-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_synthetic_psf.py
95 lines (82 loc) · 4.24 KB
/
create_synthetic_psf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# ruff: noqa
from pathlib import Path
import numpy as np
from matplotlib import pyplot as plt
from punchbowl.data.wcs import calculate_celestial_wcs_from_helio
from regularizepsf import (ArrayPSFTransform, simple_functional_psf,
varied_functional_psf)
from regularizepsf.util import calculate_covering
from simpunch.level1 import generate_spacecraft_wcs
from simpunch.level2 import generate_starfield
psf_size = 64 # size of the PSF model to use in pixels
initial_sigma = 3.3 / 2.355
img_size = 2048
@simple_functional_psf
def baked_in_initial_psf(row,
col,
x0=psf_size / 2,
y0=psf_size / 2,
sigma_x=initial_sigma,
sigma_y=initial_sigma,
A=0.1):
return A * np.exp(-(np.square(row - x0) / (2 * np.square(sigma_x)) + np.square(col - y0) / (2 * np.square(sigma_y))))
@simple_functional_psf
def target_psf(row,
col,
core_sigma_x=initial_sigma,
core_sigma_y=initial_sigma,
tail_angle=0,
tail_separation=0,
):
x0 = psf_size / 2
y0 = psf_size / 2
A = 0.1
core = A * np.exp(
-(np.square(row - x0) / (2 * np.square(core_sigma_x)) + np.square(col - y0) / (2 * np.square(core_sigma_y))))
A_tail = 0.05
sigma_x = tail_separation
sigma_y = core_sigma_y + 0.25
a = np.square(np.cos(tail_angle)) / (2 * np.square(sigma_x)) + np.square(np.sin(tail_angle)) / (
2 * np.square(sigma_y))
b = -np.sin(tail_angle) * np.cos(tail_angle) / (2 * np.square(sigma_x)) + (
(np.sin(tail_angle) * np.cos(tail_angle)) / (2 * np.square(sigma_y)))
c = np.square(np.sin(tail_angle)) / (2 * np.square(sigma_x)) + np.square(np.cos(tail_angle)) / (
2 * np.square(sigma_y))
tail_x0 = x0 - tail_separation * np.cos(tail_angle)
tail_y0 = y0 + tail_separation * np.sin(tail_angle)
tail = A_tail * np.exp(-(a * (row - tail_x0) ** 2 + 2 * b * (row - tail_x0) * (col - tail_y0) + c * (col - tail_y0) ** 2))
return core + tail
@varied_functional_psf(target_psf)
def synthetic_psf(row, col):
return {"tail_angle": -np.arctan2(row - img_size//2, col - img_size//2),
"tail_separation": np.sqrt((row - img_size//2) ** 2 + (col - img_size//2) ** 2)/1200 * 2.0 + 1E-3,
"core_sigma_x": initial_sigma,
"core_sigma_y": initial_sigma}
coords = calculate_covering((img_size, img_size), psf_size)
initial = baked_in_initial_psf.as_array_psf(coords, psf_size)
synthetic = synthetic_psf.as_array_psf(coords, psf_size)
backward_corrector = ArrayPSFTransform.construct(initial, synthetic, alpha=3.7, epsilon=0.15)
backward_corrector.save(Path("synthetic_backward_psf.fits"))
forward_corrector = ArrayPSFTransform.construct(synthetic, initial, alpha=3.7, epsilon=0.15)
forward_corrector.save(Path("synthetic_forward_psf.fits"))
# import astropy.time
# from astropy.io import fits
# # wcs_helio = generate_spacecraft_wcs("1", 0, astropy.time.Time.now())
# # wcs_stellar_input = calculate_celestial_wcs_from_helio(wcs_helio,
# # astropy.time.Time.now(),
# # (2048, 2048))
# # starfield, _ = generate_starfield(wcs_stellar_input, (2048, 2048),
# # flux_set=30*2.0384547E-9, fwhm=3, dimmest_magnitude=12,
# # noise_mean=1E-10, noise_std=1E-11)
# path = "/Users/jhughes/new_results/nov25-1026/PUNCH_L1_PP3_20241126140400_v1.fits"
# starfield = fits.open(path)[1].data
# # starfield += np.nanpercentile(starfield, 1)
# distorted = backward_corrector.apply(starfield, pad_mode='mean')
# forward_result = forward_corrector.apply(distorted, pad_mode='mean')
#
# fig, axs = plt.subplots(ncols=3, sharex=True, sharey=True)
# axs[0].imshow(np.sign(starfield) * np.log10(np.abs(starfield)), vmin=-15, vmax=-12)
# axs[1].imshow(np.sign(distorted) * np.log10(np.abs(distorted)), vmin=-15, vmax=-12)
# axs[2].imshow(np.sign(forward_result) * np.log10(np.abs(forward_result)), vmin=-15, vmax=-12)
# # ax.imshow(distorted)
# plt.show()