 17, 19, 20, 22, 23, 25, 31], "beyond": [2, 9], "bia": 31, "bicub": [1, 12], "bilinear": [1, 12], "binari": [2, 18, 20, 23, 28, 31], "binaryconcretestochasticg": [13, 24], "bit": 5, "black": [20, 31], "blend": 31, "blended_heat_map": 31, "blob": 27, "block": [5, 19, 25], "blog": [5, 19, 25], "blue": 31, "book": 8, "bool": [1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "boolean": 28, "border": 28, "both": [1, 2, 5, 10, 14, 17, 19, 20, 22, 26, 28, 31], "bound": [2, 28], "boundari": [2, 3, 9], "box": 27, "breakdown": 19, "bright": 31, "broadcast": [2, 5, 7, 8, 9, 17, 18, 19, 20, 23, 25, 27, 30], "broken": 31, "build": [5, 19, 25], "built": [5, 19, 25], "c": [3, 14, 16, 31], "calcul": [5, 6, 7, 8, 10, 14, 17, 18, 19, 20, 21, 22, 25, 28, 30], "call": [1, 3, 5, 6, 7, 8, 10, 14, 16, 17, 18, 19, 20, 21, 23, 25, 27, 28, 30, 31], "callabl": [1, 3, 5, 6, 7, 8, 10, 14, 15, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 30, 31], "can": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "cannot": [5, 8, 12, 19, 25, 31], "capit": 1, "captum": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "carlo": 23, "cartesian": 31, "case": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "categori": 16, "caus": [27, 28], "cav": 3, "cc": [6, 19, 23, 25], "center": 28, "certain": [1, 2, 9, 14, 31], "chang": [5, 7, 8, 14, 19, 23, 25, 28, 30], "channel": [1, 19, 31], "channel_label": 31, "channels_last": 31, "chapter": [4, 25], "charact": 1, "check": [3, 14], "checkpoint": 14, "checkpoints_load_func": 14, "chihkuanyeh": 23, "child": [1, 7, 8, 16, 20, 31], "choic": 31, "choos": [10, 14, 17, 18, 19, 25, 30], "chosen": [12, 14, 19, 22, 26, 28, 31], "christophm": 8, "chunk": [17, 19, 25], "clamp": [2, 9], "class": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "classes_": 3, "classif": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "classifi": [13, 16, 20, 31], "classifier_kwarg": 3, "classmethod": [1, 14], "cleaner": 5, "clip": 28, "clip_r": 28, "close": [1, 6, 10, 19], "cmap": 31, "coef_": 3, "coeffici": [18, 20], "collect": 28, "color": 31, "colorbar": 31, "colored_graph": 31, "colorjitt": 28, "colormap": 31, "column": 25, "com": [4, 19, 23, 25, 27, 30], "combin": [3, 14, 26], "combinatori": [2, 9], "come": 31, "command": 31, "common": [1, 16, 31], "commonli": [1, 21, 31], "compar": [5, 6, 13, 14, 19, 22, 23, 25], "complet": [1, 17, 19, 22, 23, 31], "complex": [6, 19, 25], "complic": 31, "compon": [18, 20], "composit": [6, 10, 19, 25], "comput": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "computation": [14, 23, 26, 30], "compute_cav": 3, "compute_convergence_delta": [0, 1, 5, 10, 17, 19, 20, 22, 26], "compute_intermediate_quant": 14, "concaten": [14, 20, 31], "concept": [13, 30, 31], "concept_id": 3, "concept_it": 3, "concept_lay": 3, "concept_nam": 3, "concept_object": 3, "concept_path": 3, "conceptinterpret": 13, "concepts_path": 3, "conceret": 2, "concret": [2, 9], "conduct": [13, 26], "configur": [3, 14, 21], "configure_interpretable_embedding_lay": [16, 31], "connect": 14, "conserv": 22, "consid": [5, 7, 14, 18, 19, 20, 31], "consist": [20, 31], "constant": 23, "constraint": 14, "construct": [7, 8, 14, 16, 18, 19, 20, 25, 28, 30, 31], "constructor": [3, 12, 19, 20, 23, 31], "consum": 31, "contain": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "context": 3, "contigu": 27, "continu": [2, 9, 23], "contribut": 14, "control": [2, 31], "conv1": [19, 25], "conv2d": [12, 14, 19, 22, 25], "conv4": [12, 19, 25], "convei": [3, 20], "convent": 21, "converg": [1, 5, 6, 10, 17, 19, 20, 22, 26, 31], "convers": 31, "convert": [16, 20, 31], "convolut": [1, 12, 19], "cooper": 30, "copi": 14, "core": 1, "corner": 27, "correct": [1, 5, 10, 14, 16, 17, 19, 20, 22, 26, 28], "correct_fn": 28, "correct_fn_kwarg": 28, "correl": 23, "correspond": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "cosin": 20, "cosine_similar": 14, "could": [3, 8, 14, 16, 20, 23, 25, 31], "cover": 27, "creat": [1, 3, 7, 8, 14, 18, 19, 20, 21, 25, 26, 30, 31], "crucial": 14, "cuda": [5, 19, 25], "curr_sampl": 20, "current": [5, 10, 12, 14, 16, 19, 25, 26, 31], "custom": [3, 5, 6, 8, 16, 19, 20, 22, 23, 25, 28, 31], "custom_attribution_func": [5, 6, 19, 25], "customclassifi": 3, "cut": 27, "d": [14, 16, 27], "data": [3, 14, 16, 17, 19, 21, 23, 25, 26, 31], "data_it": 3, "datainflu": 13, "dataload": [3, 14, 20, 28, 31], "dataparallel": [1, 7, 8, 12, 17, 18, 19, 20, 25, 27, 28, 30], "dataset": [3, 5, 14, 16, 19, 25, 31], "dataset_to_dataload": 3, "decid": [3, 19], "decis": 31, "decompos": [19, 22], "decomposit": [19, 22], "deconv": 4, "deconvolut": [0, 13, 23], "decor": 23, "deep": [5, 19, 25], "deepexplain": 27, "deeplift": [0, 6, 13, 23, 31], "deepliftshap": [0, 13], "def": [3, 20, 23, 28], "default": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "default_model_id": 3, "default_perturb_func": 23, "defin": [1, 3, 5, 6, 7, 8, 10, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "definit": [3, 23], "degre": 2, "delta": [1, 5, 6, 10, 17, 19, 20, 22, 25, 26, 31], "denot": 28, "dens": 16, "depend": [1, 4, 5, 6, 12, 14, 19, 25, 26, 31], "dependen": 31, "depress": 31, "depth": 5, "deriv": [1, 5, 10, 17, 19, 20, 22, 23, 26], "descend": 31, "descent": 28, "describ": [3, 5, 6, 7, 14, 17, 18, 19, 20, 23, 27, 31], "descript": [8, 14, 30], "design": [12, 19], "desir": [1, 8, 14, 23, 25, 28, 31], "detach": 3, "detail": [2, 4, 5, 6, 9, 10, 11, 12, 14, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30], "determin": [2, 9, 14, 18, 20, 28], "determinist": 28, "deviat": [9, 10, 19, 25, 26], "devic": [1, 7, 8, 12, 17, 18, 19, 20, 25, 27, 28, 30, 31], "device_id": [1, 12, 19, 25], "dict": [3, 8, 14, 19, 21, 28, 31], "dictionai": 3, "dictionari": [3, 28], "differ": [1, 3, 5, 6, 7, 8, 10, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 30, 31], "differenti": [2, 9, 31], "dim": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "dimens": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "dimension": [1, 3, 10, 14, 19, 20, 23, 26, 28], "direct": 27, "directli": [2, 7, 8, 9, 14, 16, 18, 20, 21, 28, 31], "directori": [3, 14], "displai": [7, 8, 14, 18, 20, 27, 30, 31], "distanc": [20, 28], "distance_mod": 20, "distribut": [2, 6, 9, 10, 18, 19, 25, 26], "divid": [2, 9, 17, 19, 23, 25], "dl": [5, 6, 19, 25, 31], "do": [1, 8, 14, 21, 23, 31], "do_sampl": 21, "doc": 3, "document": [14, 23, 31], "documentclassifi": 31, "doe": [2, 7, 9, 12, 14, 31], "doesn": 31, "doi": [19, 22], "done": [7, 8, 14, 18, 19, 20, 23, 25, 30], "dot": [3, 14, 23], "draw": [10, 19, 25, 26], "draw_baseline_from_distrib": 26, "dsp": [19, 22], "dtic": 30, "du": 23, "due": [14, 19], "dure": [3, 5, 19, 22], "e": [2, 7, 8, 9, 12, 14, 16, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31], "each": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "easier": 23, "effect": [6, 10, 19, 25], "effici": [14, 18, 23], "either": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "element": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "els": [3, 28], "embed": [13, 14, 16], "embedding_layer_nam": 31, "embedding_tensor": 31, "empti": [3, 12, 27], "emptri": 31, "enabl": [3, 14], "encapsul": 31, "encod": 3, "encourag": 31, "end": [1, 31], "end_point": 1, "enforc": [1, 7, 16, 30], "ensur": [4, 11, 12, 14, 25, 27, 31], "entir": [7, 8, 14, 19, 20, 25, 27, 30, 31], "entri": 19, "environ": 26, "ep": [2, 5], "epsilon": [22, 23, 28], "equal": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "equidist": 31, "equival": [8, 18, 19, 25], "error": [1, 5, 8, 10, 14, 17, 19, 20, 22, 23, 26], "error_metr": 8, "essenti": [4, 25], "estim": [7, 8, 14, 18, 20, 23, 27, 30], "et": [5, 19, 22, 25], "etc": 31, "euclidean": 20, "evalu": [3, 7, 8, 17, 18, 19, 20, 25, 27, 28, 30], "everi": [14, 31], "ex": 3, "exact": 30, "exactli": [5, 7, 14, 16, 17, 18, 19, 20, 23, 25, 27, 30], "exampl": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "exce": 23, "except": 19, "execut": [26, 31], "exp": 20, "expand": [5, 14, 19, 23, 25], "expect": [2, 9, 10, 14, 16, 19, 20, 23, 25, 31], "expected_output": 20, "expens": 26, "experiment": [3, 14, 31], "experimental_set": 3, "experiments_set": 3, "explain": [18, 20, 23, 31], "explan": [6, 10, 19, 23, 25], "explanation_func": 23, "explicitli": [2, 9], "exponenti": 20, "expos": [3, 20], "extend": [1, 3, 5, 6, 16, 19, 25, 30], "extent": 23, "extern": 28, "extra": [3, 21], "extract": 3, "f": [1, 3, 14, 23], "factor": [5, 6, 10, 17, 19, 23, 25], "factori": 31, "fallback": [7, 8, 14, 18, 20, 27, 30], "fals": [3, 5, 6, 7, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "fast": [14, 28], "faster": [5, 19, 25], "feasibl": 30, "featur": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 17, 18, 20, 22, 23, 26, 27, 28, 29, 30, 31], "feature_mask": [7, 8, 18, 20, 25, 30], "feature_perm": 8, "featureabl": [0, 7, 8, 19, 21], "featurepermut": [0, 8, 19], "feed": 31, "feel": 31, "fgsm": 13, "fidel": 23, "fig_siz": 31, "figur": [21, 31], "file": 3, "filepath": 14, "final": [3, 5, 6, 10, 14, 16, 17, 19, 23, 25, 27, 31], "final_fc_lay": 14, "find": 14, "finish": 31, "first": [1, 3, 5, 6, 7, 8, 10, 14, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31], "fit": [3, 14, 20, 31], "fix": [7, 9, 14, 23], "flag": [3, 5, 6, 14, 19, 23, 25], "flatten": [14, 20], "flexibl": 19, "float": [1, 2, 3, 5, 9, 10, 19, 20, 23, 25, 26, 28, 31], "fold": [2, 9], "follow": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "fool": 28, "forc": 14, "force_train": 3, "form": [1, 3, 14, 21, 22, 25, 31], "format": [3, 16, 20, 23, 31], "format_attr": 31, "former": 19, "formul": [5, 19, 25, 28], "forum": [19, 22], "forward": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31], "forward_fn": [7, 8, 18, 19, 20, 25, 27, 28, 30], "forward_func": [1, 7, 8, 10, 14, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 29, 30], "found": [2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30], "frac": 23, "fragil": 23, "framework": [18, 20], "friendli": 3, "fro": 23, "from": [1, 3, 6, 10, 12, 14, 16, 17, 18, 19, 20, 23, 25, 26, 28, 30, 31], "from_interp_rep_transform": 20, "frontend": 16, "full": [7, 8, 18, 20, 21, 28, 30], "full_nam": 31, "fulli": 14, "fulltext": 30, "function": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31], "furthemor": 14, "furthermor": 14, "futur": [5, 14, 19, 25, 30], "g": [2, 7, 8, 9, 12, 14, 16, 18, 19, 20, 25, 26, 27, 28, 30, 31], "game": 30, "gate": [2, 9], "gate_valu": [2, 9], "gated_input": [2, 9], "gauss": [17, 19], "gaussian": [2, 9, 10, 19, 20, 25, 26], "gaussian_nois": 28, "gaussianstochasticg": [13, 24], "gausslegendr": [17, 19, 25], "gbp": 11, "gen_arg": 21, "gener": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "generalfeatur": 13, "generate_activ": 3, "generate_all_activ": 3, "generate_refer": 31, "get": [2, 9, 14, 31], "get_active_prob": [2, 9], "get_exp_kernel_similarity_funct": [0, 20], "get_gate_active_prob": [2, 9, 24], "get_gate_valu": [2, 9, 24], "get_nam": [1, 14], "get_tensor_from_filenam": 3, "github": [8, 19, 23, 25, 27], "give": 14, "given": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "global": [5, 6, 10, 17, 19, 23, 25], "grad": 19, "grad_kwarg": [19, 25], "grad_requir": 14, "gradcam": [0, 13, 23], "gradient": [0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 21, 22, 23, 26, 28, 29, 31], "gradient_shap": 10, "gradientattribut": 1, "gradientexplain": [19, 25], "gradientshap": [0, 13], "graph": [19, 31], "green": 31, "grei": 27, "greyscal": [16, 31], "grid": 31, "group": [2, 7, 8, 9, 18, 19, 20, 22, 25, 28, 30, 31], "grow": 7, "gru": [5, 19, 25], "guarante": [5, 6, 19, 28, 31], "guid": [0, 13, 23], "guided_gc": 12, "guidedbackprop": [0, 11], "guidedgradcam": [0, 12], "h": [14, 31], "h_x": 31, "ha": [3, 7, 8, 12, 14, 16, 18, 19, 20, 22, 23, 25, 30, 31], "happen": 3, "happi": 3, "hard": [2, 9], "has_convergence_delta": [0, 1, 5, 10, 17, 19, 20, 22, 26], "have": [1, 2, 5, 6, 7, 8, 9, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "he": 31, "heat": 31, "heat_map": 31, "heatmap": 31, "help": [2, 3, 9, 21, 26, 28], "helper": 23, "here": [1, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 19, 22, 23, 25, 26, 30, 31], "hidden": [19, 25, 31], "high": [1, 23], "highest": 14, "hood": [19, 23], "hook": 19, "how": [5, 19, 20, 23, 25, 31], "howev": [14, 22, 23, 26, 31], "html": [3, 8], "http": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30], "huggingfac": 21, "human": 3, "hyperplan": 3, "hyperrectangl": 27, "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "id": [1, 3, 5, 12, 19, 22, 25, 31], "idea": 23, "identifi": [3, 14, 25, 28], "ig": [17, 23, 26, 31], "ignor": [7, 8, 14], "illustr": 3, "imag": [3, 4, 5, 6, 7, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31], "imageclassifi": [4, 5, 6, 10, 11, 12, 15, 17, 19, 22, 23, 25, 26, 29, 31], "imagefeatur": 13, "imagenet": 3, "implement": [1, 3, 5, 10, 14, 16, 19, 20, 22, 23, 25, 27, 30, 31], "implementaion": 1, "import": [1, 2, 3, 5, 7, 8, 9, 17, 19, 20, 23, 25, 30], "improv": [2, 14], "inception4c": 3, "inception4d": 3, "includ": [1, 2, 4, 5, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "incorrect": 28, "increas": [7, 14, 28], "incur": 14, "independ": [6, 7, 8, 10, 18, 19, 20, 25, 30, 31], "index": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "indic": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31], "indices_to_embed": 31, "individu": [18, 20, 23, 25, 27, 31], "ineffici": 14, "inf": [23, 28], "infer": 16, "infid": 23, "infidel": 13, "infidelity_perturb_func_decor": 23, "infin": 23, "influenc": [13, 14], "influence_scor": 14, "influence_src_dataset": 14, "influenti": 13, "inform": [1, 3, 5, 8, 10, 16, 17, 18, 19, 20, 22, 26, 31], "inher": 23, "inherit": [14, 31], "initi": [14, 19, 22, 28, 31], "inner": 14, "inp": [21, 28], "input": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30], "input_emb": 31, "input_indic": 31, "input_s": 14, "input_tensor": [2, 9], "input_token": 21, "input_transform": 16, "input_x_gradi": 15, "inputs_id": 14, "inputxgradi": [0, 15], "insert": 1, "insid": [6, 10, 19, 25], "inspir": [19, 22], "instal": 31, "instanc": [1, 3, 4, 5, 6, 11, 12, 14, 16, 19, 21, 23, 25, 26, 28, 31], "instead": [14, 19], "int": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "integ": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "integr": [0, 1, 3, 5, 10, 13, 18, 20, 23, 26, 31], "integratedgradi": [0, 1, 16, 17, 23, 26, 31], "intemedi": 25, "intens": [14, 30], "intepret": 20, "interact": 14, "interest": 21, "interfac": [20, 21, 31], "intermedi": [1, 12, 14, 19, 25], "intermediate_quant": 14, "intermedit": 25, "intern": [3, 5, 7, 12, 13, 14, 17, 18, 20, 23, 25, 27, 30, 31], "internal_batch_s": [17, 19, 25], "internalinflu": 19, "interp": [18, 20], "interpol": [1, 12, 19], "interpolate_dim": 1, "interpolate_mod": [1, 12], "interpreat": [18, 20], "interpret": [1, 6, 7, 8, 10, 13, 15, 16, 17, 18, 19, 20, 23, 25, 27, 29, 30], "interpretable_emb": 31, "interpretable_input": 20, "interpretable_model": 20, "interpretableembeddingbas": [16, 31], "interpretableinput": [21, 31], "interpretal": [18, 20], "interv": 28, "inth": 31, "introduc": 31, "intuit": 14, "invari": 23, "involv": [7, 14, 19, 22, 25, 27, 30], "io": 8, "isn": [5, 6, 10, 17, 19, 23, 25], "issu": 5, "iter": [3, 14, 16, 27, 28, 31], "itp_attr": 31, "itp_tensor": 31, "its": [1, 2, 14, 16, 19, 20, 22, 23, 28, 30, 31], "itself": [1, 12, 19, 25, 28], "j": [14, 16, 19, 22], "jacobian": 14, "jitter": 28, "join": 3, "journal": [19, 22], "just": [14, 19, 23], "k": [14, 18, 31], "keep": 5, "kei": [14, 28, 31], "kernel": [18, 20, 26], "kernel_shap_perturb_gener": [0, 18], "kernel_width": 20, "kernelshap": [0, 13, 21], "keyword": [19, 20, 21, 28, 31], "kind": [14, 31], "kmostinfluentialresult": 14, "know": [5, 19, 25], "known": [5, 6, 10, 17, 19, 23, 25], "kwarg": [3, 7, 8, 14, 18, 20, 21, 23, 26, 28, 31], "l": [14, 23, 28], "l0": [2, 9], "l0_reg": [2, 9], "l1": [19, 31], "l2": [19, 20, 28, 31], "l2_dist": 20, "l3": 19, "l401": 27, "l_p": 23, "label": [3, 14, 16, 28, 31], "languag": [3, 21, 31], "larg": [5, 14, 19, 21, 25], "larger": [2, 3, 6, 9, 10, 19, 25], "lasso": [20, 31], "last": [12, 14, 19, 31], "later": [5, 12, 19, 25], "latter": [14, 19, 23], "layer": [3, 5, 12, 13, 14, 22, 25, 31], "layer_act": 19, "layer_attr_baselin": 19, "layer_attr_input": 19, "layer_attr_method": 3, "layer_attribut": 1, "layer_baselin": 19, "layer_cond": 19, "layer_ga": 19, "layer_gc": 19, "layer_grad_shap": 19, "layer_int_inf": 19, "layer_lrp": 19, "layer_mask": 19, "layer_nam": [3, 14], "layeractiv": 19, "layerattribut": [1, 3, 19], "layerconduct": 19, "layerdeeplift": [5, 19, 25], "layerdeepliftshap": [19, 25], "layerfeatureabl": 19, "layerfeaturepermut": 19, "layergradcam": [12, 19], "layergradientshap": 19, "layergradientxactiv": [3, 19], "layerintegratedgradi": 19, "layerlrp": 19, "lazi": 3, "lead": [14, 23, 28, 30], "learn": [2, 3, 5, 9, 14, 19, 25, 31], "least": [5, 6, 17, 19, 23, 25, 27, 28], "left": 14, "legendr": [17, 19], "len": 3, "length": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "less": [1, 14, 25, 27], "let": [14, 31], "lig": 19, "like": [18, 31], "lime": [0, 13, 18, 21], "lime_attr": 20, "limebas": [0, 20], "limit": [5, 14, 19, 25], "line": [17, 19, 31], "linear": [1, 3, 5, 6, 10, 12, 13, 14, 16, 19, 20, 25, 28], "linear1": 19, "linear2": 25, "linear_model": [3, 20, 31], "linearli": 2, "linearmodel": 31, "linearregress": 31, "linearsvc": 31, "linewidth": 31, "linf": 28, "link": [4, 19, 25], "lipschitz": 23, "list": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "literatur": [1, 5, 6, 10, 17, 19, 25], "llm": 13, "llmattribut": [13, 31], "llmattributionresult": 13, "llmgradientattribut": 13, "lm": 3, "load": [3, 14], "load_cav": 3, "load_input_from_disk": 14, "load_src_from_disk": 14, "local": [5, 6, 10, 17, 19, 23, 25], "locat": [3, 27], "log": [21, 28], "log_prob": 21, "logic": [1, 5, 6, 19, 20, 23, 25], "logit": [8, 14], "long": [14, 25], "loop": 14, "loss": [2, 9, 14, 18, 20, 28, 31], "loss_fn": 14, "loss_func": 28, "lower": [2, 14, 28, 31], "lower_bound": [2, 28], "lowest": 14, "lrp": [0, 13], "lstm": [5, 19, 25], "m": 18, "made": 14, "magnitud": [3, 23], "magnitude_scor": 3, "mai": [1, 3, 5, 7, 8, 10, 14, 16, 17, 19, 20, 22, 23, 25, 26, 27, 30, 31], "main": [8, 28], "mainli": 31, "maintain": 28, "make": [10, 14, 19, 25, 31], "mani": [14, 23], "manner": [3, 14], "map": [3, 14, 23, 28, 29, 31], "marco": [5, 19, 25], "marcoancona": 27, "mask": [2, 7, 8, 9, 18, 19, 20, 25, 28, 30, 31], "masked_imag": 31, "master": 27, "match": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "math": 14, "mathbb": 23, "matplotlib": [21, 31], "matric": 14, "matrix": [3, 14, 23], "max": [14, 23, 28], "max_examples_per_batch": 23, "max_it": 3, "max_length": 21, "maximum": [7, 8, 18, 19, 20, 23, 25, 27, 28, 30], "mean": [2, 3, 5, 6, 9, 10, 14, 17, 19, 22, 23, 25, 26, 28, 31], "meaning": [8, 12, 23], "measur": [7, 23, 25, 28, 30], "mechan": [19, 22], "memori": [3, 14, 26, 31], "method": [1, 3, 5, 6, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31], "metric": [8, 13, 14, 28], "metricresulttyp": 28, "mil": 30, "min": [13, 14], "min_pert": 28, "min_std": 28, "minim": 28, "minimum": [28, 31], "minparamperturb": 28, "misclassif": 28, "misclassifi": 28, "ml": 8, "mock": [2, 9], "mock_input": [2, 9], "modal": 16, "mode": [1, 3, 7, 12, 14, 20, 23, 28, 31], "model": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30], "model_id": [3, 14], "model_input": 31, "model_metr": 28, "model_out": [2, 9, 28], "modif": [1, 7, 8, 10, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "modifi": 28, "modul": [1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 16, 19, 22, 25, 28, 31], "moduleormodulelist": 19, "mont": 23, "more": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 29, 30, 31], "most": [1, 5, 6, 7, 8, 14, 16, 17, 18, 19, 20, 23, 25, 27, 28, 30], "mu_i": 23, "much": 14, "multi": 3, "multimod": 16, "multipl": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "multipli": [5, 6, 10, 14, 15, 17, 19, 22, 23, 25, 31], "multiply_by_input": [5, 6, 10, 17, 19, 25], "multiprocess": 3, "multipy_by_input": 23, "multupl": 1, "must": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "my": 23, "my_perturb_func": 23, "mytcav": 3, "n": [14, 16, 20, 23, 30, 31], "n_gate": [2, 9], "n_param": [2, 9], "n_perturb_sampl": 23, "n_sampl": [10, 18, 19, 20, 25, 30], "n_step": [3, 10, 17, 18, 19, 20, 25], "n_tree": 14, "nabla_": 14, "nabla_i": 14, "naiv": 14, "name": [1, 3, 14, 16, 28, 31], "namedtupl": 14, "nativ": 14, "natur": [3, 14], "nchw": 16, "nd": [10, 19, 25], "ndarrai": 31, "nearest": [1, 12, 14], "nearest_neighbor": 14, "nearestneighbor": 14, "necessari": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31], "necessarili": 14, "need": [2, 3, 8, 14, 19, 22, 23, 25, 28, 31], "neg": [4, 11, 12, 16, 19, 25, 28, 31], "neglig": 31, "neighbor": [14, 28], "net": [4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30, 31], "network": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 29, 30], "neural": [2, 5, 9, 12, 19, 23, 25], "neuron": [5, 13, 16, 19, 22], "neuron_cond": 25, "neuron_deconv": 25, "neuron_gb": 25, "neuron_grad_shap": 25, "neuron_ig": 25, "neuron_ind": 25, "neuron_selector": [1, 25], "neuronattribut": [1, 25], "neuronconduct": [19, 25], "neurondeconvolut": 25, "neurondeeplift": [5, 25], "neurondeepliftshap": 25, "neuronfeatureabl": 25, "neurongradi": 25, "neurongradientshap": 25, "neuronguidedbackprop": 25, "neuronintegratedgradi": 25, "neutral": 31, "new": [21, 30, 31], "newer": 31, "nip": [6, 19, 23, 25], "nn": [1, 3, 4, 5, 6, 11, 12, 14, 16, 19, 25, 28, 31], "node": 31, "nois": [2, 9, 10, 19, 20, 23, 25, 26], "noised_imag": 28, "noisetunnel": [10, 13, 19, 25], "noisi": [10, 19], "non": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "none": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "nonetheless": [5, 19, 25], "norm": [2, 9, 20, 23, 28], "norm_ord": 23, "normal": [16, 18, 22, 23, 28, 31], "notat": 14, "note": [4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 27, 29, 30, 31], "notion": 23, "now": [14, 31], "np": 23, "nt": 26, "nt_sampl": 26, "nt_samples_batch_s": 26, "nt_type": 26, "nuc": 23, "num_attempt": 28, "num_devic": [7, 8, 17, 18, 19, 20, 25, 27, 28, 30], "num_dropout": 28, "num_featur": [7, 8, 25, 30], "num_group": 19, "num_interp_featur": [18, 20], "num_sampl": 20, "num_trial": 21, "number": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "numer": [2, 3, 5, 31], "numpi": [3, 31], "nx10": [4, 5, 6, 10, 11, 12, 15, 17, 19, 22, 23, 25, 26, 29, 31], "nx12x32x32": [19, 25], "nx12x3x3": [19, 25], "nx1x8x8": 19, "nx3": [7, 8, 18, 19, 20, 25, 27, 30], "nx3x32x32": [4, 5, 6, 10, 11, 12, 15, 17, 19, 22, 23, 25, 26, 29, 31], "nx4x4": [7, 8, 18, 19, 20, 25, 27, 30], "nx50x8x8": [12, 19], "o": 3, "object": [1, 3, 14, 16, 20, 25, 31], "obtain": [14, 16, 18, 19, 22, 23], "occlud": 27, "occlus": [0, 7, 8, 13, 18, 20, 30], "occur": 12, "off": [2, 9, 20, 27], "offer": 14, "offici": 23, "often": [1, 16, 19, 20, 31], "oj": 23, "onc": [14, 20], "one": [1, 3, 5, 6, 7, 8, 10, 14, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 30, 31], "ones": [5, 18, 19, 25, 28], "onli": [1, 3, 4, 5, 6, 8, 11, 12, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 28, 30, 31], "onto": 31, "openreview": [5, 19, 22, 25], "oper": [4, 11, 12, 19, 25, 31], "oppon": 14, "oppos": 14, "optim": [2, 5, 9, 14, 19, 25, 31], "option": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "order": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "org": [2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30], "orient": 31, "orig_imag": 31, "origin": [2, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 31], "original_imag": 31, "original_inp": [18, 20], "original_input": 20, "orthogon": 3, "other": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "otherwis": [3, 5, 6, 7, 8, 12, 14, 17, 18, 19, 20, 25, 27, 28, 29, 30], "our": [14, 31], "out": [3, 14, 23, 26, 28], "outer": 14, "outer_loop_by_checkpoint": 14, "outlier": 31, "outlier_perc": 31, "outout": 19, "output": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30], "output_dim": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "output_token": 21, "outsid": [14, 31], "over": [3, 14, 19, 21, 28, 30, 31], "overal": [6, 19, 25], "overhead": [14, 31], "overlai": 31, "overlaid": 31, "overlap": 30, "overlay_combin": 31, "overlay_individu": 31, "overrid": [1, 5, 10, 17, 19, 20, 22, 26, 31], "overridden": [4, 11, 12, 25], "overwritten": 28, "p": 18, "packag": 23, "pad": [16, 31], "page": [13, 14], "pair": [3, 6, 14, 19, 25, 31], "pairwis": 14, "panel": 31, "paper": [2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "parallel": 3, "param": 13, "param_v": 28, "paramet": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "parametr": 28, "paramter": 28, "part": [2, 9], "particular": [1, 3, 14, 19, 25, 28], "pass": [1, 3, 7, 8, 14, 16, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 30, 31], "patch": 27, "path": [3, 10, 14, 17, 18, 19, 20, 25], "pdf": [5, 6, 14, 19, 23, 25, 30], "penal": [2, 9], "per": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30], "percentag": [28, 31], "perform": [3, 4, 5, 8, 11, 12, 14, 19, 23, 25, 28, 31], "perm_feature_import": 8, "perm_func": 8, "permut": [0, 13, 30], "permuted_batch": 8, "persist": 14, "perturb": [7, 8, 13, 18, 19, 20, 21, 23, 25, 26, 27, 30, 31], "perturb1": 23, "perturb2": 23, "perturb_fn": 23, "perturb_func": [20, 23], "perturb_interpretable_spac": 20, "perturb_radiu": 23, "perturbationattribut": 1, "perturbations_per_ev": [7, 8, 18, 19, 20, 25, 27, 28, 30], "perturbed_input": [20, 23, 28], "perturbed_input1": 23, "perturbed_input2": 23, "perturbed_inputn": 23, "perturbed_interpretable_input": 20, "perturbed_tensor": 31, "perturbn": 23, "pgd": 13, "phi": 23, "photo": 16, "php": 23, "phrase": 31, "pick": 31, "pii": 30, "pil": 28, "pixel": [20, 28, 31], "pkl": 3, "place": [6, 14, 19, 31], "plan": [5, 19, 25, 30], "pleas": [3, 10, 14, 19, 20, 23, 25, 31], "plot": [21, 31], "plot_seq_attr": 21, "plot_token_attr": 21, "plt": 31, "plt_fig_axi": 31, "point": [1, 10, 17, 19, 20, 23, 25, 31], "pone": [19, 22], "posit": [12, 16, 19, 31], "possibl": [5, 12, 14, 19, 25, 30, 31], "postprocess": 16, "potenti": [14, 16], "practic": [2, 9, 14, 31], "pre": [3, 22, 28, 31], "preced": 31, "precomput": [1, 22, 31], "pred": 3, "predefin": 20, "predict": [3, 6, 10, 14, 18, 19, 20, 22, 23, 25, 28, 31], "predictor": 23, "prefer": [5, 19, 23, 25], "preproc": 28, "preproc_fn": 28, "preprocess": [14, 28], "presenc": 31, "present": [2, 3, 9, 21], "previou": [14, 23, 28], "primari": [10, 19, 25], "primarili": 23, "print": [19, 22], "prior": [14, 16], "pristin": 31, "privat": 14, "pro": 14, "prob": [2, 9, 21], "probabl": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31], "problem": [2, 9], "procedur": 19, "process": [3, 7, 8, 14, 17, 18, 19, 20, 23, 25, 26, 27, 28, 30], "produc": [14, 19, 21], "product": [3, 12, 14, 19, 23, 31], "productbaselin": 31, "progress": [7, 8, 14, 18, 20, 27, 30], "project": [14, 28], "projection_dim": 14, "prompt": 21, "prone": 23, "proof": 18, "propag": [4, 5, 14, 19, 22, 25], "propagationrul": [19, 22], "properli": 14, "properti": [1, 5, 6, 10, 14, 17, 19, 21, 22, 23], "propon": 14, "propos": [5, 19, 25], "provid": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "proxi": [1, 5, 10, 17, 19, 20, 22, 26], "prune": [2, 9], "pseudocod": 8, "public": [14, 19, 22], "purpos": 14, "py": 27, "pyplot": 31, "pyplot_kwarg": 31, "python": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "pytorch": [1, 3, 4, 5, 6, 11, 12, 14, 16, 19, 20, 25, 28, 31], "quadratur": [17, 19], "qualifi": 14, "qualiti": [5, 19, 25], "quantifi": 1, "quantiti": 14, "quickli": 14, "r": [3, 14, 28], "radiu": [23, 28], "randn": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 29, 30], "randn_lik": [20, 28], "random": [3, 7, 8, 10, 14, 15, 18, 19, 20, 23, 25, 26, 27, 28, 29, 30], "random_data_it": 3, "random_rot": 28, "random_start": 28, "randomli": [10, 18, 19, 25, 26], "randomrot": 28, "rang": [2, 7, 8, 9, 18, 19, 20, 23, 25, 27, 28, 30, 31], "rate": 14, "rather": [7, 25, 30], "ratio": 23, "raw": [2, 9, 16, 28, 31], "reach": 28, "read": 23, "readabl": [1, 14], "real": 23, "reason": [14, 22, 23], "recommend": [6, 10, 12, 18, 19, 20, 25, 28], "reconstruct": [1, 12, 19, 25], "rectangular": 27, "rectif": [2, 9], "red": 31, "reduc": [14, 26], "reduct": [2, 9, 14], "refer": [4, 5, 6, 7, 10, 11, 12, 17, 18, 19, 20, 23, 25, 27, 30], "reference_token_idx": 31, "reg": [2, 9], "reg_reduct": [2, 9], "reg_weight": [2, 9], "regard": [4, 11, 12, 14, 17, 18, 19, 20, 25, 27, 30], "regardless": [3, 14, 20], "regener": 14, "region": [7, 25, 27, 30], "regress": 31, "regular": [2, 9, 18, 31], "relax": 2, "releas": [5, 19, 25], "relev": [1, 16, 19, 22], "reli": 14, "relu": [4, 11, 12, 19, 22, 25], "relu_attribut": 19, "remain": [1, 5, 6, 7, 8, 10, 17, 18, 19, 20, 23, 25, 27, 30, 31], "remov": [14, 31], "remove_interpretable_embedding_lay": 31, "reparameter": [2, 9], "repeat": [10, 17, 18, 19, 20, 23, 25, 28, 30], "replac": [7, 18, 19, 20, 25, 27, 30, 31], "repres": [2, 3, 9, 10, 14, 19, 20, 22, 23, 25, 26, 28, 31], "represent": [3, 14, 18, 20, 31], "requir": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "requires_grad": [4, 5, 6, 10, 11, 12, 15, 17, 19, 23, 25, 26, 29], "rescal": [2, 5, 6, 9, 19, 25], "resembl": 3, "reset": 28, "resnet18": 28, "resp": 14, "respect": [4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "respons": [1, 3, 21], "rest": 31, "restor": 14, "restrict": 14, "result": [1, 3, 6, 7, 8, 12, 14, 19, 20, 21, 25, 28, 30, 31], "retabl": [18, 20], "retain": 20, "retrain": 20, "retriev": 14, "return": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "return_convergence_delta": [5, 6, 10, 17, 19, 22, 26], "return_input_shap": [18, 20], "reus": 20, "revealcancel": [5, 19, 25], "rewrit": 14, "rgb": 16, "ridg": [20, 31], "riemann": [17, 19], "riemann_left": [17, 19, 25], "riemann_middl": [17, 19, 25], "riemann_right": [17, 19, 25], "riemann_trapezoid": [17, 19, 25], "right": [14, 31], "rnn": [5, 19, 25], "robust": [13, 23], "root": 14, "rotat": 28, "row": [14, 19], "rule": [5, 6, 17, 19, 22, 25], "run": [3, 5, 14, 19, 21, 25, 28], "s0305054808000804": 30, "salienc": [0, 13, 23, 26], "saliency_evalu": 23, "same": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "sampl": [0, 1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 16, 18, 19, 20, 23, 25, 26, 27, 28, 31], "sample_wise_grad_per_batch": 14, "sample_wise_grads_per_batch": 14, "sampler": 3, "satisfi": 14, "save": [3, 14], "save_path": 3, "scalar": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 29, 30], "scale": [10, 19, 23, 25, 31], "scatter": 31, "scienc": 30, "sciencedirect": 30, "score": [1, 3, 4, 5, 6, 10, 11, 14, 16, 17, 19, 20, 22, 23, 25], "score_func": 16, "scriptmodul": 31, "seamlessli": 31, "search": [13, 28], "second": [1, 6, 10, 14, 16, 19, 23, 25, 31], "see": [3, 14, 16, 30, 31], "seed": 14, "seek": 14, "seen": 31, "segment": [7, 20, 25, 30, 31], "segmentat": 31, "select": [2, 9, 10, 18, 19, 20, 23, 25, 28], "selector": 25, "self": [3, 14, 23, 31], "self_influ": 14, "self_influence_scor": 14, "semanticscholar": 30, "sen": [3, 23], "send": 31, "sens": [10, 19, 25], "sensit": [3, 5, 6, 10, 13, 17, 19, 25], "sensitivi": 23, "sensitivity_max": 23, "sentenc": 16, "separ": [2, 3, 5, 7, 8, 9, 14, 18, 19, 20, 25, 30, 31], "seq_attr": 21, "sequenc": [19, 21, 31], "sequence_length": 31, "sequenti": [3, 16, 17, 19, 22, 23, 25], "serv": [1, 5, 10, 17, 19, 20, 22, 23, 26, 31], "set": [3, 5, 6, 7, 8, 10, 12, 14, 17, 18, 19, 20, 22, 23, 25, 28, 29, 30, 31], "setup": 14, "sever": 14, "sgd": [20, 31], "sgd_train_linear_model": 31, "sgdclassifi": 3, "sgdlasso": 31, "sgdlinearmodel": 31, "sgdridg": 31, "shap": [6, 10, 18, 19, 25], "shape": [1, 2, 9, 10, 12, 14, 18, 19, 20, 23, 25, 27, 28, 31], "shaplei": [0, 13, 18], "shapleyvalu": [0, 21, 30], "shapleyvaluesampl": [0, 21, 30], "share": [2, 9, 31], "shift": 27, "should": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "show": [14, 19, 21, 25, 31], "show_colorbar": 31, "show_progress": [7, 8, 14, 18, 20, 27, 30], "shown": [19, 23], "shrikumar": [5, 19, 25], "shuffl": 8, "side": 31, "sigmoid": [2, 5, 9, 19, 25], "sign": [3, 4, 19, 25, 28, 29, 31], "sign_count": 3, "sign_count_scor": 3, "signatur": [5, 6, 19, 20, 25, 28], "signifi": 8, "signific": 5, "significantli": [5, 19, 25], "sim": 23, "similar": [5, 14, 18, 19, 20, 23, 25, 28, 31], "similarity_direct": 14, "similarity_fn": 20, "similarity_func": 20, "similarity_kernel": 20, "similarity_metr": 14, "similarityinflu": 13, "similarli": 14, "simpl": [7, 8, 14, 18, 19, 20, 27, 30], "simpleclassifi": [7, 8, 18, 19, 20, 25, 27, 30], "simpler": 20, "simpli": [4, 8, 14, 20, 25, 30, 31], "simplifi": 31, "simultan": [7, 8, 18, 19, 20, 25, 30], "sinc": [1, 7, 14, 18, 19, 20, 23, 25, 28, 30, 31], "singl": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "singleton": 1, "situat": 26, "size": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "skeleton": 14, "skip": 31, "skip_token": 31, "sklearn": [3, 20, 31], "sklearn_modul": 31, "sklearnlasso": [20, 31], "sklearnlinearmodel": [20, 31], "sklearnlinearregress": 31, "sklearnridg": 31, "slayer_attribut": 1, "slice": [23, 25], "slide": 27, "sliding_window_shap": 27, "slight": 31, "slightli": [23, 31], "slundberg": [19, 25], "small": [18, 20, 30], "smaller": [2, 9, 20, 27], "smooth": [2, 9, 26], "smoothgrad": [10, 19, 25, 26], "smoothgrad_sq": 26, "so": [2, 4, 7, 8, 9, 11, 14, 17, 18, 19, 20, 23, 25, 27, 28, 30, 31], "softmax": 16, "solut": [2, 9], "some": [3, 10, 14, 19, 20, 23, 25, 26, 28, 31], "someth": 31, "sometim": [1, 23], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "space": [1, 18, 20, 23], "spars": [16, 31], "spatial": [12, 19], "special": [14, 31], "specif": [1, 3, 5, 6, 8, 14, 16, 19, 20, 23, 25, 28, 31], "specifi": [3, 14, 16, 20, 22, 25, 28, 31], "spectrum": 31, "split": [3, 7, 8, 17, 18, 19, 20, 25, 27, 28, 30], "springer": [4, 25], "squar": [7, 8, 14, 18, 20, 23, 25, 26, 30], "stabil": [2, 22], "stabl": 3, "standard": [9, 10, 14, 19, 25, 26, 28], "start": [1, 6, 10, 17, 19, 25], "start_point": 1, "stat": 3, "state": [1, 14, 31], "static": 1, "statist": [3, 31], "std": [9, 28], "stdev": [10, 19, 25, 26, 28], "step": [16, 17, 19, 25, 27, 28], "step_num": 28, "step_siz": 28, "stg": [2, 9], "still": [3, 14, 18, 20, 30], "stochast": [2, 9], "storag": 3, "store": [3, 14, 28], "str": [1, 2, 3, 9, 12, 14, 16, 17, 19, 20, 21, 23, 25, 26, 28, 31], "straight": [17, 19], "stretch": 2, "stride": 27, "string": [1, 14, 16, 23, 28, 31], "stripe": 3, "striped_data_it": 3, "structur": [3, 14, 19], "style": 21, "sub": [1, 16, 23], "subclass": 14, "subdirectori": 14, "subplot": 31, "subsequ": 14, "subset": [19, 23], "subtract": 31, "success": 28, "suffic": 25, "suffici": 14, "suffix": 28, "suitabl": 16, "sum": [1, 2, 3, 5, 6, 9, 10, 14, 17, 19, 22, 23, 25], "summar": 28, "summari": [14, 28], "super": 20, "superpixel": [18, 20], "supervis": 31, "suppli": 31, "support": [5, 12, 16, 19, 21, 25, 26, 28, 31], "suppos": [14, 31], "sure": 31, "surrog": [2, 9, 18, 20], "sv": 30, "svm": 31, "sy21r9jaw": [5, 19, 22, 25], "symbol": 23, "t": [3, 5, 6, 10, 14, 17, 19, 23, 25, 28, 31], "take": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "taken": [7, 8, 16, 22, 25, 30], "tanh": [5, 19, 25], "target": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "targettyp": 28, "task": 31, "tcav": 13, "techniqu": 23, "temperatur": 2, "templat": 31, "tensor": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "tensorflow": 27, "tensorflowkeraspytorch": [19, 25], "tensorortupleoftensorsgener": 22, "term": [2, 9, 14, 18], "test": [3, 14, 23, 28, 30, 31], "test_loss_fn": 14, "test_reduction_typ": 14, "test_split_ratio": 3, "text": [3, 16, 21, 28, 31], "text_inp": 31, "textfeatur": 13, "texttemplateinput": 31, "texttokeninput": 31, "th": 14, "than": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31], "thei": [3, 8, 14, 23, 31], "them": [1, 7, 8, 10, 14, 18, 19, 20, 25, 30, 31], "theoret": 18, "theori": 30, "therefor": [10, 14, 19, 22, 23], "theta": 28, "thi": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "think": 19, "thisi": 14, "thorough": 3, "those": [1, 3, 6, 10, 14, 18, 19, 20, 22, 23, 25, 30, 31], "though": 14, "three": [5, 6, 19, 20, 25], "threshold": [18, 28], "through": [2, 3, 5, 6, 8, 9, 10, 14, 19, 20, 22, 25, 28, 31], "throughout": [9, 14], "thu": [14, 27, 31], "time": [7, 8, 10, 14, 18, 19, 20, 23, 25, 26, 27, 30], "timeseri": 31, "titl": 31, "to_interp_rep_transform": 20, "to_interp_transform": 20, "to_model_input": 31, "to_tensor": 31, "todo": 14, "togeth": [2, 7, 8, 9, 18, 19, 20, 23, 25, 26, 30, 31], "token": [13, 16, 21], "token_attr": 21, "tokenreferencebas": [16, 31], "tol": 3, "too": 14, "took": 31, "top": [14, 18, 28, 31], "top_k": 14, "torch": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "torchscript": [5, 19, 25], "torchvis": 28, "total": [5, 6, 10, 14, 17, 18, 19, 25, 30, 31], "toward": [5, 19, 21, 23, 25], "tqdm": [7, 8, 14, 18, 20, 27, 30], "tr": 30, "tracin": 14, "tracincp": 13, "tracincpbas": 13, "tracincpfast": 13, "tracincpfastrandproj": 13, "track": 28, "train": [3, 14, 18, 20, 31], "train_and_ev": 3, "train_data": 31, "train_dataset": 14, "train_dataset_s": 14, "train_fn": 31, "train_interpretable_model_func": 20, "train_test_split": 3, "trainabl": 31, "transform": [14, 16, 20, 28, 31], "treat": [14, 28], "tree": 31, "trial": [21, 28, 30], "trilinear": [1, 12], "tripl": 31, "true": [2, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31], "trust": 31, "try": [7, 8, 14, 18, 20, 27, 30], "tunnel": 26, "tupl": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 31], "turn": [2, 9], "tutori": [3, 19, 22], "two": [3, 14, 23, 31], "type": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "typevar": [22, 28], "typic": 31, "u": [3, 14, 23, 31], "u2": 30, "un": 8, "unbound": 23, "under": [3, 10, 14, 19, 23, 25, 31], "underli": [19, 21, 22, 31], "underneath": [2, 9], "understand": [5, 19, 25, 31], "understood": 16, "unexpect": 14, "unifi": [6, 10, 19, 25, 31], "uniformli": 20, "uninterest": 31, "union": [14, 19, 22, 28, 31], "uniqu": [3, 28], "unk": 31, "unknown": 31, "unless": 31, "unlik": [8, 18, 20, 25, 30], "unpack_input": 14, "until": 27, "updat": 14, "upper": [2, 28], "upper_bound": [2, 28], "upsampl": [1, 12, 19], "upsampled_attr": 19, "us": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31], "usag": 14, "use_cached_output": 21, "use_label_for_attr": 16, "use_pyplot": 31, "user": [1, 3, 5, 10, 17, 19, 20, 22, 23, 26, 31], "usual": [1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30], "util": [1, 13, 14, 19, 21, 25], "v": [5, 6, 10, 17, 19, 25], "valid": [1, 12, 14, 31], "valu": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31], "var_nam": 28, "vargrad": 26, "variabl": [2, 3, 9, 14, 28, 31], "varianc": 26, "variant": [17, 19], "variou": [3, 31], "vector": [1, 3, 14, 18, 20, 31], "verbos": [19, 22], "veri": [1, 6, 10, 19, 30, 31], "version": [14, 20, 28, 31], "via": [2, 9, 14], "view": [10, 14, 19, 23, 25, 31], "visual": [1, 13, 16, 19], "visualis": 21, "visualization_transform": 16, "visualization_typ": 16, "visualize_image_attr": 31, "visualize_image_attr_multipl": 31, "visualize_timeseries_attr": 31, "vocabulari": 31, "w": [3, 14, 31], "wa": [14, 31], "wai": [8, 14, 21, 23, 31], "want": [1, 3, 7, 8, 14, 19, 23, 25, 30, 31], "warn": [4, 11, 12, 25], "we": [1, 3, 5, 6, 7, 8, 12, 14, 17, 18, 19, 20, 22, 23, 25, 26, 27, 30, 31], "weight": [2, 3, 9, 18, 19, 20, 22, 31], "well": [14, 20, 23, 28], "what": 31, "when": [1, 2, 3, 5, 6, 7, 8, 9, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 30, 31], "where": [3, 7, 14, 16, 18, 20, 25, 28, 30, 31], "wherea": 23, "whether": [1, 2, 3, 5, 6, 9, 10, 12, 14, 17, 18, 19, 20, 21, 22, 25, 26, 28], "which": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31], "while": [9, 14, 16, 19, 31], "whilst": 31, "white": [10, 19, 25, 31], "whole": 21, "whose": 31, "why": 31, "width": 20, "window": 27, "wise": [3, 7, 12, 14, 19, 22, 30, 31], "within": [1, 2, 7, 8, 9, 14, 18, 19, 20, 23, 25, 28, 30, 31], "without": [2, 4, 25, 28, 31], "word": [1, 3, 14, 16, 31], "work": 31, "worst": 28, "would": [14, 19, 25, 31], "wrap": [3, 19, 21, 23, 31], "wrapper": [14, 20, 31], "www": [23, 30], "x": [0, 3, 7, 8, 13, 14, 18, 20, 23, 25, 27, 28, 30, 31], "x_": 28, "x_0": 28, "x_t": 28, "x_test": 3, "x_train": 3, "x_valu": 31, "y": [14, 28, 31], "y_test": 3, "y_train": 3, "yield": [14, 20], "you": [7, 8, 19, 31], "your": [5, 19, 31], "zero": [1, 2, 5, 7, 9, 10, 17, 18, 19, 20, 22, 25, 26, 27, 28, 30], "zero_thresh": 28}, "titles": ["Attribution", "Base Classes", "BinaryConcreteStochasticGates", "Concept-based Interpretability", "Deconvolution", "DeepLift", "DeepLiftShap", "Feature Ablation", "Feature Permutation", "GaussianStochasticGates", "GradientShap", "Guided Backprop", "Guided GradCAM", "Captum API Reference", "Influential Examples", "Input X Gradient", "Insights", "Integrated Gradients", "KernelShap", "Layer Attribution", "Lime", "LLM Attribution Classes", "LRP", "Metrics", "Module", "Neuron Attribution", "NoiseTunnel", "Occlusion", "Robustness", "Saliency", "Shapley Value Sampling", "Utilities"], "titleterms": {"ablat": [7, 19, 25], "activ": 19, "api": 13, "attack": 28, "attribut": [0, 1, 19, 21, 25], "attributionvisu": 16, "backprop": [11, 25], "base": [1, 3, 31], "basefeatur": 16, "baselin": 31, "batch": 16, "binaryconcretestochasticg": 2, "captum": 13, "class": [1, 21], "classifi": 3, "compar": 28, "concept": 3, "conceptinterpret": 3, "conduct": [19, 25], "datainflu": 14, "deconvolut": [4, 25], "deeplift": [5, 19, 25], "deepliftshap": [6, 19, 25], "embed": 31, "exampl": 14, "featur": [7, 8, 16, 19, 25], "fgsm": 28, "gaussianstochasticg": 9, "generalfeatur": 16, "gradcam": [12, 19], "gradient": [1, 15, 17, 19, 25], "gradientshap": [10, 19, 25], "guid": [11, 12, 25], "imagefeatur": 16, "indic": 13, "infidel": 23, "influenc": 19, "influenti": 14, "input": [15, 31], "insight": [13, 16], "integr": [17, 19, 25], "intern": 19, "interpret": [3, 31], "kernelshap": 18, "layer": [1, 19], "lime": 20, "linear": 31, "llm": 21, "llmattribut": 21, "llmattributionresult": 21, "llmgradientattribut": 21, "lrp": [19, 22], "metric": 23, "min": 28, "model": 31, "modul": 24, "neuron": [1, 25], "noisetunnel": 26, "occlus": 27, "param": 28, "permut": [8, 19], "perturb": [1, 28], "pgd": 28, "refer": [13, 31], "robust": 28, "salienc": 29, "sampl": 30, "sensit": 23, "shaplei": 30, "similarityinflu": 14, "tabl": 13, "tcav": 3, "textfeatur": 16, "token": 31, "tracincp": 14, "tracincpbas": 14, "tracincpfast": 14, "tracincpfastrandproj": 14, "util": 31, "valu": 30, "visual": 31, "x": [15, 19]}}) \ No newline at end of file diff --git a/api/_modules/captum/_utils/models/linear_model/model.html b/api/_modules/captum/_utils/models/linear_model/model.html index 03444d0e4..0868f3518 100644 --- a/api/_modules/captum/_utils/models/linear_model/model.html +++ b/api/_modules/captum/_utils/models/linear_model/model.html @@ -417,7 +417,15 @@

Source code for captum._utils.models.linear_model.model

diff --git a/api/_modules/captum/_utils/models/linear_model/model/index.html b/api/_modules/captum/_utils/models/linear_model/model/index.html index 03444d0e4..0868f3518 100644 --- a/api/_modules/captum/_utils/models/linear_model/model/index.html +++ b/api/_modules/captum/_utils/models/linear_model/model/index.html @@ -417,7 +417,15 @@

Source code for captum._utils.models.linear_model.model

diff --git a/api/_modules/captum/_utils/models/model.html b/api/_modules/captum/_utils/models/model.html index 3cd73212b..5d69a65c8 100644 --- a/api/_modules/captum/_utils/models/model.html +++ b/api/_modules/captum/_utils/models/model.html @@ -112,7 +112,15 @@

Source code for captum._utils.models.model

 
 
diff --git a/api/_modules/captum/_utils/models/model/index.html b/api/_modules/captum/_utils/models/model/index.html index 3cd73212b..5d69a65c8 100644 --- a/api/_modules/captum/_utils/models/model/index.html +++ b/api/_modules/captum/_utils/models/model/index.html @@ -112,7 +112,15 @@

Source code for captum._utils.models.model

 
 
diff --git a/api/_modules/captum/attr/_core/deep_lift.html b/api/_modules/captum/attr/_core/deep_lift.html index c9cea22ed..7b72b8716 100644 --- a/api/_modules/captum/attr/_core/deep_lift.html +++ b/api/_modules/captum/attr/_core/deep_lift.html @@ -1103,7 +1103,15 @@

Source code for captum.attr._core.deep_lift

 
 
diff --git a/api/_modules/captum/attr/_core/deep_lift/index.html b/api/_modules/captum/attr/_core/deep_lift/index.html index c9cea22ed..7b72b8716 100644 --- a/api/_modules/captum/attr/_core/deep_lift/index.html +++ b/api/_modules/captum/attr/_core/deep_lift/index.html @@ -1103,7 +1103,15 @@

Source code for captum.attr._core.deep_lift

 
 
diff --git a/api/_modules/captum/attr/_core/feature_ablation.html b/api/_modules/captum/attr/_core/feature_ablation.html index 73d90c2b7..108936bee 100644 --- a/api/_modules/captum/attr/_core/feature_ablation.html +++ b/api/_modules/captum/attr/_core/feature_ablation.html @@ -846,7 +846,15 @@

Source code for captum.attr._core.feature_ablation

diff --git a/api/_modules/captum/attr/_core/feature_ablation/index.html b/api/_modules/captum/attr/_core/feature_ablation/index.html index 73d90c2b7..108936bee 100644 --- a/api/_modules/captum/attr/_core/feature_ablation/index.html +++ b/api/_modules/captum/attr/_core/feature_ablation/index.html @@ -846,7 +846,15 @@

Source code for captum.attr._core.feature_ablation

diff --git a/api/_modules/captum/attr/_core/feature_permutation.html b/api/_modules/captum/attr/_core/feature_permutation.html index fde7f142e..c07ddcb54 100644 --- a/api/_modules/captum/attr/_core/feature_permutation.html +++ b/api/_modules/captum/attr/_core/feature_permutation.html @@ -38,6 +38,7 @@

Source code for captum.attr._core.feature_permutation

from captum.attr._core.feature_ablation import FeatureAblation from captum.log import log_usage from torch import Tensor +from torch.futures import Future def _permute_feature(x: Tensor, feature_mask: Tensor) -> Tensor: @@ -120,6 +121,7 @@

Source code for captum.attr._core.feature_permutation

""" FeatureAblation.__init__(self, forward_func=forward_func) self.perm_func = perm_func + self.use_futures = False # suppressing error caused by the child class not having a matching # signature to the parent @@ -308,6 +310,31 @@

Source code for captum.attr._core.feature_permutation

)
+ def attribute_future( + self, + inputs: TensorOrTupleOfTensorsGeneric, + target: TargetType = None, + additional_forward_args: Any = None, + feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, + perturbations_per_eval: int = 1, + show_progress: bool = False, + **kwargs: Any, + ) -> Future[TensorOrTupleOfTensorsGeneric]: + if isinstance(kwargs, dict) and "baselines" in kwargs: + del kwargs["baselines"] + return FeatureAblation.attribute.__wrapped__( + self, + inputs, + baselines=None, + target=target, + additional_forward_args=additional_forward_args, + feature_mask=feature_mask, + perturbations_per_eval=perturbations_per_eval, + show_progress=show_progress, + use_futures=self.use_futures, + **kwargs, + ) + def _construct_ablated_input( self, expanded_input: Tensor, @@ -355,7 +382,15 @@

Source code for captum.attr._core.feature_permutation

diff --git a/api/_modules/captum/attr/_core/feature_permutation/index.html b/api/_modules/captum/attr/_core/feature_permutation/index.html index fde7f142e..c07ddcb54 100644 --- a/api/_modules/captum/attr/_core/feature_permutation/index.html +++ b/api/_modules/captum/attr/_core/feature_permutation/index.html @@ -38,6 +38,7 @@

Source code for captum.attr._core.feature_permutation

from captum.attr._core.feature_ablation import FeatureAblation from captum.log import log_usage from torch import Tensor +from torch.futures import Future def _permute_feature(x: Tensor, feature_mask: Tensor) -> Tensor: @@ -120,6 +121,7 @@

Source code for captum.attr._core.feature_permutation

""" FeatureAblation.__init__(self, forward_func=forward_func) self.perm_func = perm_func + self.use_futures = False # suppressing error caused by the child class not having a matching # signature to the parent @@ -308,6 +310,31 @@

Source code for captum.attr._core.feature_permutation

)
+ def attribute_future( + self, + inputs: TensorOrTupleOfTensorsGeneric, + target: TargetType = None, + additional_forward_args: Any = None, + feature_mask: Union[None, TensorOrTupleOfTensorsGeneric] = None, + perturbations_per_eval: int = 1, + show_progress: bool = False, + **kwargs: Any, + ) -> Future[TensorOrTupleOfTensorsGeneric]: + if isinstance(kwargs, dict) and "baselines" in kwargs: + del kwargs["baselines"] + return FeatureAblation.attribute.__wrapped__( + self, + inputs, + baselines=None, + target=target, + additional_forward_args=additional_forward_args, + feature_mask=feature_mask, + perturbations_per_eval=perturbations_per_eval, + show_progress=show_progress, + use_futures=self.use_futures, + **kwargs, + ) + def _construct_ablated_input( self, expanded_input: Tensor, @@ -355,7 +382,15 @@

Source code for captum.attr._core.feature_permutation

diff --git a/api/_modules/captum/attr/_core/gradient_shap.html b/api/_modules/captum/attr/_core/gradient_shap.html index 059d33e74..3de7ec7c6 100644 --- a/api/_modules/captum/attr/_core/gradient_shap.html +++ b/api/_modules/captum/attr/_core/gradient_shap.html @@ -456,7 +456,15 @@

Source code for captum.attr._core.gradient_shap

<
diff --git a/api/_modules/captum/attr/_core/gradient_shap/index.html b/api/_modules/captum/attr/_core/gradient_shap/index.html index 059d33e74..3de7ec7c6 100644 --- a/api/_modules/captum/attr/_core/gradient_shap/index.html +++ b/api/_modules/captum/attr/_core/gradient_shap/index.html @@ -456,7 +456,15 @@

Source code for captum.attr._core.gradient_shap

<
diff --git a/api/_modules/captum/attr/_core/guided_backprop_deconvnet.html b/api/_modules/captum/attr/_core/guided_backprop_deconvnet.html index b6c34ed67..530cae3c5 100644 --- a/api/_modules/captum/attr/_core/guided_backprop_deconvnet.html +++ b/api/_modules/captum/attr/_core/guided_backprop_deconvnet.html @@ -367,7 +367,15 @@

Source code for captum.attr._core.guided_backprop_deconvnet

diff --git a/api/_modules/captum/attr/_core/guided_backprop_deconvnet/index.html b/api/_modules/captum/attr/_core/guided_backprop_deconvnet/index.html index b6c34ed67..530cae3c5 100644 --- a/api/_modules/captum/attr/_core/guided_backprop_deconvnet/index.html +++ b/api/_modules/captum/attr/_core/guided_backprop_deconvnet/index.html @@ -367,7 +367,15 @@

Source code for captum.attr._core.guided_backprop_deconvnet

diff --git a/api/_modules/captum/attr/_core/guided_grad_cam.html b/api/_modules/captum/attr/_core/guided_grad_cam.html index a9d7ed182..db45f2654 100644 --- a/api/_modules/captum/attr/_core/guided_grad_cam.html +++ b/api/_modules/captum/attr/_core/guided_grad_cam.html @@ -266,7 +266,15 @@

Source code for captum.attr._core.guided_grad_cam

diff --git a/api/_modules/captum/attr/_core/guided_grad_cam/index.html b/api/_modules/captum/attr/_core/guided_grad_cam/index.html index a9d7ed182..db45f2654 100644 --- a/api/_modules/captum/attr/_core/guided_grad_cam/index.html +++ b/api/_modules/captum/attr/_core/guided_grad_cam/index.html @@ -266,7 +266,15 @@

Source code for captum.attr._core.guided_grad_cam

diff --git a/api/_modules/captum/attr/_core/input_x_gradient.html b/api/_modules/captum/attr/_core/input_x_gradient.html index 10e2e4095..2cd62ba6c 100644 --- a/api/_modules/captum/attr/_core/input_x_gradient.html +++ b/api/_modules/captum/attr/_core/input_x_gradient.html @@ -173,7 +173,15 @@

Source code for captum.attr._core.input_x_gradient

diff --git a/api/_modules/captum/attr/_core/input_x_gradient/index.html b/api/_modules/captum/attr/_core/input_x_gradient/index.html index 10e2e4095..2cd62ba6c 100644 --- a/api/_modules/captum/attr/_core/input_x_gradient/index.html +++ b/api/_modules/captum/attr/_core/input_x_gradient/index.html @@ -173,7 +173,15 @@

Source code for captum.attr._core.input_x_gradient

diff --git a/api/_modules/captum/attr/_core/integrated_gradients.html b/api/_modules/captum/attr/_core/integrated_gradients.html index 9a82ce7fe..a34341591 100644 --- a/api/_modules/captum/attr/_core/integrated_gradients.html +++ b/api/_modules/captum/attr/_core/integrated_gradients.html @@ -435,7 +435,15 @@

Source code for captum.attr._core.integrated_gradients

diff --git a/api/_modules/captum/attr/_core/integrated_gradients/index.html b/api/_modules/captum/attr/_core/integrated_gradients/index.html index 9a82ce7fe..a34341591 100644 --- a/api/_modules/captum/attr/_core/integrated_gradients/index.html +++ b/api/_modules/captum/attr/_core/integrated_gradients/index.html @@ -435,7 +435,15 @@

Source code for captum.attr._core.integrated_gradients

diff --git a/api/_modules/captum/attr/_core/kernel_shap.html b/api/_modules/captum/attr/_core/kernel_shap.html index 473411873..208ade209 100644 --- a/api/_modules/captum/attr/_core/kernel_shap.html +++ b/api/_modules/captum/attr/_core/kernel_shap.html @@ -397,7 +397,15 @@

Source code for captum.attr._core.kernel_shap

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/attr/_core/kernel_shap/index.html b/api/_modules/captum/attr/_core/kernel_shap/index.html index 473411873..208ade209 100644 --- a/api/_modules/captum/attr/_core/kernel_shap/index.html +++ b/api/_modules/captum/attr/_core/kernel_shap/index.html @@ -397,7 +397,15 @@

Source code for captum.attr._core.kernel_shap

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/attr/_core/layer/grad_cam.html b/api/_modules/captum/attr/_core/layer/grad_cam.html index e6ae602be..17a8d6380 100644 --- a/api/_modules/captum/attr/_core/layer/grad_cam.html +++ b/api/_modules/captum/attr/_core/layer/grad_cam.html @@ -279,7 +279,15 @@

Source code for captum.attr._core.layer.grad_cam

diff --git a/api/_modules/captum/attr/_core/layer/grad_cam/index.html b/api/_modules/captum/attr/_core/layer/grad_cam/index.html index e6ae602be..17a8d6380 100644 --- a/api/_modules/captum/attr/_core/layer/grad_cam/index.html +++ b/api/_modules/captum/attr/_core/layer/grad_cam/index.html @@ -279,7 +279,15 @@

Source code for captum.attr._core.layer.grad_cam

diff --git a/api/_modules/captum/attr/_core/layer/internal_influence.html b/api/_modules/captum/attr/_core/layer/internal_influence.html index 1a7140f95..7a4252e58 100644 --- a/api/_modules/captum/attr/_core/layer/internal_influence.html +++ b/api/_modules/captum/attr/_core/layer/internal_influence.html @@ -359,7 +359,15 @@

Source code for captum.attr._core.layer.internal_influence

diff --git a/api/_modules/captum/attr/_core/layer/internal_influence/index.html b/api/_modules/captum/attr/_core/layer/internal_influence/index.html index 1a7140f95..7a4252e58 100644 --- a/api/_modules/captum/attr/_core/layer/internal_influence/index.html +++ b/api/_modules/captum/attr/_core/layer/internal_influence/index.html @@ -359,7 +359,15 @@

Source code for captum.attr._core.layer.internal_influence

diff --git a/api/_modules/captum/attr/_core/layer/layer_activation.html b/api/_modules/captum/attr/_core/layer/layer_activation.html index 8f954457e..2f6a05b1f 100644 --- a/api/_modules/captum/attr/_core/layer/layer_activation.html +++ b/api/_modules/captum/attr/_core/layer/layer_activation.html @@ -179,7 +179,15 @@

Source code for captum.attr._core.layer.layer_activation

diff --git a/api/_modules/captum/attr/_core/layer/layer_activation/index.html b/api/_modules/captum/attr/_core/layer/layer_activation/index.html index 8f954457e..2f6a05b1f 100644 --- a/api/_modules/captum/attr/_core/layer/layer_activation/index.html +++ b/api/_modules/captum/attr/_core/layer/layer_activation/index.html @@ -179,7 +179,15 @@

Source code for captum.attr._core.layer.layer_activation

diff --git a/api/_modules/captum/attr/_core/layer/layer_conductance.html b/api/_modules/captum/attr/_core/layer/layer_conductance.html index ca945f6df..5a873d2bd 100644 --- a/api/_modules/captum/attr/_core/layer/layer_conductance.html +++ b/api/_modules/captum/attr/_core/layer/layer_conductance.html @@ -451,7 +451,15 @@

Source code for captum.attr._core.layer.layer_conductance

diff --git a/api/_modules/captum/attr/_core/layer/layer_conductance/index.html b/api/_modules/captum/attr/_core/layer/layer_conductance/index.html index ca945f6df..5a873d2bd 100644 --- a/api/_modules/captum/attr/_core/layer/layer_conductance/index.html +++ b/api/_modules/captum/attr/_core/layer/layer_conductance/index.html @@ -451,7 +451,15 @@

Source code for captum.attr._core.layer.layer_conductance

diff --git a/api/_modules/captum/attr/_core/layer/layer_deep_lift.html b/api/_modules/captum/attr/_core/layer/layer_deep_lift.html index 5c7cffb06..168026def 100644 --- a/api/_modules/captum/attr/_core/layer/layer_deep_lift.html +++ b/api/_modules/captum/attr/_core/layer/layer_deep_lift.html @@ -732,7 +732,15 @@

Source code for captum.attr._core.layer.layer_deep_lift

diff --git a/api/_modules/captum/attr/_core/layer/layer_deep_lift/index.html b/api/_modules/captum/attr/_core/layer/layer_deep_lift/index.html index 5c7cffb06..168026def 100644 --- a/api/_modules/captum/attr/_core/layer/layer_deep_lift/index.html +++ b/api/_modules/captum/attr/_core/layer/layer_deep_lift/index.html @@ -732,7 +732,15 @@

Source code for captum.attr._core.layer.layer_deep_lift

diff --git a/api/_modules/captum/attr/_core/layer/layer_feature_ablation.html b/api/_modules/captum/attr/_core/layer/layer_feature_ablation.html index 81a8605b2..63d713c27 100644 --- a/api/_modules/captum/attr/_core/layer/layer_feature_ablation.html +++ b/api/_modules/captum/attr/_core/layer/layer_feature_ablation.html @@ -349,7 +349,15 @@

Source code for captum.attr._core.layer.layer_feature_ablation

diff --git a/api/_modules/captum/attr/_core/layer/layer_feature_ablation/index.html b/api/_modules/captum/attr/_core/layer/layer_feature_ablation/index.html index 81a8605b2..63d713c27 100644 --- a/api/_modules/captum/attr/_core/layer/layer_feature_ablation/index.html +++ b/api/_modules/captum/attr/_core/layer/layer_feature_ablation/index.html @@ -349,7 +349,15 @@

Source code for captum.attr._core.layer.layer_feature_ablation

diff --git a/api/_modules/captum/attr/_core/layer/layer_feature_permutation.html b/api/_modules/captum/attr/_core/layer/layer_feature_permutation.html index bae1a63b0..9a9967ef6 100644 --- a/api/_modules/captum/attr/_core/layer/layer_feature_permutation.html +++ b/api/_modules/captum/attr/_core/layer/layer_feature_permutation.html @@ -284,7 +284,15 @@

Source code for captum.attr._core.layer.layer_feature_permutation

diff --git a/api/_modules/captum/attr/_core/layer/layer_feature_permutation/index.html b/api/_modules/captum/attr/_core/layer/layer_feature_permutation/index.html index bae1a63b0..9a9967ef6 100644 --- a/api/_modules/captum/attr/_core/layer/layer_feature_permutation/index.html +++ b/api/_modules/captum/attr/_core/layer/layer_feature_permutation/index.html @@ -284,7 +284,15 @@

Source code for captum.attr._core.layer.layer_feature_permutation

diff --git a/api/_modules/captum/attr/_core/layer/layer_gradient_shap.html b/api/_modules/captum/attr/_core/layer/layer_gradient_shap.html index 0c792f5d5..fb7b472b8 100644 --- a/api/_modules/captum/attr/_core/layer/layer_gradient_shap.html +++ b/api/_modules/captum/attr/_core/layer/layer_gradient_shap.html @@ -521,7 +521,15 @@

Source code for captum.attr._core.layer.layer_gradient_shap

diff --git a/api/_modules/captum/attr/_core/layer/layer_gradient_shap/index.html b/api/_modules/captum/attr/_core/layer/layer_gradient_shap/index.html index 0c792f5d5..fb7b472b8 100644 --- a/api/_modules/captum/attr/_core/layer/layer_gradient_shap/index.html +++ b/api/_modules/captum/attr/_core/layer/layer_gradient_shap/index.html @@ -521,7 +521,15 @@

Source code for captum.attr._core.layer.layer_gradient_shap

diff --git a/api/_modules/captum/attr/_core/layer/layer_gradient_x_activation.html b/api/_modules/captum/attr/_core/layer/layer_gradient_x_activation.html index 6c3e9156d..e079f53cd 100644 --- a/api/_modules/captum/attr/_core/layer/layer_gradient_x_activation.html +++ b/api/_modules/captum/attr/_core/layer/layer_gradient_x_activation.html @@ -250,7 +250,15 @@

Source code for captum.attr._core.layer.layer_gradient_x_activation

diff --git a/api/_modules/captum/attr/_core/layer/layer_gradient_x_activation/index.html b/api/_modules/captum/attr/_core/layer/layer_gradient_x_activation/index.html index 6c3e9156d..e079f53cd 100644 --- a/api/_modules/captum/attr/_core/layer/layer_gradient_x_activation/index.html +++ b/api/_modules/captum/attr/_core/layer/layer_gradient_x_activation/index.html @@ -250,7 +250,15 @@

Source code for captum.attr._core.layer.layer_gradient_x_activation

diff --git a/api/_modules/captum/attr/_core/layer/layer_integrated_gradients.html b/api/_modules/captum/attr/_core/layer/layer_integrated_gradients.html index bdea47362..c6bc3a422 100644 --- a/api/_modules/captum/attr/_core/layer/layer_integrated_gradients.html +++ b/api/_modules/captum/attr/_core/layer/layer_integrated_gradients.html @@ -584,7 +584,15 @@

Source code for captum.attr._core.layer.layer_integrated_gradients

diff --git a/api/_modules/captum/attr/_core/layer/layer_integrated_gradients/index.html b/api/_modules/captum/attr/_core/layer/layer_integrated_gradients/index.html index bdea47362..c6bc3a422 100644 --- a/api/_modules/captum/attr/_core/layer/layer_integrated_gradients/index.html +++ b/api/_modules/captum/attr/_core/layer/layer_integrated_gradients/index.html @@ -584,7 +584,15 @@

Source code for captum.attr._core.layer.layer_integrated_gradients

diff --git a/api/_modules/captum/attr/_core/layer/layer_lrp.html b/api/_modules/captum/attr/_core/layer/layer_lrp.html index ed0b2bea5..5268fb4aa 100644 --- a/api/_modules/captum/attr/_core/layer/layer_lrp.html +++ b/api/_modules/captum/attr/_core/layer/layer_lrp.html @@ -332,7 +332,15 @@

Source code for captum.attr._core.layer.layer_lrp

diff --git a/api/_modules/captum/attr/_core/layer/layer_lrp/index.html b/api/_modules/captum/attr/_core/layer/layer_lrp/index.html index ed0b2bea5..5268fb4aa 100644 --- a/api/_modules/captum/attr/_core/layer/layer_lrp/index.html +++ b/api/_modules/captum/attr/_core/layer/layer_lrp/index.html @@ -332,7 +332,15 @@

Source code for captum.attr._core.layer.layer_lrp

diff --git a/api/_modules/captum/attr/_core/lime.html b/api/_modules/captum/attr/_core/lime.html index f38354f71..478e099bc 100644 --- a/api/_modules/captum/attr/_core/lime.html +++ b/api/_modules/captum/attr/_core/lime.html @@ -1292,7 +1292,15 @@

Source code for captum.attr._core.lime

 
 
diff --git a/api/_modules/captum/attr/_core/lime/index.html b/api/_modules/captum/attr/_core/lime/index.html index f38354f71..478e099bc 100644 --- a/api/_modules/captum/attr/_core/lime/index.html +++ b/api/_modules/captum/attr/_core/lime/index.html @@ -1292,7 +1292,15 @@

Source code for captum.attr._core.lime

 
 
diff --git a/api/_modules/captum/attr/_core/llm_attr.html b/api/_modules/captum/attr/_core/llm_attr.html index 4f92559dd..d51472fa4 100644 --- a/api/_modules/captum/attr/_core/llm_attr.html +++ b/api/_modules/captum/attr/_core/llm_attr.html @@ -654,7 +654,15 @@

Source code for captum.attr._core.llm_attr

 
 
diff --git a/api/_modules/captum/attr/_core/llm_attr/index.html b/api/_modules/captum/attr/_core/llm_attr/index.html index 4f92559dd..d51472fa4 100644 --- a/api/_modules/captum/attr/_core/llm_attr/index.html +++ b/api/_modules/captum/attr/_core/llm_attr/index.html @@ -654,7 +654,15 @@

Source code for captum.attr._core.llm_attr

 
 
diff --git a/api/_modules/captum/attr/_core/lrp.html b/api/_modules/captum/attr/_core/lrp.html index 81dcf2ae9..43a9f73d2 100644 --- a/api/_modules/captum/attr/_core/lrp.html +++ b/api/_modules/captum/attr/_core/lrp.html @@ -476,7 +476,15 @@

Source code for captum.attr._core.lrp

 
 
diff --git a/api/_modules/captum/attr/_core/lrp/index.html b/api/_modules/captum/attr/_core/lrp/index.html index 81dcf2ae9..43a9f73d2 100644 --- a/api/_modules/captum/attr/_core/lrp/index.html +++ b/api/_modules/captum/attr/_core/lrp/index.html @@ -476,7 +476,15 @@

Source code for captum.attr._core.lrp

 
 
diff --git a/api/_modules/captum/attr/_core/neuron/neuron_conductance.html b/api/_modules/captum/attr/_core/neuron/neuron_conductance.html index 2ca5381a7..94670363b 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_conductance.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_conductance.html @@ -457,7 +457,15 @@

Source code for captum.attr._core.neuron.neuron_conductance

diff --git a/api/_modules/captum/attr/_core/neuron/neuron_conductance/index.html b/api/_modules/captum/attr/_core/neuron/neuron_conductance/index.html index 2ca5381a7..94670363b 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_conductance/index.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_conductance/index.html @@ -457,7 +457,15 @@

Source code for captum.attr._core.neuron.neuron_conductance

diff --git a/api/_modules/captum/attr/_core/neuron/neuron_deep_lift.html b/api/_modules/captum/attr/_core/neuron/neuron_deep_lift.html index b54807f8b..de0ee6bcd 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_deep_lift.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_deep_lift.html @@ -521,7 +521,15 @@

Source code for captum.attr._core.neuron.neuron_deep_lift

diff --git a/api/_modules/captum/attr/_core/neuron/neuron_deep_lift/index.html b/api/_modules/captum/attr/_core/neuron/neuron_deep_lift/index.html index b54807f8b..de0ee6bcd 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_deep_lift/index.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_deep_lift/index.html @@ -521,7 +521,15 @@

Source code for captum.attr._core.neuron.neuron_deep_lift

diff --git a/api/_modules/captum/attr/_core/neuron/neuron_feature_ablation.html b/api/_modules/captum/attr/_core/neuron/neuron_feature_ablation.html index 805ab5021..b4b926256 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_feature_ablation.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_feature_ablation.html @@ -312,7 +312,15 @@

Source code for captum.attr._core.neuron.neuron_feature_ablation

diff --git a/api/_modules/captum/attr/_core/neuron/neuron_feature_ablation/index.html b/api/_modules/captum/attr/_core/neuron/neuron_feature_ablation/index.html index 805ab5021..b4b926256 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_feature_ablation/index.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_feature_ablation/index.html @@ -312,7 +312,15 @@

Source code for captum.attr._core.neuron.neuron_feature_ablation

diff --git a/api/_modules/captum/attr/_core/neuron/neuron_gradient.html b/api/_modules/captum/attr/_core/neuron/neuron_gradient.html index 39b2cd415..9147f807e 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_gradient.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_gradient.html @@ -222,7 +222,15 @@

Source code for captum.attr._core.neuron.neuron_gradient

diff --git a/api/_modules/captum/attr/_core/neuron/neuron_gradient/index.html b/api/_modules/captum/attr/_core/neuron/neuron_gradient/index.html index 39b2cd415..9147f807e 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_gradient/index.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_gradient/index.html @@ -222,7 +222,15 @@

Source code for captum.attr._core.neuron.neuron_gradient

diff --git a/api/_modules/captum/attr/_core/neuron/neuron_gradient_shap.html b/api/_modules/captum/attr/_core/neuron/neuron_gradient_shap.html index 256ad92db..0764aede2 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_gradient_shap.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_gradient_shap.html @@ -300,7 +300,15 @@

Source code for captum.attr._core.neuron.neuron_gradient_shap

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/attr/_core/neuron/neuron_gradient_shap/index.html b/api/_modules/captum/attr/_core/neuron/neuron_gradient_shap/index.html index 256ad92db..0764aede2 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_gradient_shap/index.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_gradient_shap/index.html @@ -300,7 +300,15 @@

Source code for captum.attr._core.neuron.neuron_gradient_shap

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/attr/_core/neuron/neuron_guided_backprop_deconvnet.html b/api/_modules/captum/attr/_core/neuron/neuron_guided_backprop_deconvnet.html index 3bb783f26..e4e128194 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_guided_backprop_deconvnet.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_guided_backprop_deconvnet.html @@ -371,7 +371,15 @@

Source code for captum.attr._core.neuron.neuron_guided_backprop_deconvnet

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/attr/_core/neuron/neuron_guided_backprop_deconvnet/index.html b/api/_modules/captum/attr/_core/neuron/neuron_guided_backprop_deconvnet/index.html index 3bb783f26..e4e128194 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_guided_backprop_deconvnet/index.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_guided_backprop_deconvnet/index.html @@ -371,7 +371,15 @@

Source code for captum.attr._core.neuron.neuron_guided_backprop_deconvnet

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/attr/_core/neuron/neuron_integrated_gradients.html b/api/_modules/captum/attr/_core/neuron/neuron_integrated_gradients.html index 79354eb61..3b321203d 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_integrated_gradients.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_integrated_gradients.html @@ -295,7 +295,15 @@

Source code for captum.attr._core.neuron.neuron_integrated_gradients

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/attr/_core/neuron/neuron_integrated_gradients/index.html b/api/_modules/captum/attr/_core/neuron/neuron_integrated_gradients/index.html index 79354eb61..3b321203d 100644 --- a/api/_modules/captum/attr/_core/neuron/neuron_integrated_gradients/index.html +++ b/api/_modules/captum/attr/_core/neuron/neuron_integrated_gradients/index.html @@ -295,7 +295,15 @@

Source code for captum.attr._core.neuron.neuron_integrated_gradients

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/attr/_core/noise_tunnel.html b/api/_modules/captum/attr/_core/noise_tunnel.html index d1c113cca..65c59bebd 100644 --- a/api/_modules/captum/attr/_core/noise_tunnel.html +++ b/api/_modules/captum/attr/_core/noise_tunnel.html @@ -504,7 +504,15 @@

Source code for captum.attr._core.noise_tunnel

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/attr/_core/noise_tunnel/index.html b/api/_modules/captum/attr/_core/noise_tunnel/index.html index d1c113cca..65c59bebd 100644 --- a/api/_modules/captum/attr/_core/noise_tunnel/index.html +++ b/api/_modules/captum/attr/_core/noise_tunnel/index.html @@ -504,7 +504,15 @@

Source code for captum.attr._core.noise_tunnel

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/attr/_core/occlusion.html b/api/_modules/captum/attr/_core/occlusion.html index d1619d09f..74a931b06 100644 --- a/api/_modules/captum/attr/_core/occlusion.html +++ b/api/_modules/captum/attr/_core/occlusion.html @@ -422,7 +422,15 @@

Source code for captum.attr._core.occlusion

 
 
diff --git a/api/_modules/captum/attr/_core/occlusion/index.html b/api/_modules/captum/attr/_core/occlusion/index.html index d1619d09f..74a931b06 100644 --- a/api/_modules/captum/attr/_core/occlusion/index.html +++ b/api/_modules/captum/attr/_core/occlusion/index.html @@ -422,7 +422,15 @@

Source code for captum.attr._core.occlusion

 
 
diff --git a/api/_modules/captum/attr/_core/saliency.html b/api/_modules/captum/attr/_core/saliency.html index 74baf373c..8ee43e82d 100644 --- a/api/_modules/captum/attr/_core/saliency.html +++ b/api/_modules/captum/attr/_core/saliency.html @@ -181,7 +181,15 @@

Source code for captum.attr._core.saliency

 
 
diff --git a/api/_modules/captum/attr/_core/saliency/index.html b/api/_modules/captum/attr/_core/saliency/index.html index 74baf373c..8ee43e82d 100644 --- a/api/_modules/captum/attr/_core/saliency/index.html +++ b/api/_modules/captum/attr/_core/saliency/index.html @@ -181,7 +181,15 @@

Source code for captum.attr._core.saliency

 
 
diff --git a/api/_modules/captum/attr/_core/shapley_value.html b/api/_modules/captum/attr/_core/shapley_value.html index c9a9c96ad..3c04a6ec0 100644 --- a/api/_modules/captum/attr/_core/shapley_value.html +++ b/api/_modules/captum/attr/_core/shapley_value.html @@ -870,7 +870,15 @@

Source code for captum.attr._core.shapley_value

<
diff --git a/api/_modules/captum/attr/_core/shapley_value/index.html b/api/_modules/captum/attr/_core/shapley_value/index.html index c9a9c96ad..3c04a6ec0 100644 --- a/api/_modules/captum/attr/_core/shapley_value/index.html +++ b/api/_modules/captum/attr/_core/shapley_value/index.html @@ -870,7 +870,15 @@

Source code for captum.attr._core.shapley_value

<
diff --git a/api/_modules/captum/attr/_models/base.html b/api/_modules/captum/attr/_models/base.html index da3e80031..02973429d 100644 --- a/api/_modules/captum/attr/_models/base.html +++ b/api/_modules/captum/attr/_models/base.html @@ -308,7 +308,15 @@

Source code for captum.attr._models.base

 
 
diff --git a/api/_modules/captum/attr/_models/base/index.html b/api/_modules/captum/attr/_models/base/index.html index da3e80031..02973429d 100644 --- a/api/_modules/captum/attr/_models/base/index.html +++ b/api/_modules/captum/attr/_models/base/index.html @@ -308,7 +308,15 @@

Source code for captum.attr._models.base

 
 
diff --git a/api/_modules/captum/attr/_utils/attribution.html b/api/_modules/captum/attr/_utils/attribution.html index 2f2c71702..66f794efd 100644 --- a/api/_modules/captum/attr/_utils/attribution.html +++ b/api/_modules/captum/attr/_utils/attribution.html @@ -547,7 +547,15 @@

Source code for captum.attr._utils.attribution

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/attr/_utils/attribution/index.html b/api/_modules/captum/attr/_utils/attribution/index.html index 2f2c71702..66f794efd 100644 --- a/api/_modules/captum/attr/_utils/attribution/index.html +++ b/api/_modules/captum/attr/_utils/attribution/index.html @@ -547,7 +547,15 @@

Source code for captum.attr._utils.attribution

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/attr/_utils/baselines.html b/api/_modules/captum/attr/_utils/baselines.html index 5151f2bec..9d75d0d88 100644 --- a/api/_modules/captum/attr/_utils/baselines.html +++ b/api/_modules/captum/attr/_utils/baselines.html @@ -102,7 +102,15 @@

Source code for captum.attr._utils.baselines

diff --git a/api/_modules/captum/attr/_utils/baselines/index.html b/api/_modules/captum/attr/_utils/baselines/index.html index 5151f2bec..9d75d0d88 100644 --- a/api/_modules/captum/attr/_utils/baselines/index.html +++ b/api/_modules/captum/attr/_utils/baselines/index.html @@ -102,7 +102,15 @@

Source code for captum.attr._utils.baselines

diff --git a/api/_modules/captum/attr/_utils/interpretable_input.html b/api/_modules/captum/attr/_utils/interpretable_input.html index 759f277f0..78e575472 100644 --- a/api/_modules/captum/attr/_utils/interpretable_input.html +++ b/api/_modules/captum/attr/_utils/interpretable_input.html @@ -517,7 +517,15 @@

Source code for captum.attr._utils.interpretable_input

diff --git a/api/_modules/captum/attr/_utils/interpretable_input/index.html b/api/_modules/captum/attr/_utils/interpretable_input/index.html index 759f277f0..78e575472 100644 --- a/api/_modules/captum/attr/_utils/interpretable_input/index.html +++ b/api/_modules/captum/attr/_utils/interpretable_input/index.html @@ -517,7 +517,15 @@

Source code for captum.attr._utils.interpretable_input

diff --git a/api/_modules/captum/concept/_core/concept.html b/api/_modules/captum/concept/_core/concept.html index 2f470bb5f..21c69dfe4 100644 --- a/api/_modules/captum/concept/_core/concept.html +++ b/api/_modules/captum/concept/_core/concept.html @@ -129,7 +129,15 @@

Source code for captum.concept._core.concept

diff --git a/api/_modules/captum/concept/_core/concept/index.html b/api/_modules/captum/concept/_core/concept/index.html index 2f470bb5f..21c69dfe4 100644 --- a/api/_modules/captum/concept/_core/concept/index.html +++ b/api/_modules/captum/concept/_core/concept/index.html @@ -129,7 +129,15 @@

Source code for captum.concept._core.concept

diff --git a/api/_modules/captum/concept/_core/tcav.html b/api/_modules/captum/concept/_core/tcav.html index 4b8eecd78..460f141f5 100644 --- a/api/_modules/captum/concept/_core/tcav.html +++ b/api/_modules/captum/concept/_core/tcav.html @@ -858,7 +858,15 @@

Source code for captum.concept._core.tcav

 
 
diff --git a/api/_modules/captum/concept/_core/tcav/index.html b/api/_modules/captum/concept/_core/tcav/index.html index 4b8eecd78..460f141f5 100644 --- a/api/_modules/captum/concept/_core/tcav/index.html +++ b/api/_modules/captum/concept/_core/tcav/index.html @@ -858,7 +858,15 @@

Source code for captum.concept._core.tcav

 
 
diff --git a/api/_modules/captum/concept/_utils/classifier.html b/api/_modules/captum/concept/_utils/classifier.html index e1d5a0e87..1d00c920c 100644 --- a/api/_modules/captum/concept/_utils/classifier.html +++ b/api/_modules/captum/concept/_utils/classifier.html @@ -288,7 +288,15 @@

Source code for captum.concept._utils.classifier

diff --git a/api/_modules/captum/concept/_utils/classifier/index.html b/api/_modules/captum/concept/_utils/classifier/index.html index e1d5a0e87..1d00c920c 100644 --- a/api/_modules/captum/concept/_utils/classifier/index.html +++ b/api/_modules/captum/concept/_utils/classifier/index.html @@ -288,7 +288,15 @@

Source code for captum.concept._utils.classifier

diff --git a/api/_modules/captum/influence/_core/influence.html b/api/_modules/captum/influence/_core/influence.html index 31a745cda..b96290ca3 100644 --- a/api/_modules/captum/influence/_core/influence.html +++ b/api/_modules/captum/influence/_core/influence.html @@ -102,7 +102,15 @@

Source code for captum.influence._core.influence

diff --git a/api/_modules/captum/influence/_core/influence/index.html b/api/_modules/captum/influence/_core/influence/index.html index 31a745cda..b96290ca3 100644 --- a/api/_modules/captum/influence/_core/influence/index.html +++ b/api/_modules/captum/influence/_core/influence/index.html @@ -102,7 +102,15 @@

Source code for captum.influence._core.influence

diff --git a/api/_modules/captum/influence/_core/similarity_influence.html b/api/_modules/captum/influence/_core/similarity_influence.html index 0497a7390..2e4ee0b71 100644 --- a/api/_modules/captum/influence/_core/similarity_influence.html +++ b/api/_modules/captum/influence/_core/similarity_influence.html @@ -337,7 +337,15 @@

Source code for captum.influence._core.similarity_influence

diff --git a/api/_modules/captum/influence/_core/similarity_influence/index.html b/api/_modules/captum/influence/_core/similarity_influence/index.html index 0497a7390..2e4ee0b71 100644 --- a/api/_modules/captum/influence/_core/similarity_influence/index.html +++ b/api/_modules/captum/influence/_core/similarity_influence/index.html @@ -337,7 +337,15 @@

Source code for captum.influence._core.similarity_influence

diff --git a/api/_modules/captum/influence/_core/tracincp.html b/api/_modules/captum/influence/_core/tracincp.html index 2ffc485e7..bad7ab407 100644 --- a/api/_modules/captum/influence/_core/tracincp.html +++ b/api/_modules/captum/influence/_core/tracincp.html @@ -1460,7 +1460,15 @@

Source code for captum.influence._core.tracincp

<
diff --git a/api/_modules/captum/influence/_core/tracincp/index.html b/api/_modules/captum/influence/_core/tracincp/index.html index 2ffc485e7..bad7ab407 100644 --- a/api/_modules/captum/influence/_core/tracincp/index.html +++ b/api/_modules/captum/influence/_core/tracincp/index.html @@ -1460,7 +1460,15 @@

Source code for captum.influence._core.tracincp

<
diff --git a/api/_modules/captum/influence/_core/tracincp_fast_rand_proj.html b/api/_modules/captum/influence/_core/tracincp_fast_rand_proj.html index 90929ba97..7cc4190b7 100644 --- a/api/_modules/captum/influence/_core/tracincp_fast_rand_proj.html +++ b/api/_modules/captum/influence/_core/tracincp_fast_rand_proj.html @@ -1650,7 +1650,15 @@

Source code for captum.influence._core.tracincp_fast_rand_proj

diff --git a/api/_modules/captum/influence/_core/tracincp_fast_rand_proj/index.html b/api/_modules/captum/influence/_core/tracincp_fast_rand_proj/index.html index 90929ba97..7cc4190b7 100644 --- a/api/_modules/captum/influence/_core/tracincp_fast_rand_proj/index.html +++ b/api/_modules/captum/influence/_core/tracincp_fast_rand_proj/index.html @@ -1650,7 +1650,15 @@

Source code for captum.influence._core.tracincp_fast_rand_proj

diff --git a/api/_modules/captum/insights/attr_vis/app.html b/api/_modules/captum/insights/attr_vis/app.html index e348b6e34..49c190030 100644 --- a/api/_modules/captum/insights/attr_vis/app.html +++ b/api/_modules/captum/insights/attr_vis/app.html @@ -555,7 +555,15 @@

Source code for captum.insights.attr_vis.app

diff --git a/api/_modules/captum/insights/attr_vis/app/index.html b/api/_modules/captum/insights/attr_vis/app/index.html index e348b6e34..49c190030 100644 --- a/api/_modules/captum/insights/attr_vis/app/index.html +++ b/api/_modules/captum/insights/attr_vis/app/index.html @@ -555,7 +555,15 @@

Source code for captum.insights.attr_vis.app

diff --git a/api/_modules/captum/metrics/_core/infidelity.html b/api/_modules/captum/metrics/_core/infidelity.html index b7b19d44f..ccc61ae6f 100644 --- a/api/_modules/captum/metrics/_core/infidelity.html +++ b/api/_modules/captum/metrics/_core/infidelity.html @@ -631,7 +631,15 @@

Source code for captum.metrics._core.infidelity

<
diff --git a/api/_modules/captum/metrics/_core/infidelity/index.html b/api/_modules/captum/metrics/_core/infidelity/index.html index b7b19d44f..ccc61ae6f 100644 --- a/api/_modules/captum/metrics/_core/infidelity/index.html +++ b/api/_modules/captum/metrics/_core/infidelity/index.html @@ -631,7 +631,15 @@

Source code for captum.metrics._core.infidelity

<
diff --git a/api/_modules/captum/metrics/_core/sensitivity.html b/api/_modules/captum/metrics/_core/sensitivity.html index 5f52711fc..ff09128b2 100644 --- a/api/_modules/captum/metrics/_core/sensitivity.html +++ b/api/_modules/captum/metrics/_core/sensitivity.html @@ -358,7 +358,15 @@

Source code for captum.metrics._core.sensitivity

diff --git a/api/_modules/captum/metrics/_core/sensitivity/index.html b/api/_modules/captum/metrics/_core/sensitivity/index.html index 5f52711fc..ff09128b2 100644 --- a/api/_modules/captum/metrics/_core/sensitivity/index.html +++ b/api/_modules/captum/metrics/_core/sensitivity/index.html @@ -358,7 +358,15 @@

Source code for captum.metrics._core.sensitivity

diff --git a/api/_modules/captum/module/binary_concrete_stochastic_gates.html b/api/_modules/captum/module/binary_concrete_stochastic_gates.html index 79764db4c..a5b9d10b9 100644 --- a/api/_modules/captum/module/binary_concrete_stochastic_gates.html +++ b/api/_modules/captum/module/binary_concrete_stochastic_gates.html @@ -292,7 +292,15 @@

Source code for captum.module.binary_concrete_stochastic_gates

diff --git a/api/_modules/captum/module/binary_concrete_stochastic_gates/index.html b/api/_modules/captum/module/binary_concrete_stochastic_gates/index.html index 79764db4c..a5b9d10b9 100644 --- a/api/_modules/captum/module/binary_concrete_stochastic_gates/index.html +++ b/api/_modules/captum/module/binary_concrete_stochastic_gates/index.html @@ -292,7 +292,15 @@

Source code for captum.module.binary_concrete_stochastic_gates

diff --git a/api/_modules/captum/module/gaussian_stochastic_gates.html b/api/_modules/captum/module/gaussian_stochastic_gates.html index 7cf685663..73b4d7295 100644 --- a/api/_modules/captum/module/gaussian_stochastic_gates.html +++ b/api/_modules/captum/module/gaussian_stochastic_gates.html @@ -206,7 +206,15 @@

Source code for captum.module.gaussian_stochastic_gates

diff --git a/api/_modules/captum/module/gaussian_stochastic_gates/index.html b/api/_modules/captum/module/gaussian_stochastic_gates/index.html index 7cf685663..73b4d7295 100644 --- a/api/_modules/captum/module/gaussian_stochastic_gates/index.html +++ b/api/_modules/captum/module/gaussian_stochastic_gates/index.html @@ -206,7 +206,15 @@

Source code for captum.module.gaussian_stochastic_gates

diff --git a/api/_modules/captum/robust/_core/fgsm.html b/api/_modules/captum/robust/_core/fgsm.html index be0e2981c..ad3c873c8 100644 --- a/api/_modules/captum/robust/_core/fgsm.html +++ b/api/_modules/captum/robust/_core/fgsm.html @@ -249,7 +249,15 @@

Source code for captum.robust._core.fgsm

 
 
diff --git a/api/_modules/captum/robust/_core/fgsm/index.html b/api/_modules/captum/robust/_core/fgsm/index.html index be0e2981c..ad3c873c8 100644 --- a/api/_modules/captum/robust/_core/fgsm/index.html +++ b/api/_modules/captum/robust/_core/fgsm/index.html @@ -249,7 +249,15 @@

Source code for captum.robust._core.fgsm

 
 
diff --git a/api/_modules/captum/robust/_core/metrics/attack_comparator.html b/api/_modules/captum/robust/_core/metrics/attack_comparator.html index 0675dcce3..2583a27f8 100644 --- a/api/_modules/captum/robust/_core/metrics/attack_comparator.html +++ b/api/_modules/captum/robust/_core/metrics/attack_comparator.html @@ -530,7 +530,15 @@

Source code for captum.robust._core.metrics.attack_comparator

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/robust/_core/metrics/attack_comparator/index.html b/api/_modules/captum/robust/_core/metrics/attack_comparator/index.html index 0675dcce3..2583a27f8 100644 --- a/api/_modules/captum/robust/_core/metrics/attack_comparator/index.html +++ b/api/_modules/captum/robust/_core/metrics/attack_comparator/index.html @@ -530,7 +530,15 @@

Source code for captum.robust._core.metrics.attack_comparator

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/_modules/captum/robust/_core/metrics/min_param_perturbation.html b/api/_modules/captum/robust/_core/metrics/min_param_perturbation.html index 06200e97d..1b9760662 100644 --- a/api/_modules/captum/robust/_core/metrics/min_param_perturbation.html +++ b/api/_modules/captum/robust/_core/metrics/min_param_perturbation.html @@ -504,7 +504,15 @@

Source code for captum.robust._core.metrics.min_param_perturbation

diff --git a/api/_modules/captum/robust/_core/metrics/min_param_perturbation/index.html b/api/_modules/captum/robust/_core/metrics/min_param_perturbation/index.html index 06200e97d..1b9760662 100644 --- a/api/_modules/captum/robust/_core/metrics/min_param_perturbation/index.html +++ b/api/_modules/captum/robust/_core/metrics/min_param_perturbation/index.html @@ -504,7 +504,15 @@

Source code for captum.robust._core.metrics.min_param_perturbation

diff --git a/api/_modules/captum/robust/_core/pgd.html b/api/_modules/captum/robust/_core/pgd.html index b68eb470f..ee398ba88 100644 --- a/api/_modules/captum/robust/_core/pgd.html +++ b/api/_modules/captum/robust/_core/pgd.html @@ -264,7 +264,15 @@

Source code for captum.robust._core.pgd

 
 
diff --git a/api/_modules/captum/robust/_core/pgd/index.html b/api/_modules/captum/robust/_core/pgd/index.html index b68eb470f..ee398ba88 100644 --- a/api/_modules/captum/robust/_core/pgd/index.html +++ b/api/_modules/captum/robust/_core/pgd/index.html @@ -264,7 +264,15 @@

Source code for captum.robust._core.pgd

 
 
diff --git a/api/_modules/index.html b/api/_modules/index.html index ab32f70ee..b9634b22d 100644 --- a/api/_modules/index.html +++ b/api/_modules/index.html @@ -93,7 +93,15 @@

All modules for which code is available

diff --git a/api/attribution.html b/api/attribution.html index 9f43b7a69..67f7929c8 100644 --- a/api/attribution.html +++ b/api/attribution.html @@ -170,7 +170,15 @@

Attribution

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/attribution/index.html b/api/attribution/index.html index 9f43b7a69..67f7929c8 100644 --- a/api/attribution/index.html +++ b/api/attribution/index.html @@ -170,7 +170,15 @@

Attribution

Captum

-

Navigation

+ +

Navigation

API Reference

- -
diff --git a/api/base_classes.html b/api/base_classes.html index 3e8fc15f4..7cbce6c18 100644 --- a/api/base_classes.html +++ b/api/base_classes.html @@ -40,7 +40,7 @@

Attribution
Parameters:
-

forward_func (Callable or torch.nn.Module) – This can either be an instance +

forward_func (Callable or torch.nn.Module) – This can either be an instance of pytorch model or any modification of model’s forward function.

@@ -54,7 +54,7 @@

Attribution
Parameters:
-

inputs (Tensor or tuple[Tensor, ...]) – Input for which attribution +

inputs (Tensor or tuple[Tensor, ...]) – Input for which attribution is computed. It can be provided as a single tensor or a tuple of multiple tensors. If multiple input tensors are provided, the batch sizes must be aligned across all @@ -90,7 +90,7 @@

Attribution
Parameters:
    -
  • attributions (Tensor or tuple[Tensor, ...]) – Attribution scores that +

  • attributions (Tensor or tuple[Tensor, ...]) – Attribution scores that are precomputed by an attribution algorithm. Attributions can be provided in form of a single tensor or a tuple of those. It is assumed that attribution @@ -171,10 +171,10 @@

    Layer Attribution
    Parameters:
      -
    • forward_func (Callable or torch.nn.Module) – This can either be an instance +

    • forward_func (Callable or torch.nn.Module) – This can either be an instance of pytorch model or any modification of model’s forward function.

    • -
    • layer (torch.nn.Module) – Layer for which output attributions are computed. +

    • layer (torch.nn.Module) – Layer for which output attributions are computed. Output size of attribute matches that of layer output.

    • device_ids (list[int]) – Device ID list, necessary only if forward_func applies a DataParallel model, which allows reconstruction of @@ -193,7 +193,7 @@

      Layer Attribution
      Parameters:
        -
      • layer_attribution (Tensor) – Tensor of given layer attributions.

      • +
      • layer_attribution (Tensor) – Tensor of given layer attributions.

      • interpolate_dims (int or tuple) – Upsampled dimensions. The number of elements must be the number of dimensions of layer_attribution - 2, since the first dimension @@ -242,10 +242,10 @@

        Neuron Attribution
        Parameters:
          -
        • forward_func (Callable or torch.nn.Module) – This can either be an instance +

        • forward_func (Callable or torch.nn.Module) – This can either be an instance of pytorch model or any modification of model’s forward function.

        • -
        • layer (torch.nn.Module) – Layer for which output attributions are computed. +

        • layer (torch.nn.Module) – Layer for which output attributions are computed. Output size of attribute matches that of layer output.

        • device_ids (list[int]) – Device ID list, necessary only if forward_func applies a DataParallel model, which allows reconstruction of @@ -303,7 +303,7 @@

          Gradient Attribution
          Parameters:
          -

          forward_func (Callable or torch.nn.Module) – This can either be an instance +

          forward_func (Callable or torch.nn.Module) – This can either be an instance of pytorch model or any modification of model’s forward function.

          @@ -325,7 +325,7 @@

          Gradient Attribution
          Parameters:
            -
          • attributions (Tensor or tuple[Tensor, ...]) – Precomputed attribution +

          • attributions (Tensor or tuple[Tensor, ...]) – Precomputed attribution scores. The user can compute those using any attribution algorithm. It is assumed the shape and the dimensionality of attributions must match the shape and @@ -334,17 +334,17 @@

            Gradient Attribution

          • -
          • start_point (Tensor or tuple[Tensor, ...], optional) – start_point +

          • start_point (Tensor or tuple[Tensor, ...], optional) – start_point is passed as an input to model’s forward function. It is the starting point of attributions’ approximation. It is assumed that both start_point and end_point have the same shape and dimensionality.

          • -
          • end_point (Tensor or tuple[Tensor, ...]) – end_point +

          • end_point (Tensor or tuple[Tensor, ...]) – end_point is passed as an input to model’s forward function. It is the end point of attributions’ approximation. It is assumed that both start_point and end_point have the same shape and dimensionality.

          • -
          • target (int, tuple, Tensor, or list, optional) –

            Output indices for +

          • target (int, tuple, Tensor, or list, optional) –

            Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -413,7 +413,7 @@

            Perturbation Attribution
            Parameters:
            -

            forward_func (Callable or torch.nn.Module) – This can either be an instance +

            forward_func (Callable or torch.nn.Module) – This can either be an instance of pytorch model or any modification of model’s forward function.

            @@ -427,7 +427,15 @@

            Perturbation Attribution

            Captum

            -

            Navigation

            + +

            Navigation

            API Reference

          - -
          diff --git a/api/base_classes/index.html b/api/base_classes/index.html index 3e8fc15f4..7cbce6c18 100644 --- a/api/base_classes/index.html +++ b/api/base_classes/index.html @@ -40,7 +40,7 @@

          Attribution
          Parameters:
          -

          forward_func (Callable or torch.nn.Module) – This can either be an instance +

          forward_func (Callable or torch.nn.Module) – This can either be an instance of pytorch model or any modification of model’s forward function.

          @@ -54,7 +54,7 @@

          Attribution
          Parameters:
          -

          inputs (Tensor or tuple[Tensor, ...]) – Input for which attribution +

          inputs (Tensor or tuple[Tensor, ...]) – Input for which attribution is computed. It can be provided as a single tensor or a tuple of multiple tensors. If multiple input tensors are provided, the batch sizes must be aligned across all @@ -90,7 +90,7 @@

          Attribution
          Parameters:
            -
          • attributions (Tensor or tuple[Tensor, ...]) – Attribution scores that +

          • attributions (Tensor or tuple[Tensor, ...]) – Attribution scores that are precomputed by an attribution algorithm. Attributions can be provided in form of a single tensor or a tuple of those. It is assumed that attribution @@ -171,10 +171,10 @@

            Layer Attribution
            Parameters:
              -
            • forward_func (Callable or torch.nn.Module) – This can either be an instance +

            • forward_func (Callable or torch.nn.Module) – This can either be an instance of pytorch model or any modification of model’s forward function.

            • -
            • layer (torch.nn.Module) – Layer for which output attributions are computed. +

            • layer (torch.nn.Module) – Layer for which output attributions are computed. Output size of attribute matches that of layer output.

            • device_ids (list[int]) – Device ID list, necessary only if forward_func applies a DataParallel model, which allows reconstruction of @@ -193,7 +193,7 @@

              Layer Attribution
              Parameters:
                -
              • layer_attribution (Tensor) – Tensor of given layer attributions.

              • +
              • layer_attribution (Tensor) – Tensor of given layer attributions.

              • interpolate_dims (int or tuple) – Upsampled dimensions. The number of elements must be the number of dimensions of layer_attribution - 2, since the first dimension @@ -242,10 +242,10 @@

                Neuron Attribution
                Parameters:
                  -
                • forward_func (Callable or torch.nn.Module) – This can either be an instance +

                • forward_func (Callable or torch.nn.Module) – This can either be an instance of pytorch model or any modification of model’s forward function.

                • -
                • layer (torch.nn.Module) – Layer for which output attributions are computed. +

                • layer (torch.nn.Module) – Layer for which output attributions are computed. Output size of attribute matches that of layer output.

                • device_ids (list[int]) – Device ID list, necessary only if forward_func applies a DataParallel model, which allows reconstruction of @@ -303,7 +303,7 @@

                  Gradient Attribution
                  Parameters:
                  -

                  forward_func (Callable or torch.nn.Module) – This can either be an instance +

                  forward_func (Callable or torch.nn.Module) – This can either be an instance of pytorch model or any modification of model’s forward function.

                  @@ -325,7 +325,7 @@

                  Gradient Attribution
                  Parameters:
                    -
                  • attributions (Tensor or tuple[Tensor, ...]) – Precomputed attribution +

                  • attributions (Tensor or tuple[Tensor, ...]) – Precomputed attribution scores. The user can compute those using any attribution algorithm. It is assumed the shape and the dimensionality of attributions must match the shape and @@ -334,17 +334,17 @@

                    Gradient Attribution

                  • -
                  • start_point (Tensor or tuple[Tensor, ...], optional) – start_point +

                  • start_point (Tensor or tuple[Tensor, ...], optional) – start_point is passed as an input to model’s forward function. It is the starting point of attributions’ approximation. It is assumed that both start_point and end_point have the same shape and dimensionality.

                  • -
                  • end_point (Tensor or tuple[Tensor, ...]) – end_point +

                  • end_point (Tensor or tuple[Tensor, ...]) – end_point is passed as an input to model’s forward function. It is the end point of attributions’ approximation. It is assumed that both start_point and end_point have the same shape and dimensionality.

                  • -
                  • target (int, tuple, Tensor, or list, optional) –

                    Output indices for +

                  • target (int, tuple, Tensor, or list, optional) –

                    Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -413,7 +413,7 @@

                    Perturbation Attribution
                    Parameters:
                    -

                    forward_func (Callable or torch.nn.Module) – This can either be an instance +

                    forward_func (Callable or torch.nn.Module) – This can either be an instance of pytorch model or any modification of model’s forward function.

                    @@ -427,7 +427,15 @@

                    Perturbation Attribution

                    Captum

                    -

                    Navigation

                    + +

                    Navigation

                    API Reference

                  - -
                  diff --git a/api/binary_concrete_stg.html b/api/binary_concrete_stg.html index 40cdff2c0..c7b6a8bee 100644 --- a/api/binary_concrete_stg.html +++ b/api/binary_concrete_stg.html @@ -65,7 +65,7 @@

                  BinaryConcreteStochasticGatesParameters:
                  • n_gates (int) – number of gates.

                  • -
                  • mask (Tensor, optional) – If provided, this allows grouping multiple +

                  • mask (Tensor, optional) – If provided, this allows grouping multiple input tensor elements to share the same stochastic gate. This tensor should be broadcastable to match the input shape and contain integers in the range 0 to n_gates - 1. @@ -103,7 +103,7 @@

                    BinaryConcreteStochasticGatesforward(input_tensor)
                    Parameters:
                    -

                    input_tensor (Tensor) – Tensor to be gated with stochastic gates

                    +

                    input_tensor (Tensor) – Tensor to be gated with stochastic gates

                    Returns:

                      @@ -180,7 +180,15 @@

                      BinaryConcreteStochasticGates

                      Captum

                      -

                      Navigation

                      + +

                      Navigation

                      API Reference

                    - -
                    diff --git a/api/binary_concrete_stg/index.html b/api/binary_concrete_stg/index.html index 40cdff2c0..c7b6a8bee 100644 --- a/api/binary_concrete_stg/index.html +++ b/api/binary_concrete_stg/index.html @@ -65,7 +65,7 @@

                    BinaryConcreteStochasticGatesParameters:
                    • n_gates (int) – number of gates.

                    • -
                    • mask (Tensor, optional) – If provided, this allows grouping multiple +

                    • mask (Tensor, optional) – If provided, this allows grouping multiple input tensor elements to share the same stochastic gate. This tensor should be broadcastable to match the input shape and contain integers in the range 0 to n_gates - 1. @@ -103,7 +103,7 @@

                      BinaryConcreteStochasticGatesforward(input_tensor)
                      Parameters:
                      -

                      input_tensor (Tensor) – Tensor to be gated with stochastic gates

                      +

                      input_tensor (Tensor) – Tensor to be gated with stochastic gates

                      Returns:

                        @@ -180,7 +180,15 @@

                        BinaryConcreteStochasticGates

                        Captum

                        -

                        Navigation

                        + +

                        Navigation

                        API Reference

                      - -
                      diff --git a/api/concept.html b/api/concept.html index 86e221dd7..2664225af 100644 --- a/api/concept.html +++ b/api/concept.html @@ -220,7 +220,7 @@

                      TCAV
                      Parameters:
                        -
                      • inputs (Tensor or tuple[Tensor, ...]) – Inputs for which predictions +

                      • inputs (Tensor or tuple[Tensor, ...]) – Inputs for which predictions are performed and attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. @@ -232,7 +232,7 @@

                        TCAV

                      • experimental_sets (list[list[Concept]]) – A list of list of Concept instances.

                      • -
                      • target (int, tuple, Tensor, or list, optional) –

                        Output indices for +

                      • target (int, tuple, Tensor, or list, optional) –

                        Output indices for which attributions are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -364,7 +364,7 @@

                        ConceptInterpreter
                        Parameters:
                        -

                        model (torch.nn.Module) – An instance of pytorch model.

                        +

                        model (torch.nn.Module) – An instance of pytorch model.

                      @@ -375,7 +375,7 @@

                      ConceptInterpreter
                      Parameters:
                      -

                      inputs (Tensor or tuple[Tensor, ...]) – Inputs for which concept-based +

                      inputs (Tensor or tuple[Tensor, ...]) – Inputs for which concept-based interpretation scores are computed. It can be provided as a single tensor or a tuple of multiple tensors. If multiple input tensors are provided, the batch size (the first @@ -548,7 +548,15 @@

                      Classifier

                      Captum

                      -

                      Navigation

                      + +

                      Navigation

                      API Reference

                    - -
                    diff --git a/api/concept/index.html b/api/concept/index.html index 86e221dd7..2664225af 100644 --- a/api/concept/index.html +++ b/api/concept/index.html @@ -220,7 +220,7 @@

                    TCAV
                    Parameters:
                      -
                    • inputs (Tensor or tuple[Tensor, ...]) – Inputs for which predictions +

                    • inputs (Tensor or tuple[Tensor, ...]) – Inputs for which predictions are performed and attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. @@ -232,7 +232,7 @@

                      TCAV

                    • experimental_sets (list[list[Concept]]) – A list of list of Concept instances.

                    • -
                    • target (int, tuple, Tensor, or list, optional) –

                      Output indices for +

                    • target (int, tuple, Tensor, or list, optional) –

                      Output indices for which attributions are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -364,7 +364,7 @@

                      ConceptInterpreter
                      Parameters:
                      -

                      model (torch.nn.Module) – An instance of pytorch model.

                      +

                      model (torch.nn.Module) – An instance of pytorch model.

                    @@ -375,7 +375,7 @@

                    ConceptInterpreter
                    Parameters:
                    -

                    inputs (Tensor or tuple[Tensor, ...]) – Inputs for which concept-based +

                    inputs (Tensor or tuple[Tensor, ...]) – Inputs for which concept-based interpretation scores are computed. It can be provided as a single tensor or a tuple of multiple tensors. If multiple input tensors are provided, the batch size (the first @@ -548,7 +548,15 @@

                    Classifier

                    Captum

                    -

                    Navigation

                    + +

                    Navigation

                    API Reference

                  - -
                  diff --git a/api/deconvolution.html b/api/deconvolution.html index 2eb8143f7..6e6b287ee 100644 --- a/api/deconvolution.html +++ b/api/deconvolution.html @@ -58,7 +58,7 @@

                  Deconvolution
                  Parameters:
                    -
                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -67,7 +67,7 @@

                    Deconvolutionint, tuple, Tensor, or list, optional) –

                    Output indices for +

                  • target (int, tuple, Tensor, or list, optional) –

                    Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -143,7 +143,15 @@

                    Deconvolution

                    Captum

                    -

                    Navigation

                    + +

                    Navigation

                    API Reference

                    - -
                    diff --git a/api/deconvolution/index.html b/api/deconvolution/index.html index 2eb8143f7..6e6b287ee 100644 --- a/api/deconvolution/index.html +++ b/api/deconvolution/index.html @@ -58,7 +58,7 @@

                    Deconvolution
                    Parameters:
                      -
                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -67,7 +67,7 @@

                      Deconvolutionint, tuple, Tensor, or list, optional) –

                      Output indices for +

                    • target (int, tuple, Tensor, or list, optional) –

                      Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -143,7 +143,15 @@

                      Deconvolution

                      Captum

                      -

                      Navigation

                      + +

                      Navigation

                      API Reference

                      - -
                      diff --git a/api/deep_lift.html b/api/deep_lift.html index 17d0f074e..39ce14057 100644 --- a/api/deep_lift.html +++ b/api/deep_lift.html @@ -91,7 +91,7 @@

                      DeepLift
                      Parameters:
                        -
                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -100,7 +100,7 @@

                        DeepLift to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately.

                      • -
                      • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                        Baselines define reference samples that are compared with +

                      • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                        Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. @@ -130,7 +130,7 @@

                        DeepLift use zero scalar corresponding to each input tensor.

                        Default: None

                      • -
                      • target (int, tuple, Tensor, or list, optional) –

                        Output indices for +

                      • target (int, tuple, Tensor, or list, optional) –

                        Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -263,7 +263,15 @@

                        DeepLift
                        diff --git a/api/deep_lift/index.html b/api/deep_lift/index.html index 17d0f074e..39ce14057 100644 --- a/api/deep_lift/index.html +++ b/api/deep_lift/index.html @@ -91,7 +91,7 @@

                        DeepLift
                        Parameters:
                          -
                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -100,7 +100,7 @@

                          DeepLift to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately.

                        • -
                        • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                          Baselines define reference samples that are compared with +

                        • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                          Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. @@ -130,7 +130,7 @@

                          DeepLift use zero scalar corresponding to each input tensor.

                          Default: None

                        • -
                        • target (int, tuple, Tensor, or list, optional) –

                          Output indices for +

                        • target (int, tuple, Tensor, or list, optional) –

                          Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -263,7 +263,15 @@

                          DeepLift
                          diff --git a/api/deep_lift_shap.html b/api/deep_lift_shap.html index fa71d685e..f74fdddec 100644 --- a/api/deep_lift_shap.html +++ b/api/deep_lift_shap.html @@ -80,7 +80,7 @@

                          DeepLiftShap
                          Parameters:
                            -
                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -89,7 +89,7 @@

                            DeepLiftShapTensor, tuple[Tensor, ...], or Callable) –

                            Baselines define reference samples that are compared with +

                          • baselines (Tensor, tuple[Tensor, ...], or Callable) –

                            Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. Baselines can be provided as:

                            @@ -112,7 +112,7 @@

                            DeepLiftShapint, tuple, Tensor, or list, optional) –

                            Output indices for +

                          • target (int, tuple, Tensor, or list, optional) –

                            Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -231,7 +231,15 @@

                            DeepLiftShap

                            Captum

                            -

                            Navigation

                            + +

                            Navigation

                            API Reference

                            - -
                            diff --git a/api/deep_lift_shap/index.html b/api/deep_lift_shap/index.html index fa71d685e..f74fdddec 100644 --- a/api/deep_lift_shap/index.html +++ b/api/deep_lift_shap/index.html @@ -80,7 +80,7 @@

                            DeepLiftShap
                            Parameters:
                              -
                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -89,7 +89,7 @@

                              DeepLiftShapTensor, tuple[Tensor, ...], or Callable) –

                              Baselines define reference samples that are compared with +

                            • baselines (Tensor, tuple[Tensor, ...], or Callable) –

                              Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. Baselines can be provided as:

                              @@ -112,7 +112,7 @@

                              DeepLiftShapint, tuple, Tensor, or list, optional) –

                              Output indices for +

                            • target (int, tuple, Tensor, or list, optional) –

                              Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -231,7 +231,15 @@

                              DeepLiftShap

                              Captum

                              -

                              Navigation

                              + +

                              Navigation

                              API Reference

                              - -
                              diff --git a/api/feature_ablation.html b/api/feature_ablation.html index 89ff0a8a6..b7df32c58 100644 --- a/api/feature_ablation.html +++ b/api/feature_ablation.html @@ -63,7 +63,7 @@

                              Feature Ablation
                              Parameters:
                                -
                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which ablation +

                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which ablation attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -72,7 +72,7 @@

                                Feature AblationTensor, tuple of scalar, or Tensor, optional) –

                                Baselines define reference value which replaces each +

                              • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                Baselines define reference value which replaces each feature when ablated. Baselines can be provided as:

                                  @@ -99,7 +99,7 @@

                                  Feature Ablationint, tuple, Tensor, or list, optional) –

                                  Output indices for +

                                • target (int, tuple, Tensor, or list, optional) –

                                  Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -138,7 +138,7 @@

                                  Feature AblationTensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping +
                                • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping features which should be ablated together. feature_mask should contain the same number of tensors as inputs. Each tensor should @@ -254,7 +254,15 @@

                                  Feature Ablation

                                  Captum

                                  -

                                  Navigation

                                  + +

                                  Navigation

                                  API Reference

                                  - -
                                  diff --git a/api/feature_ablation/index.html b/api/feature_ablation/index.html index 89ff0a8a6..b7df32c58 100644 --- a/api/feature_ablation/index.html +++ b/api/feature_ablation/index.html @@ -63,7 +63,7 @@

                                  Feature Ablation
                                  Parameters:
                                    -
                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which ablation +

                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which ablation attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -72,7 +72,7 @@

                                    Feature AblationTensor, tuple of scalar, or Tensor, optional) –

                                    Baselines define reference value which replaces each +

                                  • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                    Baselines define reference value which replaces each feature when ablated. Baselines can be provided as:

                                      @@ -99,7 +99,7 @@

                                      Feature Ablationint, tuple, Tensor, or list, optional) –

                                      Output indices for +

                                    • target (int, tuple, Tensor, or list, optional) –

                                      Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -138,7 +138,7 @@

                                      Feature AblationTensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping +
                                    • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping features which should be ablated together. feature_mask should contain the same number of tensors as inputs. Each tensor should @@ -254,7 +254,15 @@

                                      Feature Ablation

                                      Captum

                                      -

                                      Navigation

                                      + +

                                      Navigation

                                      API Reference

                                      - -
                                      diff --git a/api/feature_permutation.html b/api/feature_permutation.html index b27b75df6..af72f4b1d 100644 --- a/api/feature_permutation.html +++ b/api/feature_permutation.html @@ -98,7 +98,7 @@

                                      Feature Permutation
                                      Parameters:
                                        -
                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which permutation attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If @@ -108,7 +108,7 @@

                                        Feature Permutationint, tuple, Tensor, or list, optional) –

                                        Output indices for +

                                      • target (int, tuple, Tensor, or list, optional) –

                                        Output indices for which difference is computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -147,7 +147,7 @@

                                        Feature PermutationTensor or tuple[Tensor, ...], optional) –

                                        feature_mask defines a mask for the input, grouping +

                                      • feature_mask (Tensor or tuple[Tensor, ...], optional) –

                                        feature_mask defines a mask for the input, grouping features which should be ablated together. feature_mask should contain the same number of tensors as inputs. Each tensor should be the same size as the @@ -258,7 +258,15 @@

                                        Feature Permutation

                                        Captum

                                        -

                                        Navigation

                                        + +

                                        Navigation

                                        API Reference

                                        - -
                                        diff --git a/api/feature_permutation/index.html b/api/feature_permutation/index.html index b27b75df6..af72f4b1d 100644 --- a/api/feature_permutation/index.html +++ b/api/feature_permutation/index.html @@ -98,7 +98,7 @@

                                        Feature Permutation
                                        Parameters:
                                          -
                                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which permutation attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If @@ -108,7 +108,7 @@

                                          Feature Permutationint, tuple, Tensor, or list, optional) –

                                          Output indices for +

                                        • target (int, tuple, Tensor, or list, optional) –

                                          Output indices for which difference is computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -147,7 +147,7 @@

                                          Feature PermutationTensor or tuple[Tensor, ...], optional) –

                                          feature_mask defines a mask for the input, grouping +

                                        • feature_mask (Tensor or tuple[Tensor, ...], optional) –

                                          feature_mask defines a mask for the input, grouping features which should be ablated together. feature_mask should contain the same number of tensors as inputs. Each tensor should be the same size as the @@ -258,7 +258,15 @@

                                          Feature Permutation

                                          Captum

                                          -

                                          Navigation

                                          + +

                                          Navigation

                                          API Reference

                                          - -
                                          diff --git a/api/gaussian_stg.html b/api/gaussian_stg.html index 0b0d2431e..c09cd6efe 100644 --- a/api/gaussian_stg.html +++ b/api/gaussian_stg.html @@ -63,7 +63,7 @@

                                          GaussianStochasticGatesParameters:
                                          • n_gates (int) – number of gates.

                                          • -
                                          • mask (Tensor, optional) – If provided, this allows grouping multiple +

                                          • mask (Tensor, optional) – If provided, this allows grouping multiple input tensor elements to share the same stochastic gate. This tensor should be broadcastable to match the input shape and contain integers in the range 0 to n_gates - 1. @@ -90,7 +90,7 @@

                                            GaussianStochasticGatesforward(input_tensor)
                                            Parameters:
                                            -

                                            input_tensor (Tensor) – Tensor to be gated with stochastic gates

                                            +

                                            input_tensor (Tensor) – Tensor to be gated with stochastic gates

                                            Returns:

                                              @@ -167,7 +167,15 @@

                                              GaussianStochasticGates

                                              Captum

                                              -

                                              Navigation

                                              + +

                                              Navigation

                                              API Reference

                                            - -
                                            diff --git a/api/gaussian_stg/index.html b/api/gaussian_stg/index.html index 0b0d2431e..c09cd6efe 100644 --- a/api/gaussian_stg/index.html +++ b/api/gaussian_stg/index.html @@ -63,7 +63,7 @@

                                            GaussianStochasticGatesParameters:
                                            • n_gates (int) – number of gates.

                                            • -
                                            • mask (Tensor, optional) – If provided, this allows grouping multiple +

                                            • mask (Tensor, optional) – If provided, this allows grouping multiple input tensor elements to share the same stochastic gate. This tensor should be broadcastable to match the input shape and contain integers in the range 0 to n_gates - 1. @@ -90,7 +90,7 @@

                                              GaussianStochasticGatesforward(input_tensor)
                                              Parameters:
                                              -

                                              input_tensor (Tensor) – Tensor to be gated with stochastic gates

                                              +

                                              input_tensor (Tensor) – Tensor to be gated with stochastic gates

                                              Returns:

                                                @@ -167,7 +167,15 @@

                                                GaussianStochasticGates

                                                Captum

                                                -

                                                Navigation

                                                + +

                                                Navigation

                                                API Reference

                                              - -
                                              diff --git a/api/genindex.html b/api/genindex.html index 898ea6ac3..eac9f3f7a 100644 --- a/api/genindex.html +++ b/api/genindex.html @@ -644,7 +644,15 @@

                                              Z

                                            - -
                                            diff --git a/api/gradient_shap.html b/api/gradient_shap.html index 7cf004d55..27f9c2e33 100644 --- a/api/gradient_shap.html +++ b/api/gradient_shap.html @@ -84,7 +84,7 @@

                                            GradientShap
                                            Parameters:
                                              -
                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which SHAP attribution +

                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which SHAP attribution values are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -92,7 +92,7 @@

                                              GradientShapTensor, tuple[Tensor, ...], or Callable) –

                                              Baselines define the starting point from which expectation +

                                            • baselines (Tensor, tuple[Tensor, ...], or Callable) –

                                              Baselines define the starting point from which expectation is computed and can be provided as:

                                              • a single tensor, if inputs is a single tensor, with @@ -126,7 +126,7 @@

                                                GradientShapint, tuple, Tensor, or list, optional) –

                                                Output indices for +

                                              • target (int, tuple, Tensor, or list, optional) –

                                                Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -245,7 +245,15 @@

                                                GradientShap

                                                Captum

                                                -

                                                Navigation

                                                + +

                                                Navigation

                                                API Reference

                                                - -
                                                diff --git a/api/gradient_shap/index.html b/api/gradient_shap/index.html index 7cf004d55..27f9c2e33 100644 --- a/api/gradient_shap/index.html +++ b/api/gradient_shap/index.html @@ -84,7 +84,7 @@

                                                GradientShap
                                                Parameters:
                                                  -
                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which SHAP attribution +

                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which SHAP attribution values are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -92,7 +92,7 @@

                                                  GradientShapTensor, tuple[Tensor, ...], or Callable) –

                                                  Baselines define the starting point from which expectation +

                                                • baselines (Tensor, tuple[Tensor, ...], or Callable) –

                                                  Baselines define the starting point from which expectation is computed and can be provided as:

                                                  • a single tensor, if inputs is a single tensor, with @@ -126,7 +126,7 @@

                                                    GradientShapint, tuple, Tensor, or list, optional) –

                                                    Output indices for +

                                                  • target (int, tuple, Tensor, or list, optional) –

                                                    Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -245,7 +245,15 @@

                                                    GradientShap

                                                    Captum

                                                    -

                                                    Navigation

                                                    + +

                                                    Navigation

                                                    API Reference

                                                    - -
                                                    diff --git a/api/guided_backprop.html b/api/guided_backprop.html index 0c0dc2a57..a4481090e 100644 --- a/api/guided_backprop.html +++ b/api/guided_backprop.html @@ -55,7 +55,7 @@

                                                    Guided Backprop
                                                    Parameters:
                                                      -
                                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -64,7 +64,7 @@

                                                      Guided Backpropint, tuple, Tensor, or list, optional) –

                                                      Output indices for +

                                                    • target (int, tuple, Tensor, or list, optional) –

                                                      Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -140,7 +140,15 @@

                                                      Guided Backprop

                                                      Captum

                                                      -

                                                      Navigation

                                                      + +

                                                      Navigation

                                                      API Reference

                                                      - -
                                                      diff --git a/api/guided_backprop/index.html b/api/guided_backprop/index.html index 0c0dc2a57..a4481090e 100644 --- a/api/guided_backprop/index.html +++ b/api/guided_backprop/index.html @@ -55,7 +55,7 @@

                                                      Guided Backprop
                                                      Parameters:
                                                        -
                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -64,7 +64,7 @@

                                                        Guided Backpropint, tuple, Tensor, or list, optional) –

                                                        Output indices for +

                                                      • target (int, tuple, Tensor, or list, optional) –

                                                        Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -140,7 +140,15 @@

                                                        Guided Backprop

                                                        Captum

                                                        -

                                                        Navigation

                                                        + +

                                                        Navigation

                                                        API Reference

                                                        - -
                                                        diff --git a/api/guided_grad_cam.html b/api/guided_grad_cam.html index 900e48f35..425644435 100644 --- a/api/guided_grad_cam.html +++ b/api/guided_grad_cam.html @@ -62,7 +62,7 @@

                                                        Guided GradCAMParameters:
                                                        • model (nn.Module) – The reference to PyTorch model instance.

                                                        • -
                                                        • layer (torch.nn.Module) – Layer for which GradCAM attributions are computed. +

                                                        • layer (torch.nn.Module) – Layer for which GradCAM attributions are computed. Currently, only layers with a single tensor output are supported.

                                                        • device_ids (list[int]) – Device ID list, necessary only if model @@ -79,7 +79,7 @@

                                                          Guided GradCAM
                                                          Parameters:
                                                            -
                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions +

                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -87,7 +87,7 @@

                                                            Guided GradCAMint, tuple, Tensor, or list, optional) –

                                                            Output indices for +

                                                          • target (int, tuple, Tensor, or list, optional) –

                                                            Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -197,7 +197,15 @@

                                                            Guided GradCAM

                                                            Captum

                                                            -

                                                            Navigation

                                                            + +

                                                            Navigation

                                                            API Reference

                                                            - -
                                                            diff --git a/api/guided_grad_cam/index.html b/api/guided_grad_cam/index.html index 900e48f35..425644435 100644 --- a/api/guided_grad_cam/index.html +++ b/api/guided_grad_cam/index.html @@ -62,7 +62,7 @@

                                                            Guided GradCAMParameters:
                                                            • model (nn.Module) – The reference to PyTorch model instance.

                                                            • -
                                                            • layer (torch.nn.Module) – Layer for which GradCAM attributions are computed. +

                                                            • layer (torch.nn.Module) – Layer for which GradCAM attributions are computed. Currently, only layers with a single tensor output are supported.

                                                            • device_ids (list[int]) – Device ID list, necessary only if model @@ -79,7 +79,7 @@

                                                              Guided GradCAM
                                                              Parameters:
                                                                -
                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions +

                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -87,7 +87,7 @@

                                                                Guided GradCAMint, tuple, Tensor, or list, optional) –

                                                                Output indices for +

                                                              • target (int, tuple, Tensor, or list, optional) –

                                                                Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -197,7 +197,15 @@

                                                                Guided GradCAM

                                                                Captum

                                                                -

                                                                Navigation

                                                                + +

                                                                Navigation

                                                                API Reference

                                                                - -
                                                                diff --git a/api/index.html b/api/index.html index 877503bae..2b42542ee 100644 --- a/api/index.html +++ b/api/index.html @@ -176,7 +176,15 @@

                                                                Indices and Tables

                                                                Captum

                                                                -

                                                                Navigation

                                                                + +

                                                                Navigation

                                                                API Reference

                                                              - -
                                                              diff --git a/api/influence.html b/api/influence.html index cc48cfb93..a645cc389 100644 --- a/api/influence.html +++ b/api/influence.html @@ -88,11 +88,11 @@

                                                              SimilarityInfluence
                                                              Parameters:
                                                                -
                                                              • module (torch.nn.Module) – An instance of pytorch model. This model should +

                                                              • module (torch.nn.Module) – An instance of pytorch model. This model should define all of its layers as attributes of the model.

                                                              • layers (str or list[str]) – The fully qualified layer(s) for which the activation vectors are computed.

                                                              • -
                                                              • influence_src_dataset (torch.utils.data.Dataset) – PyTorch Dataset that is +

                                                              • influence_src_dataset (torch.utils.data.Dataset) – PyTorch Dataset that is used to create a PyTorch Dataloader to iterate over the dataset and its labels. This is the dataset for which we will be seeking for influential instances. In most cases this is the training dataset.

                                                              • @@ -142,7 +142,7 @@

                                                                SimilarityInfluence
                                                                Parameters:

                        @@ -824,12 +824,12 @@

                        TracInCPFast
                        Parameters:

                  @@ -1105,12 +1105,12 @@

                  TracInCPFastRandProj
                  Parameters:
                    -
                  • model (torch.nn.Module) – An instance of pytorch model. This model should +

                  • model (torch.nn.Module) – An instance of pytorch model. This model should define all of its layers as attributes of the model.

                  • -
                  • final_fc_layer (torch.nn.Module) – The last fully connected layer in +

                  • final_fc_layer (torch.nn.Module) – The last fully connected layer in the network for which gradients will be approximated via fast random projection method.

                  • -
                  • train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader) – In the influence method, we compute the influence score of +

                  • train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader) – In the influence method, we compute the influence score of training examples on examples in a test batch. This argument represents the training dataset containing those training examples. In order to compute those influence scores, we @@ -1302,7 +1302,7 @@

                    TracInCPFastRandProj

                  Return type:
                  -

                  Union[Tensor, KMostInfluentialResults]

                  +

                  Union[Tensor, KMostInfluentialResults]

                  Returns:

                  The return value of this method depends on which mode is run.

                  @@ -1399,7 +1399,15 @@

                  TracInCPFastRandProj

                  Captum

                  -

                  Navigation

                  + +

                  Navigation

                  API Reference

                - -
                diff --git a/api/influence/index.html b/api/influence/index.html index cc48cfb93..a645cc389 100644 --- a/api/influence/index.html +++ b/api/influence/index.html @@ -88,11 +88,11 @@

                SimilarityInfluence
                Parameters:
                  -
                • module (torch.nn.Module) – An instance of pytorch model. This model should +

                • module (torch.nn.Module) – An instance of pytorch model. This model should define all of its layers as attributes of the model.

                • layers (str or list[str]) – The fully qualified layer(s) for which the activation vectors are computed.

                • -
                • influence_src_dataset (torch.utils.data.Dataset) – PyTorch Dataset that is +

                • influence_src_dataset (torch.utils.data.Dataset) – PyTorch Dataset that is used to create a PyTorch Dataloader to iterate over the dataset and its labels. This is the dataset for which we will be seeking for influential instances. In most cases this is the training dataset.

                • @@ -142,7 +142,7 @@

                  SimilarityInfluence
                  Parameters:

        @@ -824,12 +824,12 @@

        TracInCPFast
        Parameters:
          -
        • model (torch.nn.Module) – An instance of pytorch model. This model should +

        • model (torch.nn.Module) – An instance of pytorch model. This model should define all of its layers as attributes of the model.

        • -
        • final_fc_layer (torch.nn.Module) – The last fully connected layer in +

        • final_fc_layer (torch.nn.Module) – The last fully connected layer in the network for which gradients will be approximated via fast random projection method.

        • -
        • train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader) – In the influence method, we compute the influence score of +

        • train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader) – In the influence method, we compute the influence score of training examples on examples in a test batch. This argument represents the training dataset containing those training examples. In order to compute those influence scores, we @@ -952,7 +952,7 @@

          TracInCPFastReturn type: -

          Union[Tensor, KMostInfluentialResults]

          +

          Union[Tensor, KMostInfluentialResults]

          Returns:

          The return value of this method depends on which mode is run.

          @@ -1044,7 +1044,7 @@

          TracInCPFastReturn type: -

          Tensor

          +

          Tensor

          @@ -1105,12 +1105,12 @@

          TracInCPFastRandProj
          Parameters:
            -
          • model (torch.nn.Module) – An instance of pytorch model. This model should +

          • model (torch.nn.Module) – An instance of pytorch model. This model should define all of its layers as attributes of the model.

          • -
          • final_fc_layer (torch.nn.Module) – The last fully connected layer in +

          • final_fc_layer (torch.nn.Module) – The last fully connected layer in the network for which gradients will be approximated via fast random projection method.

          • -
          • train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader) – In the influence method, we compute the influence score of +

          • train_dataset (torch.utils.data.Dataset or torch.utils.data.DataLoader) – In the influence method, we compute the influence score of training examples on examples in a test batch. This argument represents the training dataset containing those training examples. In order to compute those influence scores, we @@ -1302,7 +1302,7 @@

            TracInCPFastRandProj

          Return type:
          -

          Union[Tensor, KMostInfluentialResults]

          +

          Union[Tensor, KMostInfluentialResults]

          Returns:

          The return value of this method depends on which mode is run.

          @@ -1399,7 +1399,15 @@

          TracInCPFastRandProj

          Captum

          -

          Navigation

          + +

          Navigation

          API Reference

        - -
        diff --git a/api/input_x_gradient.html b/api/input_x_gradient.html index e31369ad7..809539792 100644 --- a/api/input_x_gradient.html +++ b/api/input_x_gradient.html @@ -49,7 +49,7 @@

        Input X Gradient
        Parameters:
          -
        • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

        • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -58,7 +58,7 @@

          Input X Gradientint, tuple, Tensor, or list, optional) –

          Output indices for +

        • target (int, tuple, Tensor, or list, optional) –

          Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -136,7 +136,15 @@

          Input X Gradient

          Captum

          -

          Navigation

          + +

          Navigation

          API Reference

          - -
          diff --git a/api/input_x_gradient/index.html b/api/input_x_gradient/index.html index e31369ad7..809539792 100644 --- a/api/input_x_gradient/index.html +++ b/api/input_x_gradient/index.html @@ -49,7 +49,7 @@

          Input X Gradient
          Parameters:
            -
          • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

          • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -58,7 +58,7 @@

            Input X Gradientint, tuple, Tensor, or list, optional) –

            Output indices for +

          • target (int, tuple, Tensor, or list, optional) –

            Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -136,7 +136,15 @@

            Input X Gradient

            Captum

            -

            Navigation

            + +

            Navigation

            API Reference

            - -
            diff --git a/api/insights.html b/api/insights.html index f5fb7f970..3e957a400 100644 --- a/api/insights.html +++ b/api/insights.html @@ -40,7 +40,7 @@

            Batch
            Parameters:
              -
            • inputs (Tensor or tuple[Tensor, ...]) – Batch of inputs for a model. +

            • inputs (Tensor or tuple[Tensor, ...]) – Batch of inputs for a model. These may be either a Tensor or tuple of tensors. Each tensor must correspond to a feature for AttributionVisualizer, and the corresponding input transform function of the feature @@ -48,7 +48,7 @@

              Batch model. It is assumed that the first dimension of each input tensor corresponds to the number of examples (batch size) and is aligned for all input tensors.

            • -
            • labels (Tensor) – Tensor containing correct labels for input examples. +

            • labels (Tensor) – Tensor containing correct labels for input examples. This must be a 1D tensor with length matching the first dimension of each input tensor.

            • additional_args (tuple, optional) – If the forward function @@ -75,7 +75,7 @@

              AttributionVisualizer
              Parameters:
                -
              • models (torch.nn.Module) – One or more PyTorch modules (models) for +

              • models (torch.nn.Module) – One or more PyTorch modules (models) for attribution visualization.

              • classes (list[str]) – List of strings corresponding to the names of classes for classification.

              • @@ -251,7 +251,15 @@

                ImageFeature

                Captum

                -

                Navigation

                + +

                Navigation

                API Reference

              - -
              diff --git a/api/insights/index.html b/api/insights/index.html index f5fb7f970..3e957a400 100644 --- a/api/insights/index.html +++ b/api/insights/index.html @@ -40,7 +40,7 @@

              Batch
              Parameters:
                -
              • inputs (Tensor or tuple[Tensor, ...]) – Batch of inputs for a model. +

              • inputs (Tensor or tuple[Tensor, ...]) – Batch of inputs for a model. These may be either a Tensor or tuple of tensors. Each tensor must correspond to a feature for AttributionVisualizer, and the corresponding input transform function of the feature @@ -48,7 +48,7 @@

                Batch model. It is assumed that the first dimension of each input tensor corresponds to the number of examples (batch size) and is aligned for all input tensors.

              • -
              • labels (Tensor) – Tensor containing correct labels for input examples. +

              • labels (Tensor) – Tensor containing correct labels for input examples. This must be a 1D tensor with length matching the first dimension of each input tensor.

              • additional_args (tuple, optional) – If the forward function @@ -75,7 +75,7 @@

                AttributionVisualizer
                Parameters:
                  -
                • models (torch.nn.Module) – One or more PyTorch modules (models) for +

                • models (torch.nn.Module) – One or more PyTorch modules (models) for attribution visualization.

                • classes (list[str]) – List of strings corresponding to the names of classes for classification.

                • @@ -251,7 +251,15 @@

                  ImageFeature

                  Captum

                  -

                  Navigation

                  + +

                  Navigation

                  API Reference

                - -
                diff --git a/api/integrated_gradients.html b/api/integrated_gradients.html index 392cb366e..be5517e8e 100644 --- a/api/integrated_gradients.html +++ b/api/integrated_gradients.html @@ -77,7 +77,7 @@

                Integrated Gradients
                Parameters:
                  -
                • inputs (Tensor or tuple[Tensor, ...]) – Input for which integrated +

                • inputs (Tensor or tuple[Tensor, ...]) – Input for which integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -85,7 +85,7 @@

                  Integrated Gradients

                • -
                • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                  Baselines define the starting point from which integral +

                • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                  Baselines define the starting point from which integral is computed and can be provided as:

                  • a single tensor, if inputs is a single tensor, with @@ -112,7 +112,7 @@

                    Integrated Gradients

                    Default: None

                  • -
                  • target (int, tuple, Tensor, or list, optional) –

                    Output indices for +

                  • target (int, tuple, Tensor, or list, optional) –

                    Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -247,7 +247,15 @@

                    Integrated Gradients

                    Captum

                    -

                    Navigation

                    + +

                    Navigation

                    API Reference

                    - -
                    diff --git a/api/integrated_gradients/index.html b/api/integrated_gradients/index.html index 392cb366e..be5517e8e 100644 --- a/api/integrated_gradients/index.html +++ b/api/integrated_gradients/index.html @@ -77,7 +77,7 @@

                    Integrated Gradients
                    Parameters:
                      -
                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which integrated +

                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -85,7 +85,7 @@

                      Integrated Gradients

                    • -
                    • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                      Baselines define the starting point from which integral +

                    • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                      Baselines define the starting point from which integral is computed and can be provided as:

                      • a single tensor, if inputs is a single tensor, with @@ -112,7 +112,7 @@

                        Integrated Gradients

                        Default: None

                      • -
                      • target (int, tuple, Tensor, or list, optional) –

                        Output indices for +

                      • target (int, tuple, Tensor, or list, optional) –

                        Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -247,7 +247,15 @@

                        Integrated Gradients

                        Captum

                        -

                        Navigation

                        + +

                        Navigation

                        API Reference

                        - -
                        diff --git a/api/kernel_shap.html b/api/kernel_shap.html index 15f8b3abc..25b211ab7 100644 --- a/api/kernel_shap.html +++ b/api/kernel_shap.html @@ -79,7 +79,7 @@

                        KernelShap
                        Parameters:
                          -
                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which KernelShap +

                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which KernelShap is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -87,7 +87,7 @@

                          KernelShapTensor, tuple of scalar, or Tensor, optional) –

                          Baselines define the reference value which replaces each +

                        • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                          Baselines define the reference value which replaces each feature when the corresponding interpretable feature is set to 0. Baselines can be provided as:

                          @@ -116,7 +116,7 @@

                          KernelShapint, tuple, Tensor, or list, optional) –

                          Output indices for +

                        • target (int, tuple, Tensor, or list, optional) –

                          Output indices for which surrogate model is trained (for classification cases, this is usually the target class). @@ -158,7 +158,7 @@

                          KernelShapTensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping +
                        • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping features which correspond to the same interpretable feature. feature_mask should contain the same number of tensors as inputs. @@ -283,7 +283,7 @@

                          KernelShapkernel_shap_perturb_generator(original_inp, **kwargs)[source]
                          Return type:
                          -

                          Generator[Tensor, None, None]

                          +

                          Generator[Tensor, None, None]

                          @@ -318,7 +318,15 @@

                          KernelShap

                          Captum

                          -

                          Navigation

                          + +

                          Navigation

                          API Reference

                          - -
                          diff --git a/api/kernel_shap/index.html b/api/kernel_shap/index.html index 15f8b3abc..25b211ab7 100644 --- a/api/kernel_shap/index.html +++ b/api/kernel_shap/index.html @@ -79,7 +79,7 @@

                          KernelShap
                          Parameters:
                            -
                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which KernelShap +

                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which KernelShap is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -87,7 +87,7 @@

                            KernelShapTensor, tuple of scalar, or Tensor, optional) –

                            Baselines define the reference value which replaces each +

                          • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                            Baselines define the reference value which replaces each feature when the corresponding interpretable feature is set to 0. Baselines can be provided as:

                            @@ -116,7 +116,7 @@

                            KernelShapint, tuple, Tensor, or list, optional) –

                            Output indices for +

                          • target (int, tuple, Tensor, or list, optional) –

                            Output indices for which surrogate model is trained (for classification cases, this is usually the target class). @@ -158,7 +158,7 @@

                            KernelShapTensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping +
                          • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping features which correspond to the same interpretable feature. feature_mask should contain the same number of tensors as inputs. @@ -283,7 +283,7 @@

                            KernelShapkernel_shap_perturb_generator(original_inp, **kwargs)[source]
                            Return type:
                            -

                            Generator[Tensor, None, None]

                            +

                            Generator[Tensor, None, None]

                            @@ -318,7 +318,15 @@

                            KernelShap

                            Captum

                            -

                            Navigation

                            + +

                            Navigation

                            API Reference

                            - -
                            diff --git a/api/layer.html b/api/layer.html index e22d23fb8..3c63b1c68 100644 --- a/api/layer.html +++ b/api/layer.html @@ -51,7 +51,7 @@

                            Layer Conductance
                            • forward_func (Callable) – The forward function of the model or any modification of it

                            • -
                            • layer (torch.nn.Module) – Layer for which attributions are computed. +

                            • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -71,7 +71,7 @@

                              Layer Conductance
                              Parameters:
                                -
                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer conductance is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -79,7 +79,7 @@

                                Layer ConductanceTensor, tuple of scalar, or Tensor, optional) –

                                Baselines define the starting point from which integral +

                              • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                Baselines define the starting point from which integral is computed and can be provided as:

                                • a single tensor, if inputs is a single tensor, with @@ -106,7 +106,7 @@

                                  Layer Conductanceint, tuple, Tensor, or list, optional) –

                                  Output indices for +

                                • target (int, tuple, Tensor, or list, optional) –

                                  Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -265,7 +265,7 @@

                                  Layer Activation
                                  • forward_func (Callable) – The forward function of the model or any modification of it

                                  • -
                                  • layer (torch.nn.Module or list of torch.nn.Module) – Layer or layers +

                                  • layer (torch.nn.Module or list of torch.nn.Module) – Layer or layers for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to @@ -288,7 +288,7 @@

                                    Layer Activation
                                    Parameters:
                                      -
                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer activation is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -378,7 +378,7 @@

                                      Internal Influence
                                      • forward_func (Callable) – The forward function of the model or any modification of it

                                      • -
                                      • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                      • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -398,7 +398,7 @@

                                        Internal Influence
                                        Parameters:
                                          -
                                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which internal +

                                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which internal influence is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -406,7 +406,7 @@

                                          Internal InfluenceTensor, tuple of scalar, or Tensor, optional) –

                                          Baselines define a starting point from which integral +

                                        • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                          Baselines define a starting point from which integral is computed and can be provided as:

                                          • a single tensor, if inputs is a single tensor, with @@ -433,7 +433,7 @@

                                            Internal Influenceint, tuple, Tensor, or list, optional) –

                                            Output indices for +

                                          • target (int, tuple, Tensor, or list, optional) –

                                            Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -556,7 +556,7 @@

                                            Layer Gradient X Activation
                                            • forward_func (Callable) – The forward function of the model or any modification of it

                                            • -
                                            • layer (torch.nn.Module or list of torch.nn.Module) – Layer or layers +

                                            • layer (torch.nn.Module or list of torch.nn.Module) – Layer or layers for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to @@ -592,7 +592,7 @@

                                              Layer Gradient X Activation
                                              Parameters:
                                                -
                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions +

                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -600,7 +600,7 @@

                                                Layer Gradient X Activationint, tuple, Tensor, or list, optional) –

                                                Output indices for +

                                              • target (int, tuple, Tensor, or list, optional) –

                                                Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -722,7 +722,7 @@

                                                GradCAM
                                                • forward_func (Callable) – The forward function of the model or any modification of it

                                                • -
                                                • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s output dimensions, except for dimension 2, which will be 1, since GradCAM sums over channels.

                                                • @@ -740,7 +740,7 @@

                                                  GradCAM
                                                  Parameters:
                                                    -
                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions +

                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -748,7 +748,7 @@

                                                    GradCAM¶ that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately.

                                                  • -
                                                  • target (int, tuple, Tensor, or list, optional) –

                                                    Output indices for +

                                                  • target (int, tuple, Tensor, or list, optional) –

                                                    Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -885,7 +885,7 @@

                                                    Layer DeepLiftParameters:
                                                    • model (nn.Module) – The reference to PyTorch model instance.

                                                    • -
                                                    • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                    • layer (torch.nn.Module) – Layer for which attributions are computed. The size and dimensionality of the attributions corresponds to the size and dimensionality of the layer’s input or output depending on whether we attribute to the @@ -915,7 +915,7 @@

                                                      Layer DeepLift
                                                      Parameters:
                                                        -
                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, @@ -924,7 +924,7 @@

                                                        Layer DeepLiftTensor, tuple of scalar, or Tensor, optional) –

                                                        Baselines define reference samples that are compared with +

                                                      • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                        Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. @@ -954,7 +954,7 @@

                                                        Layer DeepLiftint, tuple, Tensor, or list, optional) –

                                                        Output indices for +

                                                      • target (int, tuple, Tensor, or list, optional) –

                                                        Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -1110,7 +1110,7 @@

                                                        Layer DeepLiftShapParameters:
                                                        • model (nn.Module) – The reference to PyTorch model instance.

                                                        • -
                                                        • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                        • layer (torch.nn.Module) – Layer for which attributions are computed. The size and dimensionality of the attributions corresponds to the size and dimensionality of the layer’s input or output depending on whether we attribute to the @@ -1140,7 +1140,7 @@

                                                          Layer DeepLiftShap
                                                          Parameters:
                                                            -
                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -1149,7 +1149,7 @@

                                                            Layer DeepLiftShapTensor, tuple[Tensor, ...], or Callable) –

                                                            Baselines define reference samples that are compared with +

                                                          • baselines (Tensor, tuple[Tensor, ...], or Callable) –

                                                            Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. Baselines can be provided as:

                                                            @@ -1172,7 +1172,7 @@

                                                            Layer DeepLiftShapint, tuple, Tensor, or list, optional) –

                                                            Output indices for +

                                                          • target (int, tuple, Tensor, or list, optional) –

                                                            Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -1335,7 +1335,7 @@

                                                            Layer GradientShap
                                                            • forward_func (Callable) – The forward function of the model or any modification of it

                                                            • -
                                                            • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                            • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -1369,7 +1369,7 @@

                                                              Layer GradientShap
                                                              Parameters:
                                                                -
                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input which are used to compute +

                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input which are used to compute SHAP attribution values for a given layer. If forward_func takes a single tensor as input, a single input tensor should be provided. @@ -1378,7 +1378,7 @@

                                                                Layer GradientShapTensor, tuple[Tensor, ...], or Callable) –

                                                                Baselines define the starting point from which expectation +

                                                              • baselines (Tensor, tuple[Tensor, ...], or Callable) –

                                                                Baselines define the starting point from which expectation is computed and can be provided as:

                                                                • a single tensor, if inputs is a single tensor, with @@ -1412,7 +1412,7 @@

                                                                  Layer GradientShapint, tuple, Tensor, or list, optional) –

                                                                  Output indices for +

                                                                • target (int, tuple, Tensor, or list, optional) –

                                                                  Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -1612,7 +1612,7 @@

                                                                  Layer Integrated Gradients
                                                                  Parameters:
                                                                    -
                                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer integrated +

                                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -1620,7 +1620,7 @@

                                                                    Layer Integrated GradientsTensor, tuple of scalar, or Tensor, optional) –

                                                                    Baselines define the starting point from which integral +

                                                                  • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                    Baselines define the starting point from which integral is computed and can be provided as:

                                                                    • a single tensor, if inputs is a single tensor, with @@ -1649,7 +1649,7 @@

                                                                      Layer Integrated Gradientsint, tuple, Tensor, or list, optional) –

                                                                      Output indices for +

                                                                    • target (int, tuple, Tensor, or list, optional) –

                                                                      Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -1824,7 +1824,7 @@

                                                                      Layer Feature Ablation
                                                                      • forward_func (Callable) – The forward function of the model or any modification of it

                                                                      • -
                                                                      • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                      • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -1846,7 +1846,7 @@

                                                                        Layer Feature Ablation
                                                                        Parameters:
                                                                          -
                                                                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -1854,7 +1854,7 @@

                                                                          Layer Feature Ablation

                                                                        • -
                                                                        • layer_baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) – Layer baselines define reference values which replace each +

                                                                        • layer_baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) – Layer baselines define reference values which replace each layer input / output value when ablated. Layer baselines should be a single tensor with dimensions matching the input / output of the target layer (or @@ -1864,7 +1864,7 @@

                                                                          Layer Feature Ablationbaselines is not provided, we internally use zero as the baseline for each neuron. Default: None

                                                                        • -
                                                                        • target (int, tuple, Tensor, or list, optional) –

                                                                          Output indices for +

                                                                        • target (int, tuple, Tensor, or list, optional) –

                                                                          Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -1900,7 +1900,7 @@

                                                                          Layer Feature Ablation

                                                                        • -
                                                                        • layer_mask (Tensor or tuple[Tensor, ...], optional) – layer_mask defines a mask for the layer, grouping +

                                                                        • layer_mask (Tensor or tuple[Tensor, ...], optional) – layer_mask defines a mask for the layer, grouping elements of the layer input / output which should be ablated together. layer_mask should be a single tensor with dimensions @@ -2014,7 +2014,7 @@

                                                                          Layer Feature Permutation
                                                                          • forward_func (Callable) – The forward function of the model or any modification of it

                                                                          • -
                                                                          • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                          • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -2036,7 +2036,7 @@

                                                                            Layer Feature Permutation
                                                                            Parameters:
                                                                              -
                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -2044,7 +2044,7 @@

                                                                              Layer Feature Permutationint, tuple, Tensor, or list, optional) –

                                                                              Output indices for +

                                                                            • target (int, tuple, Tensor, or list, optional) –

                                                                              Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -2080,7 +2080,7 @@

                                                                              Layer Feature PermutationTensor or tuple[Tensor, ...], optional) – layer_mask defines a mask for the layer, grouping +
                                                                            • layer_mask (Tensor or tuple[Tensor, ...], optional) – layer_mask defines a mask for the layer, grouping elements of the layer input / output which should be ablated together. layer_mask should be a single tensor with dimensions @@ -2155,7 +2155,7 @@

                                                                              Layer LRPtorch.nn.Module or list(torch.nn.Module)) – Layer or layers +
                                                                            • layer (torch.nn.Module or list(torch.nn.Module)) – Layer or layers for which attributions are computed. The size and dimensionality of the attributions corresponds to the size and dimensionality of the layer’s @@ -2171,7 +2171,7 @@

                                                                              Layer LRP
                                                                              Parameters:
                                                                              - -
                                                                              diff --git a/api/layer/index.html b/api/layer/index.html index e22d23fb8..3c63b1c68 100644 --- a/api/layer/index.html +++ b/api/layer/index.html @@ -51,7 +51,7 @@

                                                                              Layer Conductance
                                                                              • forward_func (Callable) – The forward function of the model or any modification of it

                                                                              • -
                                                                              • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                              • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -71,7 +71,7 @@

                                                                                Layer Conductance
                                                                                Parameters:
                                                                                  -
                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer conductance is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -79,7 +79,7 @@

                                                                                  Layer ConductanceTensor, tuple of scalar, or Tensor, optional) –

                                                                                  Baselines define the starting point from which integral +

                                                                                • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                  Baselines define the starting point from which integral is computed and can be provided as:

                                                                                  • a single tensor, if inputs is a single tensor, with @@ -106,7 +106,7 @@

                                                                                    Layer Conductanceint, tuple, Tensor, or list, optional) –

                                                                                    Output indices for +

                                                                                  • target (int, tuple, Tensor, or list, optional) –

                                                                                    Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -265,7 +265,7 @@

                                                                                    Layer Activation
                                                                                    • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                    • -
                                                                                    • layer (torch.nn.Module or list of torch.nn.Module) – Layer or layers +

                                                                                    • layer (torch.nn.Module or list of torch.nn.Module) – Layer or layers for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to @@ -288,7 +288,7 @@

                                                                                      Layer Activation
                                                                                      Parameters:
                                                                                        -
                                                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer activation is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -378,7 +378,7 @@

                                                                                        Internal Influence
                                                                                        • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                        • -
                                                                                        • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                        • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -398,7 +398,7 @@

                                                                                          Internal Influence
                                                                                          Parameters:
                                                                                            -
                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which internal +

                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which internal influence is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -406,7 +406,7 @@

                                                                                            Internal InfluenceTensor, tuple of scalar, or Tensor, optional) –

                                                                                            Baselines define a starting point from which integral +

                                                                                          • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                            Baselines define a starting point from which integral is computed and can be provided as:

                                                                                            • a single tensor, if inputs is a single tensor, with @@ -433,7 +433,7 @@

                                                                                              Internal Influenceint, tuple, Tensor, or list, optional) –

                                                                                              Output indices for +

                                                                                            • target (int, tuple, Tensor, or list, optional) –

                                                                                              Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -556,7 +556,7 @@

                                                                                              Layer Gradient X Activation
                                                                                              • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                              • -
                                                                                              • layer (torch.nn.Module or list of torch.nn.Module) – Layer or layers +

                                                                                              • layer (torch.nn.Module or list of torch.nn.Module) – Layer or layers for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to @@ -592,7 +592,7 @@

                                                                                                Layer Gradient X Activation
                                                                                                Parameters:
                                                                                                  -
                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions +

                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -600,7 +600,7 @@

                                                                                                  Layer Gradient X Activationint, tuple, Tensor, or list, optional) –

                                                                                                  Output indices for +

                                                                                                • target (int, tuple, Tensor, or list, optional) –

                                                                                                  Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -722,7 +722,7 @@

                                                                                                  GradCAM
                                                                                                  • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                  • -
                                                                                                  • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                                  • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s output dimensions, except for dimension 2, which will be 1, since GradCAM sums over channels.

                                                                                                  • @@ -740,7 +740,7 @@

                                                                                                    GradCAM
                                                                                                    Parameters:
                                                                                                      -
                                                                                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions +

                                                                                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -748,7 +748,7 @@

                                                                                                      GradCAM¶ that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately.

                                                                                                    • -
                                                                                                    • target (int, tuple, Tensor, or list, optional) –

                                                                                                      Output indices for +

                                                                                                    • target (int, tuple, Tensor, or list, optional) –

                                                                                                      Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -885,7 +885,7 @@

                                                                                                      Layer DeepLiftParameters:
                                                                                                      • model (nn.Module) – The reference to PyTorch model instance.

                                                                                                      • -
                                                                                                      • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                                      • layer (torch.nn.Module) – Layer for which attributions are computed. The size and dimensionality of the attributions corresponds to the size and dimensionality of the layer’s input or output depending on whether we attribute to the @@ -915,7 +915,7 @@

                                                                                                        Layer DeepLift
                                                                                                        Parameters:
                                                                                                          -
                                                                                                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                                                                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, @@ -924,7 +924,7 @@

                                                                                                          Layer DeepLiftTensor, tuple of scalar, or Tensor, optional) –

                                                                                                          Baselines define reference samples that are compared with +

                                                                                                        • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                          Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. @@ -954,7 +954,7 @@

                                                                                                          Layer DeepLiftint, tuple, Tensor, or list, optional) –

                                                                                                          Output indices for +

                                                                                                        • target (int, tuple, Tensor, or list, optional) –

                                                                                                          Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -1110,7 +1110,7 @@

                                                                                                          Layer DeepLiftShapParameters:
                                                                                                          • model (nn.Module) – The reference to PyTorch model instance.

                                                                                                          • -
                                                                                                          • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                                          • layer (torch.nn.Module) – Layer for which attributions are computed. The size and dimensionality of the attributions corresponds to the size and dimensionality of the layer’s input or output depending on whether we attribute to the @@ -1140,7 +1140,7 @@

                                                                                                            Layer DeepLiftShap
                                                                                                            Parameters:
                                                                                                              -
                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -1149,7 +1149,7 @@

                                                                                                              Layer DeepLiftShapTensor, tuple[Tensor, ...], or Callable) –

                                                                                                              Baselines define reference samples that are compared with +

                                                                                                            • baselines (Tensor, tuple[Tensor, ...], or Callable) –

                                                                                                              Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. Baselines can be provided as:

                                                                                                              @@ -1172,7 +1172,7 @@

                                                                                                              Layer DeepLiftShapint, tuple, Tensor, or list, optional) –

                                                                                                              Output indices for +

                                                                                                            • target (int, tuple, Tensor, or list, optional) –

                                                                                                              Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -1335,7 +1335,7 @@

                                                                                                              Layer GradientShap
                                                                                                              • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                              • -
                                                                                                              • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                                              • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -1369,7 +1369,7 @@

                                                                                                                Layer GradientShap
                                                                                                                Parameters:
                                                                                                                  -
                                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input which are used to compute +

                                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input which are used to compute SHAP attribution values for a given layer. If forward_func takes a single tensor as input, a single input tensor should be provided. @@ -1378,7 +1378,7 @@

                                                                                                                  Layer GradientShapTensor, tuple[Tensor, ...], or Callable) –

                                                                                                                  Baselines define the starting point from which expectation +

                                                                                                                • baselines (Tensor, tuple[Tensor, ...], or Callable) –

                                                                                                                  Baselines define the starting point from which expectation is computed and can be provided as:

                                                                                                                  • a single tensor, if inputs is a single tensor, with @@ -1412,7 +1412,7 @@

                                                                                                                    Layer GradientShapint, tuple, Tensor, or list, optional) –

                                                                                                                    Output indices for +

                                                                                                                  • target (int, tuple, Tensor, or list, optional) –

                                                                                                                    Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -1612,7 +1612,7 @@

                                                                                                                    Layer Integrated Gradients
                                                                                                                    Parameters:
                                                                                                                      -
                                                                                                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer integrated +

                                                                                                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -1620,7 +1620,7 @@

                                                                                                                      Layer Integrated GradientsTensor, tuple of scalar, or Tensor, optional) –

                                                                                                                      Baselines define the starting point from which integral +

                                                                                                                    • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                      Baselines define the starting point from which integral is computed and can be provided as:

                                                                                                                      • a single tensor, if inputs is a single tensor, with @@ -1649,7 +1649,7 @@

                                                                                                                        Layer Integrated Gradientsint, tuple, Tensor, or list, optional) –

                                                                                                                        Output indices for +

                                                                                                                      • target (int, tuple, Tensor, or list, optional) –

                                                                                                                        Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -1824,7 +1824,7 @@

                                                                                                                        Layer Feature Ablation
                                                                                                                        • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                                        • -
                                                                                                                        • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                                                        • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -1846,7 +1846,7 @@

                                                                                                                          Layer Feature Ablation
                                                                                                                          Parameters:
                                                                                                                            -
                                                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -1854,7 +1854,7 @@

                                                                                                                            Layer Feature Ablation

                                                                                                                          • -
                                                                                                                          • layer_baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) – Layer baselines define reference values which replace each +

                                                                                                                          • layer_baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) – Layer baselines define reference values which replace each layer input / output value when ablated. Layer baselines should be a single tensor with dimensions matching the input / output of the target layer (or @@ -1864,7 +1864,7 @@

                                                                                                                            Layer Feature Ablationbaselines is not provided, we internally use zero as the baseline for each neuron. Default: None

                                                                                                                          • -
                                                                                                                          • target (int, tuple, Tensor, or list, optional) –

                                                                                                                            Output indices for +

                                                                                                                          • target (int, tuple, Tensor, or list, optional) –

                                                                                                                            Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -1900,7 +1900,7 @@

                                                                                                                            Layer Feature Ablation

                                                                                                                          • -
                                                                                                                          • layer_mask (Tensor or tuple[Tensor, ...], optional) – layer_mask defines a mask for the layer, grouping +

                                                                                                                          • layer_mask (Tensor or tuple[Tensor, ...], optional) – layer_mask defines a mask for the layer, grouping elements of the layer input / output which should be ablated together. layer_mask should be a single tensor with dimensions @@ -2014,7 +2014,7 @@

                                                                                                                            Layer Feature Permutation
                                                                                                                            • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                                            • -
                                                                                                                            • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                                                            • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -2036,7 +2036,7 @@

                                                                                                                              Layer Feature Permutation
                                                                                                                              Parameters:
                                                                                                                                -
                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -2044,7 +2044,7 @@

                                                                                                                                Layer Feature Permutationint, tuple, Tensor, or list, optional) –

                                                                                                                                Output indices for +

                                                                                                                              • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -2080,7 +2080,7 @@

                                                                                                                                Layer Feature PermutationTensor or tuple[Tensor, ...], optional) – layer_mask defines a mask for the layer, grouping +
                                                                                                                              • layer_mask (Tensor or tuple[Tensor, ...], optional) – layer_mask defines a mask for the layer, grouping elements of the layer input / output which should be ablated together. layer_mask should be a single tensor with dimensions @@ -2155,7 +2155,7 @@

                                                                                                                                Layer LRPtorch.nn.Module or list(torch.nn.Module)) – Layer or layers +
                                                                                                                              • layer (torch.nn.Module or list(torch.nn.Module)) – Layer or layers for which attributions are computed. The size and dimensionality of the attributions corresponds to the size and dimensionality of the layer’s @@ -2171,7 +2171,7 @@

                                                                                                                                Layer LRP
                                                                                                                                Parameters:
                                                                                                                                - -
                                                                                                                                diff --git a/api/lime.html b/api/lime.html index ae069f8ce..0f9c1bd9f 100644 --- a/api/lime.html +++ b/api/lime.html @@ -208,7 +208,7 @@

                                                                                                                                Lime
                                                                                                                                Parameters:
                                                                                                                                  -
                                                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which LIME +

                                                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which LIME is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -216,7 +216,7 @@

                                                                                                                                  Lime

                                                                                                                                • -
                                                                                                                                • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                  Output indices for +

                                                                                                                                • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                  Output indices for which surrogate model is trained (for classification cases, this is usually the target class). @@ -526,7 +526,7 @@

                                                                                                                                  Lime
                                                                                                                                  Parameters:
                                                                                                                                    -
                                                                                                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which LIME +

                                                                                                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which LIME is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -534,7 +534,7 @@

                                                                                                                                    Lime

                                                                                                                                  • -
                                                                                                                                  • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                    Baselines define reference value which replaces each +

                                                                                                                                  • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                    Baselines define reference value which replaces each feature when the corresponding interpretable feature is set to 0. Baselines can be provided as:

                                                                                                                                    @@ -563,7 +563,7 @@

                                                                                                                                    Lime

                                                                                                                                  • -
                                                                                                                                  • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                    Output indices for +

                                                                                                                                  • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                    Output indices for which surrogate model is trained (for classification cases, this is usually the target class). @@ -605,7 +605,7 @@

                                                                                                                                    Lime

                                                                                                                                  • -
                                                                                                                                  • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping +

                                                                                                                                  • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping features which correspond to the same interpretable feature. feature_mask should contain the same number of tensors as inputs. @@ -768,7 +768,15 @@

                                                                                                                                    Lime

                                                                                                                                    Captum

                                                                                                                                    -

                                                                                                                                    Navigation

                                                                                                                                    + +

                                                                                                                                    Navigation

                                                                                                                                    API Reference

                                                                                                                                    - -
                                                                                                                                    diff --git a/api/lime/index.html b/api/lime/index.html index ae069f8ce..0f9c1bd9f 100644 --- a/api/lime/index.html +++ b/api/lime/index.html @@ -208,7 +208,7 @@

                                                                                                                                    Lime
                                                                                                                                    Parameters:
                                                                                                                                      -
                                                                                                                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which LIME +

                                                                                                                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which LIME is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -216,7 +216,7 @@

                                                                                                                                      Lime

                                                                                                                                    • -
                                                                                                                                    • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                      Output indices for +

                                                                                                                                    • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                      Output indices for which surrogate model is trained (for classification cases, this is usually the target class). @@ -526,7 +526,7 @@

                                                                                                                                      Lime
                                                                                                                                      Parameters:
                                                                                                                                        -
                                                                                                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which LIME +

                                                                                                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which LIME is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -534,7 +534,7 @@

                                                                                                                                        Lime

                                                                                                                                      • -
                                                                                                                                      • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                        Baselines define reference value which replaces each +

                                                                                                                                      • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                        Baselines define reference value which replaces each feature when the corresponding interpretable feature is set to 0. Baselines can be provided as:

                                                                                                                                        @@ -563,7 +563,7 @@

                                                                                                                                        Lime

                                                                                                                                      • -
                                                                                                                                      • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                        Output indices for +

                                                                                                                                      • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                        Output indices for which surrogate model is trained (for classification cases, this is usually the target class). @@ -605,7 +605,7 @@

                                                                                                                                        Lime

                                                                                                                                      • -
                                                                                                                                      • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping +

                                                                                                                                      • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping features which correspond to the same interpretable feature. feature_mask should contain the same number of tensors as inputs. @@ -768,7 +768,15 @@

                                                                                                                                        Lime

                                                                                                                                        Captum

                                                                                                                                        -

                                                                                                                                        Navigation

                                                                                                                                        + +

                                                                                                                                        Navigation

                                                                                                                                        API Reference

                                                                                                                                        - -
                                                                                                                                        diff --git a/api/llm_attr.html b/api/llm_attr.html index 3cee42001..cf0a7faf8 100644 --- a/api/llm_attr.html +++ b/api/llm_attr.html @@ -67,7 +67,7 @@

                                                                                                                                        LLMAttributionParameters:
                                                                                                                                        • inp (InterpretableInput) – input prompt for which attributions are computed

                                                                                                                                        • -
                                                                                                                                        • target (str or Tensor, optional) – target response with respect to +

                                                                                                                                        • target (str or Tensor, optional) – target response with respect to which attributions are computed. If None, it uses the model to generate the target based on the input and gen_args. Default: None

                                                                                                                                        • @@ -127,7 +127,7 @@

                                                                                                                                          LLMGradientAttributionParameters:
                                                                                                                                          • inp (InterpretableInput) – input prompt for which attributions are computed

                                                                                                                                          • -
                                                                                                                                          • target (str or Tensor, optional) – target response with respect to +

                                                                                                                                          • target (str or Tensor, optional) – target response with respect to which attributions are computed. If None, it uses the model to generate the target based on the input and gen_args. Default: None

                                                                                                                                          • @@ -190,7 +190,15 @@

                                                                                                                                            LLMAttributionResult

                                                                                                                                            Captum

                                                                                                                                            -

                                                                                                                                            Navigation

                                                                                                                                            + +

                                                                                                                                            Navigation

                                                                                                                                            API Reference

                                                                                                                                          - -
                                                                                                                                          diff --git a/api/llm_attr/index.html b/api/llm_attr/index.html index 3cee42001..cf0a7faf8 100644 --- a/api/llm_attr/index.html +++ b/api/llm_attr/index.html @@ -67,7 +67,7 @@

                                                                                                                                          LLMAttributionParameters:
                                                                                                                                          • inp (InterpretableInput) – input prompt for which attributions are computed

                                                                                                                                          • -
                                                                                                                                          • target (str or Tensor, optional) – target response with respect to +

                                                                                                                                          • target (str or Tensor, optional) – target response with respect to which attributions are computed. If None, it uses the model to generate the target based on the input and gen_args. Default: None

                                                                                                                                          • @@ -127,7 +127,7 @@

                                                                                                                                            LLMGradientAttributionParameters:
                                                                                                                                            • inp (InterpretableInput) – input prompt for which attributions are computed

                                                                                                                                            • -
                                                                                                                                            • target (str or Tensor, optional) – target response with respect to +

                                                                                                                                            • target (str or Tensor, optional) – target response with respect to which attributions are computed. If None, it uses the model to generate the target based on the input and gen_args. Default: None

                                                                                                                                            • @@ -190,7 +190,15 @@

                                                                                                                                              LLMAttributionResult

                                                                                                                                              Captum

                                                                                                                                              -

                                                                                                                                              Navigation

                                                                                                                                              + +

                                                                                                                                              Navigation

                                                                                                                                              API Reference

                                                                                                                                            - -
                                                                                                                                            diff --git a/api/lrp.html b/api/lrp.html index 64dddc93b..2c3535d87 100644 --- a/api/lrp.html +++ b/api/lrp.html @@ -59,7 +59,7 @@

                                                                                                                                            LRP

                                                                                                                                            Parameters:
                                                                                                                                              -
                                                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which relevance is +

                                                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which relevance is propagated. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -67,7 +67,7 @@

                                                                                                                                              LRP

                                                                                                                                            • -
                                                                                                                                            • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                              Output indices for +

                                                                                                                                            • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                              Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -124,7 +124,7 @@

                                                                                                                                              LRP

                                                                                                                                            Return type:
                                                                                                                                            -

                                                                                                                                            Union[TypeVar(TensorOrTupleOfTensorsGeneric, Tensor, Tuple[Tensor, ...]), Tuple[TypeVar(TensorOrTupleOfTensorsGeneric, Tensor, Tuple[Tensor, ...]), Tensor]]

                                                                                                                                            +

                                                                                                                                            Union[TypeVar(TensorOrTupleOfTensorsGeneric, Tensor, Tuple[Tensor, ...]), Tuple[TypeVar(TensorOrTupleOfTensorsGeneric, Tensor, Tuple[Tensor, ...]), Tensor]]

                                                                                                                                            Returns:

                                                                                                                                            Tensor or tuple[Tensor, …] of attributions @@ -183,14 +183,14 @@

                                                                                                                                            LRP

                                                                                                                                            Parameters:
                                                                                                                                              -
                                                                                                                                            • attributions (Tensor or tuple[Tensor, ...]) – Attribution scores that +

                                                                                                                                            • attributions (Tensor or tuple[Tensor, ...]) – Attribution scores that are precomputed by an attribution algorithm. Attributions can be provided in form of a single tensor or a tuple of those. It is assumed that attribution tensor’s dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately.

                                                                                                                                            • -
                                                                                                                                            • output (Tensor) – The output value with respect to which +

                                                                                                                                            • output (Tensor) – The output value with respect to which the attribution values are computed. This value corresponds to the target score of a classification model. The given tensor should only have a single element.

                                                                                                                                            • @@ -234,7 +234,15 @@

                                                                                                                                              LRP

                                                                                                                                              Captum

                                                                                                                                              -

                                                                                                                                              Navigation

                                                                                                                                              + +

                                                                                                                                              Navigation

                                                                                                                                              API Reference

                                                                                                                                              - -
                                                                                                                                              diff --git a/api/lrp/index.html b/api/lrp/index.html index 64dddc93b..2c3535d87 100644 --- a/api/lrp/index.html +++ b/api/lrp/index.html @@ -59,7 +59,7 @@

                                                                                                                                              LRP

                                                                                                                                              Parameters:
                                                                                                                                                -
                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which relevance is +

                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which relevance is propagated. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -67,7 +67,7 @@

                                                                                                                                                LRP

                                                                                                                                              • -
                                                                                                                                              • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                Output indices for +

                                                                                                                                              • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -124,7 +124,7 @@

                                                                                                                                                LRP

                                                                                                                                              Return type:
                                                                                                                                              -

                                                                                                                                              Union[TypeVar(TensorOrTupleOfTensorsGeneric, Tensor, Tuple[Tensor, ...]), Tuple[TypeVar(TensorOrTupleOfTensorsGeneric, Tensor, Tuple[Tensor, ...]), Tensor]]

                                                                                                                                              +

                                                                                                                                              Union[TypeVar(TensorOrTupleOfTensorsGeneric, Tensor, Tuple[Tensor, ...]), Tuple[TypeVar(TensorOrTupleOfTensorsGeneric, Tensor, Tuple[Tensor, ...]), Tensor]]

                                                                                                                                              Returns:

                                                                                                                                              Tensor or tuple[Tensor, …] of attributions @@ -183,14 +183,14 @@

                                                                                                                                              LRP

                                                                                                                                              Parameters:
                                                                                                                                                -
                                                                                                                                              • attributions (Tensor or tuple[Tensor, ...]) – Attribution scores that +

                                                                                                                                              • attributions (Tensor or tuple[Tensor, ...]) – Attribution scores that are precomputed by an attribution algorithm. Attributions can be provided in form of a single tensor or a tuple of those. It is assumed that attribution tensor’s dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately.

                                                                                                                                              • -
                                                                                                                                              • output (Tensor) – The output value with respect to which +

                                                                                                                                              • output (Tensor) – The output value with respect to which the attribution values are computed. This value corresponds to the target score of a classification model. The given tensor should only have a single element.

                                                                                                                                              • @@ -234,7 +234,15 @@

                                                                                                                                                LRP

                                                                                                                                                Captum

                                                                                                                                                -

                                                                                                                                                Navigation

                                                                                                                                                + +

                                                                                                                                                Navigation

                                                                                                                                                API Reference

                                                                                                                                                - -
                                                                                                                                                diff --git a/api/metrics.html b/api/metrics.html index 8c85649e9..07b426143 100644 --- a/api/metrics.html +++ b/api/metrics.html @@ -120,7 +120,7 @@

                                                                                                                                                InfidelityTensor or tuple[Tensor, ...]) – Input for which +
                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -129,7 +129,7 @@

                                                                                                                                                InfidelityTensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                Baselines define reference values which sometimes represent ablated +

                                                                                                                                              • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                Baselines define reference values which sometimes represent ablated values and are used to compare with the actual inputs to compute importance scores in attribution algorithms. They can be represented as:

                                                                                                                                                @@ -153,7 +153,7 @@

                                                                                                                                                InfidelityTensor or tuple[Tensor, ...]) –

                                                                                                                                                Attribution scores computed based on an attribution algorithm. +

                                                                                                                                              • attributions (Tensor or tuple[Tensor, ...]) –

                                                                                                                                                Attribution scores computed based on an attribution algorithm. This attribution scores can be computed using the implementations provided in the captum.attr package. Some of those attribution approaches are so called global methods, which means that @@ -201,7 +201,7 @@

                                                                                                                                                Infidelityint, tuple, Tensor, or list, optional) –

                                                                                                                                                Indices for selecting +

                                                                                                                                              • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                Indices for selecting predictions from output(for classification cases, this is usually the target class). If the network returns a scalar value per example, no target @@ -331,7 +331,7 @@

                                                                                                                                                SensitivityCallable) – This function can be the attribute method of an attribution algorithm or any other explanation method that returns the explanations.

                                                                                                                                              • -
                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which explanations are computed. If explanation_func takes a single tensor as input, a single input tensor should be provided. @@ -433,7 +433,15 @@

                                                                                                                                                Sensitivity

                                                                                                                                                Captum

                                                                                                                                                -

                                                                                                                                                Navigation

                                                                                                                                                + +

                                                                                                                                                Navigation

                                                                                                                                                API Reference

                                                                                                                                              - -
                                                                                                                                              diff --git a/api/metrics/index.html b/api/metrics/index.html index 8c85649e9..07b426143 100644 --- a/api/metrics/index.html +++ b/api/metrics/index.html @@ -120,7 +120,7 @@

                                                                                                                                              InfidelityTensor or tuple[Tensor, ...]) – Input for which +
                                                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -129,7 +129,7 @@

                                                                                                                                              InfidelityTensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                              Baselines define reference values which sometimes represent ablated +

                                                                                                                                            • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                              Baselines define reference values which sometimes represent ablated values and are used to compare with the actual inputs to compute importance scores in attribution algorithms. They can be represented as:

                                                                                                                                              @@ -153,7 +153,7 @@

                                                                                                                                              InfidelityTensor or tuple[Tensor, ...]) –

                                                                                                                                              Attribution scores computed based on an attribution algorithm. +

                                                                                                                                            • attributions (Tensor or tuple[Tensor, ...]) –

                                                                                                                                              Attribution scores computed based on an attribution algorithm. This attribution scores can be computed using the implementations provided in the captum.attr package. Some of those attribution approaches are so called global methods, which means that @@ -201,7 +201,7 @@

                                                                                                                                              Infidelityint, tuple, Tensor, or list, optional) –

                                                                                                                                              Indices for selecting +

                                                                                                                                            • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                              Indices for selecting predictions from output(for classification cases, this is usually the target class). If the network returns a scalar value per example, no target @@ -331,7 +331,7 @@

                                                                                                                                              SensitivityCallable) – This function can be the attribute method of an attribution algorithm or any other explanation method that returns the explanations.

                                                                                                                                            • -
                                                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                                                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which explanations are computed. If explanation_func takes a single tensor as input, a single input tensor should be provided. @@ -433,7 +433,15 @@

                                                                                                                                              Sensitivity

                                                                                                                                              Captum

                                                                                                                                              -

                                                                                                                                              Navigation

                                                                                                                                              + +

                                                                                                                                              Navigation

                                                                                                                                              API Reference

                                                                                                                                            - -
                                                                                                                                            diff --git a/api/module.html b/api/module.html index af5bb90f1..a5422b858 100644 --- a/api/module.html +++ b/api/module.html @@ -60,7 +60,15 @@

                                                                                                                                            Module

                                                                                                                                            Captum

                                                                                                                                            -

                                                                                                                                            Navigation

                                                                                                                                            + +

                                                                                                                                            Navigation

                                                                                                                                            API Reference

                                                                                                                                          - -
                                                                                                                                          diff --git a/api/module/index.html b/api/module/index.html index af5bb90f1..a5422b858 100644 --- a/api/module/index.html +++ b/api/module/index.html @@ -60,7 +60,15 @@

                                                                                                                                          Module

                                                                                                                                          Captum

                                                                                                                                          -

                                                                                                                                          Navigation

                                                                                                                                          + +

                                                                                                                                          Navigation

                                                                                                                                          API Reference

                                                                                                                                        - -
                                                                                                                                        diff --git a/api/neuron.html b/api/neuron.html index 69009dd0b..5d5d5c929 100644 --- a/api/neuron.html +++ b/api/neuron.html @@ -43,7 +43,7 @@

                                                                                                                                        Neuron Gradient
                                                                                                                                        • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                                                        • -
                                                                                                                                        • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                                                                        • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -66,7 +66,7 @@

                                                                                                                                          Neuron Gradient
                                                                                                                                          Parameters:
                                                                                                                                            -
                                                                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron +

                                                                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -190,7 +190,7 @@

                                                                                                                                            Neuron Integrated Gradients
                                                                                                                                            • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                                                            • -
                                                                                                                                            • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                                                                            • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -227,7 +227,7 @@

                                                                                                                                              Neuron Integrated Gradients
                                                                                                                                              Parameters:
                                                                                                                                                -
                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron integrated +

                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -267,7 +267,7 @@

                                                                                                                                                Neuron Integrated GradientsTensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                Baselines define the starting point from which integral +

                                                                                                                                              • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                Baselines define the starting point from which integral is computed. Baselines can be provided as:

                                                                                                                                                  @@ -399,7 +399,7 @@

                                                                                                                                                  Neuron Conductance
                                                                                                                                                  • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                                                                  • -
                                                                                                                                                  • layer (torch.nn.Module) – Layer for which neuron attributions are computed. +

                                                                                                                                                  • layer (torch.nn.Module) – Layer for which neuron attributions are computed. Attributions for a particular neuron in the input or output of this layer are computed using the argument neuron_selector in the attribute method. @@ -442,7 +442,7 @@

                                                                                                                                                    Neuron Conductance
                                                                                                                                                    Parameters:
                                                                                                                                                      -
                                                                                                                                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron +

                                                                                                                                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron conductance is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -481,7 +481,7 @@

                                                                                                                                                      Neuron ConductanceTensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                      Baselines define the starting point from which integral +

                                                                                                                                                    • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                      Baselines define the starting point from which integral is computed and can be provided as:

                                                                                                                                                      • a single tensor, if inputs is a single tensor, with @@ -508,7 +508,7 @@

                                                                                                                                                        Neuron Conductanceint, tuple, Tensor, or list, optional) –

                                                                                                                                                        Output indices for +

                                                                                                                                                      • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                        Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -650,7 +650,7 @@

                                                                                                                                                        Neuron DeepLiftParameters:
                                                                                                                                                        • model (nn.Module) – The reference to PyTorch model instance.

                                                                                                                                                        • -
                                                                                                                                                        • layer (torch.nn.Module) – Layer for which neuron attributions are computed. +

                                                                                                                                                        • layer (torch.nn.Module) – Layer for which neuron attributions are computed. Attributions for a particular neuron for the input or output of this layer are computed using the argument neuron_selector in the attribute method. @@ -681,7 +681,7 @@

                                                                                                                                                          Neuron DeepLift
                                                                                                                                                          Parameters:
                                                                                                                                                            -
                                                                                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                                                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, @@ -722,7 +722,7 @@

                                                                                                                                                            Neuron DeepLiftTensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                            Baselines define reference samples that are compared with +

                                                                                                                                                          • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                            Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. @@ -862,7 +862,7 @@

                                                                                                                                                            Neuron DeepLiftShapParameters:
                                                                                                                                                            • model (nn.Module) – The reference to PyTorch model instance.

                                                                                                                                                            • -
                                                                                                                                                            • layer (torch.nn.Module) – Layer for which neuron attributions are computed. +

                                                                                                                                                            • layer (torch.nn.Module) – Layer for which neuron attributions are computed. Attributions for a particular neuron for the input or output of this layer are computed using the argument neuron_selector in the attribute method. @@ -892,7 +892,7 @@

                                                                                                                                                              Neuron DeepLiftShap
                                                                                                                                                              Parameters:
                                                                                                                                                                -
                                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, @@ -933,7 +933,7 @@

                                                                                                                                                                Neuron DeepLiftShapTensor, tuple[Tensor, ...], or Callable) –

                                                                                                                                                                Baselines define reference samples that are compared with +

                                                                                                                                                              • baselines (Tensor, tuple[Tensor, ...], or Callable) –

                                                                                                                                                                Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. Baselines can be provided as:

                                                                                                                                                                @@ -1070,7 +1070,7 @@

                                                                                                                                                                Neuron GradientShap
                                                                                                                                                                • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                                                                                • -
                                                                                                                                                                • layer (torch.nn.Module) – Layer for which neuron attributions are computed. +

                                                                                                                                                                • layer (torch.nn.Module) – Layer for which neuron attributions are computed. The output size of the attribute method matches the dimensions of the inputs or outputs of the neuron with index neuron_selector in this layer, depending on whether @@ -1106,7 +1106,7 @@

                                                                                                                                                                  Neuron GradientShap
                                                                                                                                                                  Parameters:
                                                                                                                                                                    -
                                                                                                                                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which SHAP attribution +

                                                                                                                                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which SHAP attribution values are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -1146,7 +1146,7 @@

                                                                                                                                                                    Neuron GradientShapTensor, tuple[Tensor, ...], or Callable) –

                                                                                                                                                                    Baselines define the starting point from which expectation +

                                                                                                                                                                  • baselines (Tensor, tuple[Tensor, ...], or Callable) –

                                                                                                                                                                    Baselines define the starting point from which expectation is computed and can be provided as:

                                                                                                                                                                    • a single tensor, if inputs is a single tensor, with @@ -1282,7 +1282,7 @@

                                                                                                                                                                      Neuron Guided Backprop
                                                                                                                                                                      Parameters:
                                                                                                                                                                        -
                                                                                                                                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                                                                                                                                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -1434,7 +1434,7 @@

                                                                                                                                                                        Neuron Deconvolution
                                                                                                                                                                        Parameters:
                                                                                                                                                                          -
                                                                                                                                                                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                                                                                                                                                                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -1562,7 +1562,7 @@

                                                                                                                                                                          Neuron Feature Ablation
                                                                                                                                                                          • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                                                                                          • -
                                                                                                                                                                          • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                                                                                                          • layer (torch.nn.Module) – Layer for which attributions are computed. Attributions for a particular neuron in the input or output of this layer are computed using the argument neuron_selector in the attribute method. @@ -1583,7 +1583,7 @@

                                                                                                                                                                            Neuron Feature Ablation
                                                                                                                                                                            Parameters:
                                                                                                                                                                              -
                                                                                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron +

                                                                                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -1623,7 +1623,7 @@

                                                                                                                                                                              Neuron Feature Ablation

                                                                                                                                                                          • -
                                                                                                                                                                          • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                            Baselines define reference value which replaces each +

                                                                                                                                                                          • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                            Baselines define reference value which replaces each feature when ablated. Baselines can be provided as:

                                                                                                                                                                              @@ -1662,7 +1662,7 @@

                                                                                                                                                                              Neuron Feature Ablation -
                                                                                                                                                                            • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping +

                                                                                                                                                                            • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping features which should be ablated together. feature_mask should contain the same number of tensors as inputs. Each tensor should @@ -1776,7 +1776,15 @@

                                                                                                                                                                              Neuron Feature Ablation

                                                                                                                                                                              Captum

                                                                                                                                                                              -

                                                                                                                                                                              Navigation

                                                                                                                                                                              + +

                                                                                                                                                                              Navigation

                                                                                                                                                                              API Reference

                                                                                                                                                                            - -
                                                                                                                                                                            diff --git a/api/neuron/index.html b/api/neuron/index.html index 69009dd0b..5d5d5c929 100644 --- a/api/neuron/index.html +++ b/api/neuron/index.html @@ -43,7 +43,7 @@

                                                                                                                                                                            Neuron Gradient
                                                                                                                                                                            • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                                                                                            • -
                                                                                                                                                                            • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                                                                                                            • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -66,7 +66,7 @@

                                                                                                                                                                              Neuron Gradient
                                                                                                                                                                              Parameters:
                                                                                                                                                                                -
                                                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron +

                                                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -190,7 +190,7 @@

                                                                                                                                                                                Neuron Integrated Gradients
                                                                                                                                                                                • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                                                                                                • -
                                                                                                                                                                                • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                                                                                                                • layer (torch.nn.Module) – Layer for which attributions are computed. Output size of attribute matches this layer’s input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to @@ -227,7 +227,7 @@

                                                                                                                                                                                  Neuron Integrated Gradients
                                                                                                                                                                                  Parameters:
                                                                                                                                                                                    -
                                                                                                                                                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron integrated +

                                                                                                                                                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -267,7 +267,7 @@

                                                                                                                                                                                    Neuron Integrated GradientsTensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                    Baselines define the starting point from which integral +

                                                                                                                                                                                  • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                    Baselines define the starting point from which integral is computed. Baselines can be provided as:

                                                                                                                                                                                      @@ -399,7 +399,7 @@

                                                                                                                                                                                      Neuron Conductance
                                                                                                                                                                                      • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                                                                                                      • -
                                                                                                                                                                                      • layer (torch.nn.Module) – Layer for which neuron attributions are computed. +

                                                                                                                                                                                      • layer (torch.nn.Module) – Layer for which neuron attributions are computed. Attributions for a particular neuron in the input or output of this layer are computed using the argument neuron_selector in the attribute method. @@ -442,7 +442,7 @@

                                                                                                                                                                                        Neuron Conductance
                                                                                                                                                                                        Parameters:
                                                                                                                                                                                          -
                                                                                                                                                                                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron +

                                                                                                                                                                                        • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron conductance is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -481,7 +481,7 @@

                                                                                                                                                                                          Neuron ConductanceTensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                          Baselines define the starting point from which integral +

                                                                                                                                                                                        • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                          Baselines define the starting point from which integral is computed and can be provided as:

                                                                                                                                                                                          • a single tensor, if inputs is a single tensor, with @@ -508,7 +508,7 @@

                                                                                                                                                                                            Neuron Conductanceint, tuple, Tensor, or list, optional) –

                                                                                                                                                                                            Output indices for +

                                                                                                                                                                                          • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                            Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -650,7 +650,7 @@

                                                                                                                                                                                            Neuron DeepLiftParameters:
                                                                                                                                                                                            • model (nn.Module) – The reference to PyTorch model instance.

                                                                                                                                                                                            • -
                                                                                                                                                                                            • layer (torch.nn.Module) – Layer for which neuron attributions are computed. +

                                                                                                                                                                                            • layer (torch.nn.Module) – Layer for which neuron attributions are computed. Attributions for a particular neuron for the input or output of this layer are computed using the argument neuron_selector in the attribute method. @@ -681,7 +681,7 @@

                                                                                                                                                                                              Neuron DeepLift
                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                -
                                                                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, @@ -722,7 +722,7 @@

                                                                                                                                                                                                Neuron DeepLiftTensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                Baselines define reference samples that are compared with +

                                                                                                                                                                                              • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. @@ -862,7 +862,7 @@

                                                                                                                                                                                                Neuron DeepLiftShapParameters:
                                                                                                                                                                                                • model (nn.Module) – The reference to PyTorch model instance.

                                                                                                                                                                                                • -
                                                                                                                                                                                                • layer (torch.nn.Module) – Layer for which neuron attributions are computed. +

                                                                                                                                                                                                • layer (torch.nn.Module) – Layer for which neuron attributions are computed. Attributions for a particular neuron for the input or output of this layer are computed using the argument neuron_selector in the attribute method. @@ -892,7 +892,7 @@

                                                                                                                                                                                                  Neuron DeepLiftShap
                                                                                                                                                                                                  Parameters:
                                                                                                                                                                                                    -
                                                                                                                                                                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer +

                                                                                                                                                                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which layer attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, @@ -933,7 +933,7 @@

                                                                                                                                                                                                    Neuron DeepLiftShapTensor, tuple[Tensor, ...], or Callable) –

                                                                                                                                                                                                    Baselines define reference samples that are compared with +

                                                                                                                                                                                                  • baselines (Tensor, tuple[Tensor, ...], or Callable) –

                                                                                                                                                                                                    Baselines define reference samples that are compared with the inputs. In order to assign attribution scores DeepLift computes the differences between the inputs/outputs and corresponding references. Baselines can be provided as:

                                                                                                                                                                                                    @@ -1070,7 +1070,7 @@

                                                                                                                                                                                                    Neuron GradientShap
                                                                                                                                                                                                    • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                                                                                                                    • -
                                                                                                                                                                                                    • layer (torch.nn.Module) – Layer for which neuron attributions are computed. +

                                                                                                                                                                                                    • layer (torch.nn.Module) – Layer for which neuron attributions are computed. The output size of the attribute method matches the dimensions of the inputs or outputs of the neuron with index neuron_selector in this layer, depending on whether @@ -1106,7 +1106,7 @@

                                                                                                                                                                                                      Neuron GradientShap
                                                                                                                                                                                                      Parameters:
                                                                                                                                                                                                        -
                                                                                                                                                                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which SHAP attribution +

                                                                                                                                                                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which SHAP attribution values are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -1146,7 +1146,7 @@

                                                                                                                                                                                                        Neuron GradientShapTensor, tuple[Tensor, ...], or Callable) –

                                                                                                                                                                                                        Baselines define the starting point from which expectation +

                                                                                                                                                                                                      • baselines (Tensor, tuple[Tensor, ...], or Callable) –

                                                                                                                                                                                                        Baselines define the starting point from which expectation is computed and can be provided as:

                                                                                                                                                                                                        • a single tensor, if inputs is a single tensor, with @@ -1282,7 +1282,7 @@

                                                                                                                                                                                                          Neuron Guided Backprop
                                                                                                                                                                                                          Parameters:
                                                                                                                                                                                                            -
                                                                                                                                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                                                                                                                                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -1434,7 +1434,7 @@

                                                                                                                                                                                                            Neuron Deconvolution
                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                              -
                                                                                                                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which +

                                                                                                                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which attributions are computed. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple @@ -1562,7 +1562,7 @@

                                                                                                                                                                                                              Neuron Feature Ablation
                                                                                                                                                                                                              • forward_func (Callable) – The forward function of the model or any modification of it

                                                                                                                                                                                                              • -
                                                                                                                                                                                                              • layer (torch.nn.Module) – Layer for which attributions are computed. +

                                                                                                                                                                                                              • layer (torch.nn.Module) – Layer for which attributions are computed. Attributions for a particular neuron in the input or output of this layer are computed using the argument neuron_selector in the attribute method. @@ -1583,7 +1583,7 @@

                                                                                                                                                                                                                Neuron Feature Ablation
                                                                                                                                                                                                                Parameters:
                                                                                                                                                                                                                  -
                                                                                                                                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron +

                                                                                                                                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which neuron attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -1623,7 +1623,7 @@

                                                                                                                                                                                                                  Neuron Feature Ablation

                                                                                                                                                                                                              • -
                                                                                                                                                                                                              • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                Baselines define reference value which replaces each +

                                                                                                                                                                                                              • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                Baselines define reference value which replaces each feature when ablated. Baselines can be provided as:

                                                                                                                                                                                                                  @@ -1662,7 +1662,7 @@

                                                                                                                                                                                                                  Neuron Feature Ablation -
                                                                                                                                                                                                                • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping +

                                                                                                                                                                                                                • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping features which should be ablated together. feature_mask should contain the same number of tensors as inputs. Each tensor should @@ -1776,7 +1776,15 @@

                                                                                                                                                                                                                  Neuron Feature Ablation

                                                                                                                                                                                                                  Captum

                                                                                                                                                                                                                  -

                                                                                                                                                                                                                  Navigation

                                                                                                                                                                                                                  + +

                                                                                                                                                                                                                  Navigation

                                                                                                                                                                                                                  API Reference

                                                                                                                                                                                                                - -
                                                                                                                                                                                                                diff --git a/api/noise_tunnel.html b/api/noise_tunnel.html index 538ebc4ad..9a4aa3d68 100644 --- a/api/noise_tunnel.html +++ b/api/noise_tunnel.html @@ -71,7 +71,7 @@

                                                                                                                                                                                                                NoiseTunnel
                                                                                                                                                                                                                Parameters:
                                                                                                                                                                                                                  -
                                                                                                                                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which integrated +

                                                                                                                                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -189,7 +189,15 @@

                                                                                                                                                                                                                  NoiseTunnel

                                                                                                                                                                                                                  Captum

                                                                                                                                                                                                                  -

                                                                                                                                                                                                                  Navigation

                                                                                                                                                                                                                  + +

                                                                                                                                                                                                                  Navigation

                                                                                                                                                                                                                  API Reference

                                                                                                                                                                                                                - -
                                                                                                                                                                                                                diff --git a/api/noise_tunnel/index.html b/api/noise_tunnel/index.html index 538ebc4ad..9a4aa3d68 100644 --- a/api/noise_tunnel/index.html +++ b/api/noise_tunnel/index.html @@ -71,7 +71,7 @@

                                                                                                                                                                                                                NoiseTunnel
                                                                                                                                                                                                                Parameters:
                                                                                                                                                                                                                  -
                                                                                                                                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which integrated +

                                                                                                                                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which integrated gradients are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -189,7 +189,15 @@

                                                                                                                                                                                                                  NoiseTunnel

                                                                                                                                                                                                                  Captum

                                                                                                                                                                                                                  -

                                                                                                                                                                                                                  Navigation

                                                                                                                                                                                                                  + +

                                                                                                                                                                                                                  Navigation

                                                                                                                                                                                                                  API Reference

                                                                                                                                                                                                                - -
                                                                                                                                                                                                                diff --git a/api/occlusion.html b/api/occlusion.html index 546ebec5e..d12247b26 100644 --- a/api/occlusion.html +++ b/api/occlusion.html @@ -60,7 +60,7 @@

                                                                                                                                                                                                                Occlusion
                                                                                                                                                                                                                Parameters:
                                                                                                                                                                                                                  -
                                                                                                                                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which occlusion +

                                                                                                                                                                                                                • inputs (Tensor or tuple[Tensor, ...]) – Input for which occlusion attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -97,7 +97,7 @@

                                                                                                                                                                                                                  OcclusionTensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                  Baselines define reference value which replaces each +

                                                                                                                                                                                                                • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                  Baselines define reference value which replaces each feature when occluded. Baselines can be provided as:

                                                                                                                                                                                                                    @@ -124,7 +124,7 @@

                                                                                                                                                                                                                    Occlusionint, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                                    Output indices for +

                                                                                                                                                                                                                  • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                                    Output indices for which difference is computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -224,7 +224,15 @@

                                                                                                                                                                                                                    Occlusion

                                                                                                                                                                                                                    Captum

                                                                                                                                                                                                                    -

                                                                                                                                                                                                                    Navigation

                                                                                                                                                                                                                    + +

                                                                                                                                                                                                                    Navigation

                                                                                                                                                                                                                    API Reference

                                                                                                                                                                                                                    - -
                                                                                                                                                                                                                    diff --git a/api/occlusion/index.html b/api/occlusion/index.html index 546ebec5e..d12247b26 100644 --- a/api/occlusion/index.html +++ b/api/occlusion/index.html @@ -60,7 +60,7 @@

                                                                                                                                                                                                                    Occlusion
                                                                                                                                                                                                                    Parameters:
                                                                                                                                                                                                                      -
                                                                                                                                                                                                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which occlusion +

                                                                                                                                                                                                                    • inputs (Tensor or tuple[Tensor, ...]) – Input for which occlusion attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -97,7 +97,7 @@

                                                                                                                                                                                                                      OcclusionTensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                      Baselines define reference value which replaces each +

                                                                                                                                                                                                                    • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                      Baselines define reference value which replaces each feature when occluded. Baselines can be provided as:

                                                                                                                                                                                                                        @@ -124,7 +124,7 @@

                                                                                                                                                                                                                        Occlusionint, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                                        Output indices for +

                                                                                                                                                                                                                      • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                                        Output indices for which difference is computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -224,7 +224,15 @@

                                                                                                                                                                                                                        Occlusion

                                                                                                                                                                                                                        Captum

                                                                                                                                                                                                                        -

                                                                                                                                                                                                                        Navigation

                                                                                                                                                                                                                        + +

                                                                                                                                                                                                                        Navigation

                                                                                                                                                                                                                        API Reference

                                                                                                                                                                                                                        - -
                                                                                                                                                                                                                        diff --git a/api/robust.html b/api/robust.html index 635d9b795..747355de7 100644 --- a/api/robust.html +++ b/api/robust.html @@ -98,7 +98,7 @@

                                                                                                                                                                                                                        FGSM
                                                                                                                                                                                                                        Parameters:

                                                                                                                                                                                                            Returns:

                                                                                                                                                                                                            @@ -524,7 +524,7 @@

                                                                                                                                                                                                            Min Param Perturbation
                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                              -
                                                                                                                                                                                                            • forward_func (Callable or torch.nn.Module) – This can either be an instance +

                                                                                                                                                                                                            • forward_func (Callable or torch.nn.Module) – This can either be an instance of pytorch model or any modification of a model’s forward function.

                                                                                                                                                                                                            • attack (Perturbation or Callable) – This can either be an instance @@ -679,7 +679,15 @@

                                                                                                                                                                                                              Min Param Perturbation

                                                                                                                                                                                                              Captum

                                                                                                                                                                                                              -

                                                                                                                                                                                                              Navigation

                                                                                                                                                                                                              + +

                                                                                                                                                                                                              Navigation

                                                                                                                                                                                                              API Reference

                                                                                                                                                                                                            - -
                                                                                                                                                                                                            diff --git a/api/robust/index.html b/api/robust/index.html index 635d9b795..747355de7 100644 --- a/api/robust/index.html +++ b/api/robust/index.html @@ -98,7 +98,7 @@

                                                                                                                                                                                                            FGSM
                                                                                                                                                                                                            Parameters:

                                                                                                                                                                                                          Returns:

                                                                                                                                                                                                          @@ -524,7 +524,7 @@

                                                                                                                                                                                                          Min Param Perturbation
                                                                                                                                                                                                          Parameters:
                                                                                                                                                                                                            -
                                                                                                                                                                                                          • forward_func (Callable or torch.nn.Module) – This can either be an instance +

                                                                                                                                                                                                          • forward_func (Callable or torch.nn.Module) – This can either be an instance of pytorch model or any modification of a model’s forward function.

                                                                                                                                                                                                          • attack (Perturbation or Callable) – This can either be an instance @@ -679,7 +679,15 @@

                                                                                                                                                                                                            Min Param Perturbation

                                                                                                                                                                                                            Captum

                                                                                                                                                                                                            -

                                                                                                                                                                                                            Navigation

                                                                                                                                                                                                            + +

                                                                                                                                                                                                            Navigation

                                                                                                                                                                                                            API Reference

                                                                                                                                                                                                          - -
                                                                                                                                                                                                          diff --git a/api/saliency.html b/api/saliency.html index 9bd882880..81a0b75a7 100644 --- a/api/saliency.html +++ b/api/saliency.html @@ -53,7 +53,7 @@

                                                                                                                                                                                                          Saliency
                                                                                                                                                                                                          Parameters:
                                                                                                                                                                                                            -
                                                                                                                                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which saliency +

                                                                                                                                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which saliency is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -62,7 +62,7 @@

                                                                                                                                                                                                            Saliency to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately.

                                                                                                                                                                                                          • -
                                                                                                                                                                                                          • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                            Output indices for +

                                                                                                                                                                                                          • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                            Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -145,7 +145,15 @@

                                                                                                                                                                                                            Saliency
                                                                                                                                                                                                            diff --git a/api/saliency/index.html b/api/saliency/index.html index 9bd882880..81a0b75a7 100644 --- a/api/saliency/index.html +++ b/api/saliency/index.html @@ -53,7 +53,7 @@

                                                                                                                                                                                                            Saliency
                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                              -
                                                                                                                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which saliency +

                                                                                                                                                                                                            • inputs (Tensor or tuple[Tensor, ...]) – Input for which saliency is computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple @@ -62,7 +62,7 @@

                                                                                                                                                                                                              Saliency to the number of examples (aka batch size), and if multiple input tensors are provided, the examples must be aligned appropriately.

                                                                                                                                                                                                            • -
                                                                                                                                                                                                            • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                              Output indices for +

                                                                                                                                                                                                            • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                              Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -145,7 +145,15 @@

                                                                                                                                                                                                              Saliency
                                                                                                                                                                                                              diff --git a/api/shapley_value_sampling.html b/api/shapley_value_sampling.html index 787d89501..93040c9a5 100644 --- a/api/shapley_value_sampling.html +++ b/api/shapley_value_sampling.html @@ -72,7 +72,7 @@

                                                                                                                                                                                                              Shapley Value Sampling
                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                -
                                                                                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which Shapley value +

                                                                                                                                                                                                              • inputs (Tensor or tuple[Tensor, ...]) – Input for which Shapley value sampling attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. @@ -82,7 +82,7 @@

                                                                                                                                                                                                                Shapley Value Sampling

                                                                                                                                                                                                              • -
                                                                                                                                                                                                              • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                Baselines define reference value which replaces each +

                                                                                                                                                                                                              • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                Baselines define reference value which replaces each feature when ablated. Baselines can be provided as:

                                                                                                                                                                                                                  @@ -110,7 +110,7 @@

                                                                                                                                                                                                                  Shapley Value Sampling

                                                                                                                                                                                                                  -
                                                                                                                                                                                                                • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                                  Output indices for +

                                                                                                                                                                                                                • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                                  Output indices for which difference is computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -149,7 +149,7 @@

                                                                                                                                                                                                                  Shapley Value Sampling

                                                                                                                                                                                                                • -
                                                                                                                                                                                                                • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping +

                                                                                                                                                                                                                • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping features which should be added together. feature_mask should contain the same number of tensors as inputs. Each tensor should @@ -301,7 +301,7 @@

                                                                                                                                                                                                                  Shapley Value Sampling
                                                                                                                                                                                                                  Parameters:
                                                                                                                                                                                                                    -
                                                                                                                                                                                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which Shapley value +

                                                                                                                                                                                                                  • inputs (Tensor or tuple[Tensor, ...]) – Input for which Shapley value sampling attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. @@ -311,7 +311,7 @@

                                                                                                                                                                                                                    Shapley Value Sampling

                                                                                                                                                                                                                  • -
                                                                                                                                                                                                                  • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                    Baselines define reference value which replaces each +

                                                                                                                                                                                                                  • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                    Baselines define reference value which replaces each feature when ablated. Baselines can be provided as:

                                                                                                                                                                                                                      @@ -339,7 +339,7 @@

                                                                                                                                                                                                                      Shapley Value Sampling

                                                                                                                                                                                                                      -
                                                                                                                                                                                                                    • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                                      Output indices for +

                                                                                                                                                                                                                    • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                                      Output indices for which difference is computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -378,7 +378,7 @@

                                                                                                                                                                                                                      Shapley Value Sampling

                                                                                                                                                                                                                    • -
                                                                                                                                                                                                                    • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping +

                                                                                                                                                                                                                    • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping features which should be added together. feature_mask should contain the same number of tensors as inputs. Each tensor should @@ -485,7 +485,15 @@

                                                                                                                                                                                                                      Shapley Value Sampling

                                                                                                                                                                                                                      Captum

                                                                                                                                                                                                                      -

                                                                                                                                                                                                                      Navigation

                                                                                                                                                                                                                      + +

                                                                                                                                                                                                                      Navigation

                                                                                                                                                                                                                      API Reference

                                                                                                                                                                                                                      - -
                                                                                                                                                                                                                      diff --git a/api/shapley_value_sampling/index.html b/api/shapley_value_sampling/index.html index 787d89501..93040c9a5 100644 --- a/api/shapley_value_sampling/index.html +++ b/api/shapley_value_sampling/index.html @@ -72,7 +72,7 @@

                                                                                                                                                                                                                      Shapley Value Sampling
                                                                                                                                                                                                                      Parameters:
                                                                                                                                                                                                                        -
                                                                                                                                                                                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which Shapley value +

                                                                                                                                                                                                                      • inputs (Tensor or tuple[Tensor, ...]) – Input for which Shapley value sampling attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. @@ -82,7 +82,7 @@

                                                                                                                                                                                                                        Shapley Value Sampling

                                                                                                                                                                                                                      • -
                                                                                                                                                                                                                      • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                        Baselines define reference value which replaces each +

                                                                                                                                                                                                                      • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                        Baselines define reference value which replaces each feature when ablated. Baselines can be provided as:

                                                                                                                                                                                                                          @@ -110,7 +110,7 @@

                                                                                                                                                                                                                          Shapley Value Sampling

                                                                                                                                                                                                                          -
                                                                                                                                                                                                                        • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                                          Output indices for +

                                                                                                                                                                                                                        • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                                          Output indices for which difference is computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -149,7 +149,7 @@

                                                                                                                                                                                                                          Shapley Value Sampling

                                                                                                                                                                                                                        • -
                                                                                                                                                                                                                        • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping +

                                                                                                                                                                                                                        • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping features which should be added together. feature_mask should contain the same number of tensors as inputs. Each tensor should @@ -301,7 +301,7 @@

                                                                                                                                                                                                                          Shapley Value Sampling
                                                                                                                                                                                                                          Parameters:
                                                                                                                                                                                                                            -
                                                                                                                                                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which Shapley value +

                                                                                                                                                                                                                          • inputs (Tensor or tuple[Tensor, ...]) – Input for which Shapley value sampling attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. @@ -311,7 +311,7 @@

                                                                                                                                                                                                                            Shapley Value Sampling

                                                                                                                                                                                                                          • -
                                                                                                                                                                                                                          • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                            Baselines define reference value which replaces each +

                                                                                                                                                                                                                          • baselines (scalar, Tensor, tuple of scalar, or Tensor, optional) –

                                                                                                                                                                                                                            Baselines define reference value which replaces each feature when ablated. Baselines can be provided as:

                                                                                                                                                                                                                              @@ -339,7 +339,7 @@

                                                                                                                                                                                                                              Shapley Value Sampling

                                                                                                                                                                                                                              -
                                                                                                                                                                                                                            • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                                              Output indices for +

                                                                                                                                                                                                                            • target (int, tuple, Tensor, or list, optional) –

                                                                                                                                                                                                                              Output indices for which difference is computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, @@ -378,7 +378,7 @@

                                                                                                                                                                                                                              Shapley Value Sampling

                                                                                                                                                                                                                            • -
                                                                                                                                                                                                                            • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping +

                                                                                                                                                                                                                            • feature_mask (Tensor or tuple[Tensor, ...], optional) – feature_mask defines a mask for the input, grouping features which should be added together. feature_mask should contain the same number of tensors as inputs. Each tensor should @@ -485,7 +485,15 @@

                                                                                                                                                                                                                              Shapley Value Sampling

                                                                                                                                                                                                                              Captum

                                                                                                                                                                                                                              -

                                                                                                                                                                                                                              Navigation

                                                                                                                                                                                                                              + +

                                                                                                                                                                                                                              Navigation

                                                                                                                                                                                                                              API Reference

                                                                                                                                                                                                                              - -
                                                                                                                                                                                                                              diff --git a/api/utilities.html b/api/utilities.html index 9b1b5a74a..a26d6a3b1 100644 --- a/api/utilities.html +++ b/api/utilities.html @@ -83,7 +83,7 @@

                                                                                                                                                                                                                              Interpretable Input
                                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                              -

                                                                                                                                                                                                                              itp_attr (Tensor) – attributions of the interpretable features

                                                                                                                                                                                                                              +

                                                                                                                                                                                                                              itp_attr (Tensor) – attributions of the interpretable features

                                                                                                                                                                                                                              Returns:

                                                                                                                                                                                                                              formatted attribution

                                                                                                                                                                                                                              @@ -100,7 +100,7 @@

                                                                                                                                                                                                                              Interpretable Input
                                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                              -

                                                                                                                                                                                                                              itp_tensor (Tensor, optional) – tensor of the interpretable representation +

                                                                                                                                                                                                                              itp_tensor (Tensor, optional) – tensor of the interpretable representation of this input. If it is None, assume the interpretable representation is pristine and return the original model input Default: None.

                                                                                                                                                                                                                              @@ -181,7 +181,7 @@

                                                                                                                                                                                                                              Interpretable Input
                                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                              -

                                                                                                                                                                                                                              itp_attr (Tensor) – attributions of the interpretable features

                                                                                                                                                                                                                              +

                                                                                                                                                                                                                              itp_attr (Tensor) – attributions of the interpretable features

                                                                                                                                                                                                                              Returns:

                                                                                                                                                                                                                              formatted attribution

                                                                                                                                                                                                                              @@ -198,7 +198,7 @@

                                                                                                                                                                                                                              Interpretable Input
                                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                              -

                                                                                                                                                                                                                              itp_tensor (Tensor, optional) – tensor of the interpretable representation +

                                                                                                                                                                                                                              itp_tensor (Tensor, optional) – tensor of the interpretable representation of this input. If it is None, assume the interpretable representation is pristine and return the original model input Default: None.

                                                                                                                                                                                                                              @@ -276,7 +276,7 @@

                                                                                                                                                                                                                              Interpretable Input
                                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                              -

                                                                                                                                                                                                                              itp_attr (Tensor) – attributions of the interpretable features

                                                                                                                                                                                                                              +

                                                                                                                                                                                                                              itp_attr (Tensor) – attributions of the interpretable features

                                                                                                                                                                                                                              Returns:

                                                                                                                                                                                                                              formatted attribution

                                                                                                                                                                                                                              @@ -293,7 +293,7 @@

                                                                                                                                                                                                                              Interpretable Input
                                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                              -

                                                                                                                                                                                                                              itp_tensor (Tensor, optional) – tensor of the interpretable representation +

                                                                                                                                                                                                                              itp_tensor (Tensor, optional) – tensor of the interpretable representation of this input. If it is None, assume the interpretable representation is pristine and return the original model input Default: None.

                                                                                                                                                                                                                              @@ -754,7 +754,7 @@

                                                                                                                                                                                                                              Interpretable Embeddings
                                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                                -
                                                                                                                                                                                                                              • model (torch.nn.Module) – An instance of PyTorch model that contains embeddings.

                                                                                                                                                                                                                              • +
                                                                                                                                                                                                                              • model (torch.nn.Module) – An instance of PyTorch model that contains embeddings.

                                                                                                                                                                                                                              • embedding_layer_name (str, optional) – The name of the embedding layer in the model that we would like to make interpretable.

                                                                                                                                                                                                                              @@ -805,7 +805,7 @@

                                                                                                                                                                                                                              Interpretable Embeddings
                                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                              Return type:
                                                                                                                                                                                                                              -

                                                                                                                                                                                                                              Optional[Dict[str, Union[int, float, Tensor]]]

                                                                                                                                                                                                                              +

                                                                                                                                                                                                                              Optional[Dict[str, Union[int, float, Tensor]]]

                                                                                                                                                                                                                              Returns:

                                                                                                                                                                                                                              Optional statistics about training, e.g. iterations it took to @@ -915,7 +915,7 @@

                                                                                                                                                                                                                              Linear Models
                                                                                                                                                                                                                              Return type:
                                                                                                                                                                                                                              -

                                                                                                                                                                                                                              Tensor

                                                                                                                                                                                                                              +

                                                                                                                                                                                                                              Tensor

                                                                                                                                                                                                                              Returns:

                                                                                                                                                                                                                              A Tensor describing the representation of the model.

                                                                                                                                                                                                                              @@ -953,7 +953,7 @@

                                                                                                                                                                                                                              Linear Models
                                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                              @@ -972,7 +972,7 @@

                                                                                                                                                                                                                              Linear Models
                                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                              @@ -991,7 +991,7 @@

                                                                                                                                                                                                                              Linear Models
                                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                              @@ -1010,7 +1010,7 @@

                                                                                                                                                                                                                              Linear Models
                                                                                                                                                                                                                              Parameters:
                                                                                                                                                                                                                              @@ -1086,7 +1086,15 @@

                                                                                                                                                                                                                              Baselines

                                                                                                                                                                                                                              Captum

                                                                                                                                                                                                                              -

                                                                                                                                                                                                                              Navigation

                                                                                                                                                                                                                              + +

                                                                                                                                                                                                                              Navigation

                                                                                                                                                                                                                              API Reference

                                                                                                                                                                                                                            - -
                                                                                                                                                                                                                            diff --git a/api/utilities/index.html b/api/utilities/index.html index 9b1b5a74a..a26d6a3b1 100644 --- a/api/utilities/index.html +++ b/api/utilities/index.html @@ -83,7 +83,7 @@

                                                                                                                                                                                                                            Interpretable Input
                                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                                            -

                                                                                                                                                                                                                            itp_attr (Tensor) – attributions of the interpretable features

                                                                                                                                                                                                                            +

                                                                                                                                                                                                                            itp_attr (Tensor) – attributions of the interpretable features

                                                                                                                                                                                                                            Returns:

                                                                                                                                                                                                                            formatted attribution

                                                                                                                                                                                                                            @@ -100,7 +100,7 @@

                                                                                                                                                                                                                            Interpretable Input
                                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                                            -

                                                                                                                                                                                                                            itp_tensor (Tensor, optional) – tensor of the interpretable representation +

                                                                                                                                                                                                                            itp_tensor (Tensor, optional) – tensor of the interpretable representation of this input. If it is None, assume the interpretable representation is pristine and return the original model input Default: None.

                                                                                                                                                                                                                            @@ -181,7 +181,7 @@

                                                                                                                                                                                                                            Interpretable Input
                                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                                            -

                                                                                                                                                                                                                            itp_attr (Tensor) – attributions of the interpretable features

                                                                                                                                                                                                                            +

                                                                                                                                                                                                                            itp_attr (Tensor) – attributions of the interpretable features

                                                                                                                                                                                                                            Returns:

                                                                                                                                                                                                                            formatted attribution

                                                                                                                                                                                                                            @@ -198,7 +198,7 @@

                                                                                                                                                                                                                            Interpretable Input
                                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                                            -

                                                                                                                                                                                                                            itp_tensor (Tensor, optional) – tensor of the interpretable representation +

                                                                                                                                                                                                                            itp_tensor (Tensor, optional) – tensor of the interpretable representation of this input. If it is None, assume the interpretable representation is pristine and return the original model input Default: None.

                                                                                                                                                                                                                            @@ -276,7 +276,7 @@

                                                                                                                                                                                                                            Interpretable Input
                                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                                            -

                                                                                                                                                                                                                            itp_attr (Tensor) – attributions of the interpretable features

                                                                                                                                                                                                                            +

                                                                                                                                                                                                                            itp_attr (Tensor) – attributions of the interpretable features

                                                                                                                                                                                                                            Returns:

                                                                                                                                                                                                                            formatted attribution

                                                                                                                                                                                                                            @@ -293,7 +293,7 @@

                                                                                                                                                                                                                            Interpretable Input
                                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                                            -

                                                                                                                                                                                                                            itp_tensor (Tensor, optional) – tensor of the interpretable representation +

                                                                                                                                                                                                                            itp_tensor (Tensor, optional) – tensor of the interpretable representation of this input. If it is None, assume the interpretable representation is pristine and return the original model input Default: None.

                                                                                                                                                                                                                            @@ -754,7 +754,7 @@

                                                                                                                                                                                                                            Interpretable Embeddings
                                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                                              -
                                                                                                                                                                                                                            • model (torch.nn.Module) – An instance of PyTorch model that contains embeddings.

                                                                                                                                                                                                                            • +
                                                                                                                                                                                                                            • model (torch.nn.Module) – An instance of PyTorch model that contains embeddings.

                                                                                                                                                                                                                            • embedding_layer_name (str, optional) – The name of the embedding layer in the model that we would like to make interpretable.

                                                                                                                                                                                                                            @@ -805,7 +805,7 @@

                                                                                                                                                                                                                            Interpretable Embeddings
                                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                                            Return type:
                                                                                                                                                                                                                            -

                                                                                                                                                                                                                            Optional[Dict[str, Union[int, float, Tensor]]]

                                                                                                                                                                                                                            +

                                                                                                                                                                                                                            Optional[Dict[str, Union[int, float, Tensor]]]

                                                                                                                                                                                                                            Returns:

                                                                                                                                                                                                                            Optional statistics about training, e.g. iterations it took to @@ -915,7 +915,7 @@

                                                                                                                                                                                                                            Linear Models
                                                                                                                                                                                                                            Return type:
                                                                                                                                                                                                                            -

                                                                                                                                                                                                                            Tensor

                                                                                                                                                                                                                            +

                                                                                                                                                                                                                            Tensor

                                                                                                                                                                                                                            Returns:

                                                                                                                                                                                                                            A Tensor describing the representation of the model.

                                                                                                                                                                                                                            @@ -953,7 +953,7 @@

                                                                                                                                                                                                                            Linear Models
                                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                                            @@ -972,7 +972,7 @@

                                                                                                                                                                                                                            Linear Models
                                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                                            @@ -991,7 +991,7 @@

                                                                                                                                                                                                                            Linear Models
                                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                                            @@ -1010,7 +1010,7 @@

                                                                                                                                                                                                                            Linear Models
                                                                                                                                                                                                                            Parameters:
                                                                                                                                                                                                                            @@ -1086,7 +1086,15 @@

                                                                                                                                                                                                                            Baselines

                                                                                                                                                                                                                            Captum

                                                                                                                                                                                                                            -

                                                                                                                                                                                                                            Navigation

                                                                                                                                                                                                                            + +

                                                                                                                                                                                                                            Navigation

                                                                                                                                                                                                                            API Reference

                                                                                                                                                                                                                          - -
                                                                                                                                                                                                                          diff --git a/tutorials/CIFAR_TorchVision_Captum_Insights.html b/tutorials/CIFAR_TorchVision_Captum_Insights.html index 8cca8fdc2..8215f261c 100644 --- a/tutorials/CIFAR_TorchVision_Captum_Insights.html +++ b/tutorials/CIFAR_TorchVision_Captum_Insights.html @@ -234,10 +234,10 @@

                                                                                                                                                                                                                          -
                                                                                                                                                                                                                          +