forked from neuripss2020/kccotgan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel_train.py
413 lines (354 loc) · 20.6 KB
/
kernel_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
#!/usr/bin/env python
import argparse
import data_utils
import gan
import gan_utils
import glob
import os
import time
import tqdm
import matplotlib.pyplot as plt
from datetime import datetime
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
print('Tensorflow version:', tf.__version__)
tf.keras.backend.set_floatx('float32')
start_time = time.time()
def train(args):
test = args.test
dname = args.dname
batch_size = args.batch_size
seed = args.seed
save_freq = args.save_freq
# filter size for (de)convolutional layers
g_state_size = args.g_state_size
d_state_size = args.d_state_size
g_filter_size = args.g_filter_size
d_filter_size = args.d_filter_size
reg_penalty = args.reg_penalty
g_output_activation = 'sigmoid'
nlstm = args.n_lstm
x_height = args.height
x_width = args.width
channels = args.n_channels
epochs = args.n_epochs
bn = args.batch_norm
dataset = dname + '-cot'
# Number of RNN layers stacked together
n_layers = 1
gen_lr = args.lr
disc_lr = args.lr
tf.random.set_seed(seed)
np.random.seed(seed)
it_counts = 0
warmup_step = args.warmup
decay_steps = 5000
decay_rate = 0.975
# decaying learning rate scheme
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate=gen_lr, decay_steps=decay_steps,
decay_rate=decay_rate, staircase=True)
warmup_schedule = data_utils.WarmUp(initial_learning_rate=gen_lr, decay_schedule_fn=lr_schedule, warmup_steps=warmup_step)
# Add gradient clipping before updates
gen_optimiser = tf.keras.optimizers.Adam(warmup_schedule, beta_1=0.5, beta_2=0.9)
dischm_optimiser = tf.keras.optimizers.Adam(warmup_schedule, beta_1=0.5, beta_2=0.9)
disc_iters = 1
sinkhorn_eps = args.sinkhorn_eps
sinkhorn_l = args.sinkhorn_l
total_time_steps = args.total_time_steps
int_time_steps = args.int_time_steps
pred_time_steps = total_time_steps - int_time_steps
scaling_coef = 1.0 / args.scaling_coef
# dropout rates
dp = args.dropout
rnn_dp = args.rnn_dropout
regularization = args.regularization
cw = args.clockwork
kernel_choice = args.kernel
init_sig = args.init_sigma
z_channels = args.z_channels
# adjust channel parameter as we want to drop the
# alpha channel for animated Sprites
batched_x = None
if dname == 'penn_action':
dataset = tf.data.Dataset.from_generator(data_utils.load_penn_data,
args=([batch_size, x_height, x_width, total_time_steps]),
output_types=tf.float64)
batched_x = dataset.batch(batch_size).repeat(epochs)
elif dname == 'kth':
dataset = tf.data.Dataset.from_generator(data_utils.load_kth_data,
args=([batch_size, x_height, x_width, total_time_steps, True]),
output_types=tf.float64)
batched_x = dataset.batch(batch_size).repeat(epochs)
dataset = tf.data.Dataset.from_generator(data_utils.load_kth_data,
args=([batch_size, x_height, x_width, total_time_steps, False]),
output_types=tf.float64)
test_x = dataset.batch(batch_size).repeat(epochs)
elif dname == "mmnist":
data_path = "../data/mmnist/mnist_training_set.npy"
training_data = np.load(data_path) / 255.0
training_data = tf.transpose(training_data[:total_time_steps, ...], (1, 0, 2, 3))
training_data = tf.transpose(training_data, (0, 2, 1, 3))
dataset = tf.data.Dataset.from_tensor_slices(training_data)
batched_x = dataset.batch(batch_size).repeat(epochs)
data_path = "../data/mmnist/mnist_test_set.npy"
test_data = np.load(data_path) / 255.0
test_data = tf.transpose(test_data[:total_time_steps, ...], (1, 0, 2, 3))
test_data = tf.transpose(test_data, (0, 2, 1, 3))
dataset = tf.data.Dataset.from_tensor_slices(test_data)
test_x = dataset.batch(batch_size).repeat(epochs)
elif dname == "mazes":
# path to data
root_path = '../data/'
data_reader = data_utils.DataReader(dataset=dname, time_steps=total_time_steps,
root=root_path, custom_frame_size=x_height, mode="train")
batched_x = data_reader.provide_dataset(batch_size=batch_size)
data_path = "../data/mazes/np_mazes_test.npy"
test_data = np.load(data_path)[:, :, :total_time_steps, :, :]
dataset = tf.data.Dataset.from_tensor_slices(test_data)
test_x = dataset.batch(batch_size).repeat(epochs)
elif dname == "robot_push":
# data = data_utils.robot_push_data()
dataset = tf.data.Dataset.from_generator(data_utils.robot_push_data, args=([total_time_steps, True]),
output_types=tf.float64)
batched_x = dataset.batch(batch_size).repeat(epochs)
test = tf.data.Dataset.from_generator(data_utils.robot_push_data, args=([total_time_steps, False]),
output_types=tf.float64)
test_x = test.batch(batch_size).repeat(epochs)
encode_period = [int(x) for x in args.enc_period.split(",")]
decode_period = [int(x) for x in args.dec_period.split(",")]
z_height = 4
z_width = 4
# Define a standard multivariate normal for (z1, z2, ..., zT) --> (y1, y2, ..., yT)
dist_z = tfp.distributions.Normal(0.0, 1.0)
context_encoder = gan.VideoEncoderConvLSTM(batch_size, int_time_steps, pred_time_steps, g_state_size, x_width,
x_height, z_width, z_height, g_filter_size, bn=bn, nlstm=nlstm,
nchannel=channels, dropout=dp, rnn_dropout=rnn_dp, reg=regularization,
cw=cw, period=encode_period)
decoder = gan.VideoDecoderConvLSTM(batch_size, int_time_steps, pred_time_steps, g_state_size, x_width, x_height,
z_width, z_height, g_filter_size, bn=bn, nlstm=nlstm, nchannel=channels,
dropout=dp, rnn_dropout=rnn_dp, output_activation=g_output_activation,
reg=regularization, cw=cw, period=decode_period)
discriminator_h = gan.VideoDiscriminator(batch_size, total_time_steps, d_state_size, x_width, x_height, z_width,
z_height, filter_size=d_filter_size, bn=bn, nchannel=channels)
discriminator_m = gan.VideoDiscriminator(batch_size, total_time_steps, d_state_size, x_width, x_height, z_width,
z_height, filter_size=d_filter_size, bn=bn, nchannel=channels)
if args.checkpoint:
enc_ckpt_path = 'trained/cot/{}_encoder/'.format(args.ckpt_name)
encoder.load_weights(enc_ckpt_path)
dec_ckpt_path = 'trained/cot/{}_decoder/'.format(args.ckpt_name)
decoder.load_weights(dec_ckpt_path)
h_ckpt_path = 'trained/cot/{}/'.format(args.ckpt_name + '_h')
discriminator_h.load_weights(h_ckpt_path)
m_ckpt_path = 'trained/cot/{}/'.format(args.ckpt_name + '_m')
discriminator_m.load_weights(m_ckpt_path)
print('Checkpoints loaded. Training resumed.')
else:
print('New training started.')
# data_utils.check_model_summary(batch_size, z_dims, generator)
# data_utils.check_model_summary(batch_size, seq_len, discriminator_h)
f_name = "{}_lr{}_lam{}_{}kernel_init_sig{}_{}".format(dname, gen_lr, reg_penalty, kernel_choice, init_sig,
args.ckpt_str)
saved_file = f_name + "-{}{}-{}:{}:{}.{}".format(datetime.now().strftime("%h"), datetime.now().strftime("%d"),
datetime.now().strftime("%H"), datetime.now().strftime("%M"),
datetime.now().strftime("%S"), datetime.now().strftime("%f"))
if args.mixed_sinkhorn:
model_fn = f_name + "-mixed"
elif args.bi_causal:
model_fn = f_name + "-bicausal"
else:
model_fn = f_name + "-no_mix"
log_dir = "trained/{}/log".format(saved_file)
# Create directories for storing images later.
if not os.path.exists("trained/{}/data".format(saved_file)):
os.makedirs("trained/{}/data".format(saved_file))
if not os.path.exists("trained/{}/images".format(saved_file)):
os.makedirs("trained/{}/images".format(saved_file))
# GAN train notes
with open("./trained/{}/train_notes.txt".format(saved_file), 'w') as f:
# Include any experiment notes here:
f.write("Experiment notes: .... \n\n")
f.write("MODEL_DATA: {}\nSEQ_LEN: {}\n".format(
dataset,
total_time_steps, ))
f.write("STATE_SIZE: {}\nNUM_LAYERS: {}\nLAMBDA: {}\n".format(
g_state_size,
n_layers,
reg_penalty))
f.write("BATCH_SIZE: {}\nCRITIC_ITERS: {}\nGenerator LR: {}\nDiscriminator LR:{}\n".format(
batch_size,
disc_iters,
gen_lr,
disc_lr))
f.write("SINKHORN EPS: {}\nSINKHORN L: {}\n\n".format(
sinkhorn_eps,
sinkhorn_l))
train_writer = tf.summary.create_file_writer(logdir=log_dir)
gaussian_kernel = data_utils.KernelSmoothing(temporal_kernel_size=6, spatial_kernel_size=6)
# @tf.function
def disc_training_step(real_in, real_pred, sigma):
hidden_z = dist_z.sample([batch_size, pred_time_steps // decode_period[-1], z_height, z_width, z_channels])
with tf.GradientTape() as disc_tape:
real_inp = tf.concat((real_in, real_pred), axis=2)
preds_features = context_encoder.call(real_inp)
fake_pred = decoder.call(preds_features, hidden_z)
real = tf.concat((real_in, real_pred), axis=2)
fake = tf.concat((real_in, fake_pred), axis=2)
if kernel_choice == '1d':
real = gaussian_kernel.temporal_convolution(real, sigma)
fake = gaussian_kernel.temporal_convolution(fake, sigma)
elif kernel_choice == '2d':
real = gaussian_kernel.spatial_convolution(real, sigma)
fake = gaussian_kernel.spatial_convolution(fake, sigma)
elif kernel_choice == '3d':
real = gaussian_kernel.gaussian_convolution3D(real, sigma)
fake = gaussian_kernel.gaussian_convolution3D(fake, sigma)
h_fake = discriminator_h.call(fake)
h_real = discriminator_h.call(real)
m_real = discriminator_m.call(real)
m_fake = discriminator_m.call(fake)
loss = gan_utils.compute_sinkhorn_loss(real, fake, scaling_coef, sinkhorn_eps, sinkhorn_l, h_fake, m_real,
h_real, m_fake, video=True)
pm1 = gan_utils.scale_invariante_martingale_regularization(m_real, reg_penalty, scaling_coef)
disc_loss = - loss + pm1
# update discriminator parameters
disch_grads, discm_grads = disc_tape.gradient(disc_loss, [discriminator_h.trainable_variables,
discriminator_m.trainable_variables])
dischm_optimiser.apply_gradients(zip(disch_grads, discriminator_h.trainable_variables))
dischm_optimiser.apply_gradients(zip(discm_grads, discriminator_m.trainable_variables))
return pm1
# @tf.function
def gen_training_step(real_in, real_pred, sigma):
hidden_z = dist_z.sample([batch_size, pred_time_steps // decode_period[-1], z_height, z_width, z_channels])
with tf.GradientTape() as gen_tape:
real_inp = tf.concat((real_in, real_pred), axis=2)
preds_features = context_encoder.call(real_inp)
fake_pred = decoder.call(preds_features, hidden_z)
real = tf.concat((real_in, real_pred), axis=2)
fake = tf.concat((real_in, fake_pred), axis=2)
if kernel_choice == '1d':
real = gaussian_kernel.temporal_convolution(real, sigma)
fake = gaussian_kernel.temporal_convolution(fake, sigma)
elif kernel_choice == '2d':
real = gaussian_kernel.spatial_convolution(real, sigma)
fake = gaussian_kernel.spatial_convolution(fake, sigma)
elif kernel_choice == '3d':
real = gaussian_kernel.gaussian_convolution3D(real, sigma)
fake = gaussian_kernel.gaussian_convolution3D(fake, sigma)
h_fake = discriminator_h.call(fake)
h_real = discriminator_h.call(real)
m_real = discriminator_m.call(real)
m_fake = discriminator_m.call(fake)
loss = gan_utils.compute_sinkhorn_loss(real, fake, scaling_coef, sinkhorn_eps, sinkhorn_l, h_fake, m_real,
h_real, m_fake, video=True)
con_grads, dec_grads = gen_tape.gradient(loss, [context_encoder.trainable_variables, decoder.trainable_variables])
gen_optimiser.apply_gradients(zip(con_grads, context_encoder.trainable_variables))
gen_optimiser.apply_gradients(zip(dec_grads, decoder.trainable_variables))
return loss
with tqdm.trange(epochs, ncols=100, unit="epoch") as ep:
for _ in ep:
it = tqdm.tqdm(ncols=100)
for x in batched_x:
if x.shape[0] != batch_size:
continue
it_counts += 1
real_data = tf.reshape(x, [batch_size, x_height, total_time_steps, x_width, -1])
# throw away alpha channel
real_data = tf.cast(real_data[..., :channels], tf.float32)
# split real data to training inputs and predictions
real_inputs = real_data[:, :, :int_time_steps, :, :]
real_preds = real_data[:, :, int_time_steps:, :, :]
if args.decaying_sigma:
sig = gaussian_kernel.annealing_sigma(init_sig, it_counts)
else:
sig = init_sig
pm = disc_training_step(real_inputs, real_preds, sig)
loss = gen_training_step(real_inputs, real_preds, sig)
it.set_postfix(loss=float(loss))
it.update(1)
with train_writer.as_default():
tf.summary.scalar('pM', pm, step=it_counts)
tf.summary.scalar('Sinkhorn Loss', loss, step=it_counts)
train_writer.flush()
if not np.isfinite(loss.numpy()):
print('%s Loss exploded!' % model_fn)
# Open the existing file with mode a - append
with open("./trained/{}/train_notes.txt".format(saved_file), 'a') as f:
# Include any experiment notes here:
f.write("\n Training failed! ")
break
else:
if it_counts % save_freq == 0 or it_counts == 1:
if it_counts % 10000 == 0 and it_counts > 9999:
context_encoder.save_weights("./trained/{}/{}_con_encoder_{}iters/".format(test, model_fn,
it_counts))
decoder.save_weights("./trained/{}/{}_iter{}_decoder_{}iters/".format(test, model_fn,
it_counts, it_counts))
discriminator_h.save_weights("./trained/{}/{}_iter{}_h/".format(test, model_fn, it_counts))
discriminator_m.save_weights("./trained/{}/{}_iter{}_m/".format(test, model_fn, it_counts))
for x in test_x.take(1):
test_data = tf.reshape(x, [batch_size, x_height, total_time_steps, x_width, -1])
# throw away alpha channel
test_data = tf.cast(test_data[..., :channels], tf.float32)
# split real data to training inputs and predictions
test_inputs = test_data[:, :, :int_time_steps, :, :]
for i in range(pred_time_steps):
preds_features = context_encoder.call(test_inputs, training=False)
hidden_z = dist_z.sample([batch_size, 1, 4, 4, 128])
preds = decoder.call(preds_features, hidden_z, training=False)
test_inputs = tf.concat((test_inputs, preds), axis=2)
images = tf.reshape(test_inputs, [batch_size, x_height, x_width * total_time_steps, channels])
# plot first 10 samples within one image
img = tf.concat(list(images[:min(10, batch_size)]), axis=0)[None]
with train_writer.as_default():
tf.summary.image("Training data", img, step=it_counts)
print("--- The entire training takes %s minutes ---" % ((time.time() - start_time) / 60.0))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='cot')
parser.add_argument('-d', '--dname', type=str, default='robot_push',
choices=['animation', 'human_action', 'ucf', 'kth', 'penn_action', 'mmnist', 'mazes', 'robot_push'])
parser.add_argument('-t', '--test', type=str, default='cot', choices=['cot'])
parser.add_argument('-s', '--seed', type=int, default=1)
parser.add_argument('-gss', '--g_state_size', type=int, default=8)
parser.add_argument('-gfs', '--g_filter_size', type=int, default=8)
parser.add_argument('-dss', '--d_state_size', type=int, default=8)
parser.add_argument('-dfs', '--d_filter_size', type=int, default=8)
# animation data has T=13 and human action data has T=16
parser.add_argument('-tts', '--total_time_steps', type=int, default=15)
parser.add_argument('-its', '--int_time_steps', type=int, default=5)
parser.add_argument('-gts', '--gen_time_steps', type=int, default=10)
parser.add_argument('-nch', '--n_channels', type=int, default=3)
parser.add_argument('-nz', '--z_channels', type=int, default=128)
parser.add_argument('-sinke', '--sinkhorn_eps', type=float, default=0.8)
parser.add_argument('-reg_p', '--reg_penalty', type=float, default=1.0)
parser.add_argument('-sinkl', '--sinkhorn_l', type=int, default=100)
parser.add_argument('-bs', '--batch_size', type=int, default=2)
parser.add_argument('-p', '--path', type=str, default='../data/animation/*.tfrecord')
parser.add_argument('-save', '--save_freq', type=int, default=10)
parser.add_argument('-lr', '--lr', type=float, default=5e-4)
parser.add_argument('-bn', '--batch_norm', type=bool, default=True)
parser.add_argument('-nlstm', '--n_lstm', type=int, default=1)
parser.add_argument('-dp', '--dropout', type=float, default=0.0)
parser.add_argument('-rdp', '--rnn_dropout', type=float, default=0.0)
parser.add_argument('-rt', '--read_tfrecord', type=bool, default=True)
# Scale parameter applied will be 1.0 / scaling_coef
parser.add_argument('-sc', '--scaling_coef', type=float, default=15.0)
parser.add_argument('-mix', '--mixed_sinkhorn', type=bool, default=False)
parser.add_argument('-ckpt', '--checkpoint', type=bool, default=False)
parser.add_argument('-cn', '--ckpt_name', type=str, default='ckpts name')
parser.add_argument('-bc', '--bi_causal', type=bool, default=False)
parser.add_argument('-k', '--kernel', type=str, default="none", choices=['1d', '2d', '3d', 'none'])
parser.add_argument('-cw', '--clockwork', type=bool, default=False)
parser.add_argument('-regu', '--regularization', type=bool, default=False)
parser.add_argument('-ct', '--ckpt_str', type=str, default='full_training')
parser.add_argument('-xh', '--height', type=int, default=64)
parser.add_argument('-xw', '--width', type=int, default=64)
parser.add_argument('-ne', '--n_epochs', type=int, default=100)
parser.add_argument('-wu', '--warmup', type=int, default=10000)
parser.add_argument('-epd', '--enc_period', type=str, default="1,1,1,1")
parser.add_argument('-dpd', '--dec_period', type=str, default="1,1,1,1")
parser.add_argument('-nstd', '--n_std', type=float, default=0.1)
parser.add_argument('-isig', '--init_sigma', type=float, default=5.0)
parser.add_argument('-desig', '--decaying_sigma', type=bool, default=False)
args = parser.parse_args()
train(args)