-
Notifications
You must be signed in to change notification settings - Fork 356
/
Copy pathMODULE.bazel
124 lines (102 loc) · 4.4 KB
/
MODULE.bazel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
module(
name = "torch_tensorrt",
version = "2.5.0a0",
repo_name = "org_pytorch_tensorrt",
)
bazel_dep(name = "googletest", version = "1.14.0")
bazel_dep(name = "platforms", version = "0.0.10")
bazel_dep(name = "rules_cc", version = "0.0.9")
bazel_dep(name = "rules_python", version = "0.34.0")
python = use_extension("@rules_python//python/extensions:python.bzl", "python")
python.toolchain(
ignore_root_user_error = True,
python_version = "3.11",
)
bazel_dep(name = "rules_pkg", version = "1.0.1")
git_override(
module_name = "rules_pkg",
commit = "17c57f4",
remote = "https://github.com/narendasan/rules_pkg",
)
local_repository = use_repo_rule("@bazel_tools//tools/build_defs/repo:local.bzl", "local_repository")
# External dependency for torch_tensorrt if you already have precompiled binaries.
local_repository(
name = "torch_tensorrt",
path = "/opt/conda/lib/python3.8/site-packages/torch_tensorrt",
)
new_local_repository = use_repo_rule("@bazel_tools//tools/build_defs/repo:local.bzl", "new_local_repository")
# CUDA should be installed on the system locally
new_local_repository(
name = "cuda",
build_file = "@//third_party/cuda:BUILD",
path = "/usr/local/cuda-12.6/",
)
new_local_repository(
name = "cuda_win",
build_file = "@//third_party/cuda:BUILD",
path = "C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.6/",
)
http_archive = use_repo_rule("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
#############################################################################################################
# Tarballs and fetched dependencies (default - use in cases when building from precompiled bin and tarballs)
#############################################################################################################
http_archive(
name = "libtorch",
build_file = "@//third_party/libtorch:BUILD",
strip_prefix = "libtorch",
urls = ["https://download.pytorch.org/libtorch/nightly/cu126/libtorch-cxx11-abi-shared-with-deps-latest.zip"],
)
http_archive(
name = "libtorch_pre_cxx11_abi",
build_file = "@//third_party/libtorch:BUILD",
strip_prefix = "libtorch",
urls = ["https://download.pytorch.org/libtorch/nightly/cu126/libtorch-shared-with-deps-latest.zip"],
)
http_archive(
name = "libtorch_win",
build_file = "@//third_party/libtorch:BUILD",
strip_prefix = "libtorch",
urls = ["https://download.pytorch.org/libtorch/nightly/cu126/libtorch-win-shared-with-deps-latest.zip"],
)
# Download these tarballs manually from the NVIDIA website
# Either place them in the distdir directory in third_party and use the --distdir flag
# or modify the urls to "file:///<PATH TO TARBALL>/<TARBALL NAME>.tar.gz
http_archive(
name = "tensorrt",
build_file = "@//third_party/tensorrt/archive:BUILD",
strip_prefix = "TensorRT-10.7.0.23",
urls = [
"https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.7.0/tars/TensorRT-10.7.0.23.Linux.x86_64-gnu.cuda-12.6.tar.gz",
],
)
http_archive(
name = "tensorrt_win",
build_file = "@//third_party/tensorrt/archive:BUILD",
strip_prefix = "TensorRT-10.7.0.23",
urls = [
"https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.7.0/zip/TensorRT-10.7.0.23.Windows.win10.cuda-12.6.zip",
],
)
####################################################################################
# Locally installed dependencies (use in cases of custom dependencies or aarch64)
####################################################################################
# NOTE: In the case you are using just the pre-cxx11-abi path or just the cxx11 abi path
# with your local libtorch, just point deps at the same path to satisfy bazel.
# NOTE: NVIDIA's aarch64 PyTorch (python) wheel file uses the CXX11 ABI unlike PyTorch's standard
# x86_64 python distribution. If using NVIDIA's version just point to the root of the package
# for both versions here and do not use --config=pre-cxx11-abi
#new_local_repository(
# name = "libtorch",
# path = "/usr/local/lib/python3.6/dist-packages/torch",
# build_file = "third_party/libtorch/BUILD"
#)
#new_local_repository(
# name = "libtorch_pre_cxx11_abi",
# path = "/usr/local/lib/python3.6/dist-packages/torch",
# build_file = "third_party/libtorch/BUILD"
#)
#new_local_repository(
# name = "tensorrt",
# path = "/usr/",
# build_file = "@//third_party/tensorrt/local:BUILD"
#)