-
Notifications
You must be signed in to change notification settings - Fork 273
/
Copy pathaxi_lite_dw_converter.sv
567 lines (516 loc) · 23.9 KB
/
axi_lite_dw_converter.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
// Copyright 2020 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
// Authors:
// - Wolfgang Roenninger <[email protected]>
/// # AXI4-Lite data width downsize module.
///
/// ## Down Conversion
///
/// The module will be in this mode if `AxiSlvPortDataWidth > AxiMstPortDataWidth`.
/// The module does multiple transactions on the master port for each transaction of the salve port.
///
/// The address on the master port will be aligned to the bus width, regardless what the input
/// address was. The number of transactions generated on the master port is equal to the
/// `DownsizeFactor = AxiSlvPortDataWidth / AxiMstPortDataWidth`.
///
/// Eg: `AxiAddrWidth == 32'd16`, `AxiSlvPortDataWidth == 32'64`, `AxiMstPortDataWidth == 32'd32'
/// This is for write transactions. Reads are accessing the whole width of the slave port.
///
///
/// | EG NUM | SLV ADDR | SLV W DATA | SLV W STRB | MST ADDR | MST W DATA | MST W STRB |
/// |--------|----------|--------------------|------------|----------|------------|------------|
/// | 1 | 0x0000 | 0xBEEFBEEFAAAABBBB | 0xAB | 0x0000 | 0xAAAABBBB | 0xB |
/// | 1 | | | | 0x0004 | 0xBEEFBEEF | 0xA |
/// | | | | | | | |
/// | 2 | 0x0000 | 0xBEEFBEEFAAAABBBB | 0xF0 | 0x0000 | 0xAAAABBBB | 0x0 |
/// | 2 | | | | 0x0004 | 0xBEEFBEEF | 0xF |
/// | | | | | | | |
/// | 3 | 0x0004 | 0xBEEFBEEFAAAABBBB | 0xF0 | 0x0000 | 0xAAAABBBB | 0x0 |
/// | 3 | | | | 0x0004 | 0xBEEFBEEF | 0xF |
/// | | | | | | | |
/// | 4 | 0x0004 | 0xBEEFBEEFAAAABBBB | 0x0F | 0x0000 | 0xAAAABBBB | 0xF |
/// | 4 | | | | 0x0004 | 0xBEEFBEEF | 0x0 |
/// | | | | | | | |
/// | 5 | 0x0005 | 0xBEEFBE0000000000 | 0xE0 | 0x0000 | 0x00000000 | 0x0 |
/// | 5 | | | | 0x0004 | 0xBEEFBE00 | 0xE |
///
/// Response field is aggregated (OR'ed) between the multiple requests made on the master port.
/// If one of the requests on the master port errors, the error response of the request
/// on the slave port will also signal an error.
///
/// ## Up conversion
///
/// The module will be in this mode if `AxiSlvPortDataWidth < AxiMstPortDataWidth`.
/// This mode will generate the same amount of transactions on the master port as on the slave port.
/// Data is replicated to match the bus width. Write strobes are silenced for the byte lanes not
/// written.
///
/// ## Pass Through
///
/// The module will be in this mode if `AxiSlvPortDataWidth == AxiMstPortDataWidth`.
/// Here the module passes through the slave port to the master port.
`include "common_cells/registers.svh"
module axi_lite_dw_converter #(
/// AXI4-Lite address width of the ports.
parameter int unsigned AxiAddrWidth = 32'd0,
/// AXI4-Lite data width of the slave port.
parameter int unsigned AxiSlvPortDataWidth = 32'd0,
/// AXI4-Lite data width of the master port.
parameter int unsigned AxiMstPortDataWidth = 32'd0,
/// AXI4-Lite AW channel struct type. This is for both ports the same.
parameter type axi_lite_aw_t = logic,
/// AXI4-Lite W channel struct type of the slave port.
parameter type axi_lite_slv_w_t = logic,
/// AXI4-Lite W channel struct type of the master port.
parameter type axi_lite_mst_w_t = logic,
/// AXI4-Lite B channel struct type. This is for both ports.
parameter type axi_lite_b_t = logic,
/// AXI4-Lite AR channel struct type. This is for both ports.
parameter type axi_lite_ar_t = logic,
/// AXI4-Lite R channel struct type of the slave port.
parameter type axi_lite_slv_r_t = logic,
/// AXI4-Lite R channel struct type of the master port.
parameter type axi_lite_mst_r_t = logic,
/// AXI4-Lite request struct of the slave port.
parameter type axi_lite_slv_req_t = logic,
/// AXI4-Lite response struct of the slave port.
parameter type axi_lite_slv_res_t = logic,
/// AXI4-Lite request struct of the master port.
parameter type axi_lite_mst_req_t = logic,
/// AXI4-Lite response struct of the master port.
parameter type axi_lite_mst_res_t = logic
) (
/// Clock, positive edge triggered.
input logic clk_i,
/// Asynchrounous reset, active low.
input logic rst_ni,
/// Salve port, AXI4-Lite request.
input axi_lite_slv_req_t slv_req_i,
/// Salve port, AXI4-Lite response.
output axi_lite_slv_res_t slv_res_o,
/// Master port, AXI4-Lite request.
output axi_lite_mst_req_t mst_req_o,
/// Master port, AXI4-Lite response.
input axi_lite_mst_res_t mst_res_i
);
// Strobe parameter for the two AXI4-Lite ports.
localparam int unsigned AxiSlvPortStrbWidth = AxiSlvPortDataWidth / 32'd8;
localparam int unsigned AxiMstPortStrbWidth = AxiMstPortDataWidth / 32'd8;
typedef logic [AxiAddrWidth-1:0] addr_t;
// AXI4-Lite downsizer
if (AxiSlvPortDataWidth > AxiMstPortDataWidth) begin : gen_downsizer
// The Downsize factor determines how often the data channel has to be multiplexed.
localparam int unsigned DownsizeFactor = AxiSlvPortDataWidth / AxiMstPortDataWidth;
// Selection width for choosing the byte lanes.
localparam int unsigned SelWidth = $clog2(DownsizeFactor);
// Type for the selection signal.
typedef logic [SelWidth-1:0] sel_t;
// Offset determines, which part of the address corresponds to the `w_chan_sel` signal.
localparam int unsigned SelOffset = $clog2(AxiMstPortStrbWidth);
// Calculate the output address for the master port.
// `address`: The address as seen on the salve port.
// `sel`: T The current selection.
// `l_zero`: If set, the lowest bits are zero, for all generated addresses after the first.
function automatic addr_t out_address(input addr_t address, input sel_t sel);
out_address = address;
out_address[SelOffset+:SelWidth] = sel;
out_address[SelOffset-1:0] = SelOffset'(0);
endfunction : out_address
// Write channels.
// Input spill register of the AW channel.
axi_lite_aw_t aw_chan_spill;
logic aw_chan_spill_valid, aw_chan_spill_ready;
spill_register #(
.T ( axi_lite_aw_t ),
.Bypass ( 1'b0 )
) i_spill_register_aw (
.clk_i,
.rst_ni,
.valid_i ( slv_req_i.aw_valid ),
.ready_o ( slv_res_o.aw_ready ),
.data_i ( slv_req_i.aw ),
.valid_o ( aw_chan_spill_valid ),
.ready_i ( aw_chan_spill_ready ),
.data_o ( aw_chan_spill )
);
sel_t aw_sel_q, aw_sel_d;
logic aw_sel_load;
// AW channel output assignment
always_comb begin : proc_aw_chan_oup
mst_req_o.aw = aw_chan_spill;
mst_req_o.aw.addr = out_address(aw_chan_spill.addr, aw_sel_q);
end
// Slave port aw is valid, if there is something in the spill register.
assign mst_req_o.aw_valid = aw_chan_spill_valid;
assign aw_chan_spill_ready = mst_res_i.aw_ready & (&aw_sel_q);
assign aw_sel_load = mst_req_o.aw_valid & mst_res_i.aw_ready;
assign aw_sel_d = sel_t'(aw_sel_q + 1'b1);
`FFLARN(aw_sel_q, aw_sel_d, aw_sel_load, '0, clk_i, rst_ni)
// Input spill register of the W channel.
axi_lite_slv_w_t w_chan_spill;
logic w_chan_spill_valid, w_chan_spill_ready;
spill_register #(
.T ( axi_lite_slv_w_t ),
.Bypass ( 1'b0 )
) i_spill_register_w (
.clk_i,
.rst_ni,
.valid_i ( slv_req_i.w_valid ),
.ready_o ( slv_res_o.w_ready ),
.data_i ( slv_req_i.w ),
.valid_o ( w_chan_spill_valid ),
.ready_i ( w_chan_spill_ready ),
.data_o ( w_chan_spill )
);
// Data multiplexer on the W channel
sel_t w_sel_q, w_sel_d;
logic w_sel_load;
// W channel output assignment
assign mst_req_o.w = axi_lite_mst_w_t'{
data: w_chan_spill.data[w_sel_q*AxiMstPortDataWidth+:AxiMstPortDataWidth],
strb: w_chan_spill.strb[w_sel_q*AxiMstPortStrbWidth+:AxiMstPortStrbWidth],
default: '0
};
assign mst_req_o.w_valid = w_chan_spill_valid;
assign w_chan_spill_ready = mst_res_i.w_ready & (&w_sel_q);
assign w_sel_load = mst_req_o.w_valid & mst_res_i.w_ready;
assign w_sel_d = sel_t'(w_sel_q + 1'b1);
`FFLARN(w_sel_q, w_sel_d, w_sel_load, '0, clk_i, rst_ni)
// B response aggregation
// Slave port B output is the aggregated error of the last few B responses.
sel_t b_sel_q, b_sel_d;
axi_pkg::resp_t b_resp_q, b_resp_d;
logic b_resp_load;
assign slv_res_o.b = axi_lite_b_t'{
resp: b_resp_q | mst_res_i.b.resp,
default: '0
};
// Output is valid, if it is the last b response for the wide W, we have something
// in the B FIFO and the B response is valid from the master port.
assign slv_res_o.b_valid = mst_res_i.b_valid & (&b_sel_q);
// Assign the b_channel ready output. The master port is ready if something is in the
// B FIFO. Except, if it is the last one which should do a response on the slave port.
assign mst_req_o.b_ready = (&b_sel_q) ? slv_req_i.b_ready : 1'b1;
// B channel error response retention FF
assign b_sel_d = sel_t'(b_sel_q + 1'b1);
assign b_resp_d = (&b_sel_q) ? axi_pkg::RESP_OKAY : (b_resp_q | mst_res_i.b.resp);
assign b_resp_load = mst_res_i.b_valid & mst_req_o.b_ready;
`FFLARN(b_sel_q, b_sel_d, b_resp_load, '0, clk_i, rst_ni)
`FFLARN(b_resp_q, b_resp_d, b_resp_load, axi_pkg::RESP_OKAY, clk_i, rst_ni)
// Read channels.
// Input spill register of the AW channel.
axi_lite_ar_t ar_chan_spill;
logic ar_chan_spill_valid, ar_chan_spill_ready;
spill_register #(
.T ( axi_lite_ar_t ),
.Bypass ( 1'b0 )
) i_spill_register_ar (
.clk_i,
.rst_ni,
.valid_i ( slv_req_i.ar_valid ),
.ready_o ( slv_res_o.ar_ready ),
.data_i ( slv_req_i.ar ),
.valid_o ( ar_chan_spill_valid ),
.ready_i ( ar_chan_spill_ready ),
.data_o ( ar_chan_spill )
);
sel_t ar_sel_q, ar_sel_d;
logic ar_sel_load;
// AR channel output assignment
always_comb begin : proc_ar_chan_oup
mst_req_o.ar = ar_chan_spill;
mst_req_o.ar.addr = out_address(ar_chan_spill.addr, ar_sel_q);
end
// Slave port aw is valid, if there is something in the spill register.
assign mst_req_o.ar_valid = ar_chan_spill_valid;
assign ar_chan_spill_ready = mst_res_i.ar_ready & (&ar_sel_q);
assign ar_sel_load = mst_req_o.ar_valid & mst_res_i.ar_ready;
assign ar_sel_d = sel_t'(ar_sel_q + 1'b1);
`FFLARN(ar_sel_q, ar_sel_d, ar_sel_load, '0, clk_i, rst_ni)
// Responses have to be aggregated, one FF less, as the last data is feed directly through.
sel_t r_sel_q, r_sel_d;
logic r_sel_load;
axi_lite_mst_r_t [DownsizeFactor-2:0] r_chan_mst_q;
logic [DownsizeFactor-2:0] r_chan_mst_load;
for (genvar i = 0; unsigned'(i) < (DownsizeFactor-1); i++) begin : gen_r_chan_ff
assign r_chan_mst_load[i] = (sel_t'(i) == r_sel_q) & mst_res_i.r_valid & mst_req_o.r_ready;
`FFLARN(r_chan_mst_q[i], mst_res_i.r, r_chan_mst_load[i], axi_lite_mst_r_t'{default: '0}, clk_i, rst_ni)
end
assign r_sel_load = mst_res_i.r_valid & mst_req_o.r_ready;
assign r_sel_d = sel_t'(r_sel_q + 1'b1);
`FFLARN(r_sel_q, r_sel_d, r_sel_load, '0, clk_i, rst_ni)
always_comb begin : proc_r_chan_oup
slv_res_o.r = axi_lite_slv_r_t'{
resp: mst_res_i.r.resp,
default: '0
};
// Response is the OR of all responses
for (int unsigned i = 0; i < (DownsizeFactor-1); i++) begin
slv_res_o.r.resp = slv_res_o.r.resp | r_chan_mst_q[i].resp;
slv_res_o.r.data[i*AxiMstPortDataWidth+:AxiMstPortDataWidth] = r_chan_mst_q[i].data;
end
// The highest bits of the data can be directly the master port.
slv_res_o.r.data[(DownsizeFactor-1)*AxiMstPortDataWidth+:AxiMstPortDataWidth] =
mst_res_i.r.data;
end
assign slv_res_o.r_valid = (&r_sel_q) ? mst_res_i.r_valid : 1'b0;
assign mst_req_o.r_ready = (&r_sel_q) ? slv_req_i.r_ready : 1'b1;
end else if (AxiMstPortDataWidth > AxiSlvPortDataWidth) begin : gen_upsizer
// The upsize factor determines the amount of replication.
localparam int unsigned UpsizeFactor = AxiMstPortDataWidth / AxiSlvPortDataWidth;
// Selection type and offset for the address
localparam int unsigned SelOffset = $clog2(AxiSlvPortStrbWidth);
localparam int unsigned SelWidth = $clog2(UpsizeFactor);
typedef logic [SelWidth-1:0] sel_t;
// AW channel can be passed through, however block handshake if FIFO is full.
assign mst_req_o.aw = slv_req_i.aw;
// Lock the valid on the master port if it has been given.
logic lock_aw_q, lock_aw_d, load_aw_lock;
// W channel needs a FIFO to determine the silencing of the strobe signal.
logic w_full, w_empty, w_push, w_pop;
sel_t aw_sel, w_sel;
// AW channel handshake control
always_comb begin : proc_aw_handshake
// default assignment
load_aw_lock = 1'b0; // the FF is toggling back and forth when loaded.
mst_req_o.aw_valid = 1'b0;
slv_res_o.aw_ready = 1'b0;
w_push = 1'b0;
if (lock_aw_q) begin
mst_req_o.aw_valid = 1'b1;
slv_res_o.aw_ready = mst_res_i.aw_ready;
if (mst_res_i.aw_ready) begin
load_aw_lock = 1'b1;
end
end else begin
// Only connect handshake if there is space in the FIFO
if (!w_full) begin
mst_req_o.aw_valid = slv_req_i.aw_valid;
slv_res_o.aw_ready = mst_res_i.aw_ready;
// If there is a valid on the slave port, push the FIFO
if (slv_req_i.aw_valid) begin
w_push = 1'b1;
// When no transaction, lock AW
if (!mst_res_i.aw_ready) begin
load_aw_lock = 1'b1;
end
end
end
end
end
assign lock_aw_d = ~lock_aw_q;
`FFLARN(lock_aw_q, lock_aw_d, load_aw_lock, 1'b0, clk_i, rst_ni)
// The selection comes from part of the AW address.
assign aw_sel = sel_t'(slv_req_i.aw.addr >> SelOffset);
fifo_v3 #(
.FALL_THROUGH ( 1'b1 ),
.DEPTH ( UpsizeFactor ),
.dtype ( sel_t )
) i_fifo_w_sel (
.clk_i,
.rst_ni,
.flush_i ( 1'b0 ),
.testmode_i ( 1'b0 ),
.full_o ( w_full ),
.empty_o ( w_empty ),
.usage_o ( /*not used*/ ),
.data_i ( aw_sel ),
.push_i ( w_push ),
.data_o ( w_sel ),
.pop_i ( w_pop )
);
// Pop if there is a W transaction on the master port.
assign w_pop = mst_req_o.w_valid & mst_res_i.w_ready;
// Replicate Data but silence strobe signal.
assign mst_req_o.w = axi_lite_mst_w_t'{
data: {UpsizeFactor{slv_req_i.w.data}},
strb: {AxiMstPortStrbWidth{1'b0}} | (slv_req_i.w.strb << (w_sel * AxiSlvPortStrbWidth)),
default: '0
};
// Connect W handshake if the selection is in the FIFO
assign mst_req_o.w_valid = slv_req_i.w_valid & ~w_empty;
assign slv_res_o.w_ready = mst_res_i.w_ready & ~w_empty;
// B channel can be passed through
assign slv_res_o.b = mst_res_i.b;
assign slv_res_o.b_valid = mst_res_i.b_valid;
assign mst_req_o.b_ready = slv_req_i.b_ready;
// AR channel can be passed through, however block handshake if FIFO is full.
assign mst_req_o.ar = slv_req_i.ar;
// Lock the valid on the master port if it has been given.
logic lock_ar_q, lock_ar_d, load_ar_lock;
// W channel needs a FIFO to determine the silencing of the strobe signal.
logic r_full, r_empty, r_push, r_pop;
sel_t ar_sel, r_sel;
// AW channel handshake control
always_comb begin : proc_ar_handshake
// default assignment
load_ar_lock = 1'b0; // the FF is toggling back and forth when loaded.
mst_req_o.ar_valid = 1'b0;
slv_res_o.ar_ready = 1'b0;
r_push = 1'b0;
if (lock_ar_q) begin
mst_req_o.ar_valid = 1'b1;
slv_res_o.ar_ready = mst_res_i.ar_ready;
if (mst_res_i.ar_ready) begin
load_ar_lock = 1'b1;
end
end else begin
// Only connect handshake if there is space in the FIFO
if (!r_full) begin
mst_req_o.ar_valid = slv_req_i.ar_valid;
slv_res_o.ar_ready = mst_res_i.ar_ready;
// If there is a valid on the slave port, push the FIFO
if (slv_req_i.ar_valid) begin
r_push = 1'b1;
// When no transaction, lock AW
if (!mst_res_i.ar_ready) begin
load_ar_lock = 1'b1;
end
end
end
end
end
assign lock_ar_d = ~lock_ar_q;
`FFLARN(lock_ar_q, lock_ar_d, load_ar_lock, 1'b0, clk_i, rst_ni)
// The selection comes from part of the AW address.
assign ar_sel = sel_t'(slv_req_i.ar.addr >> SelOffset);
fifo_v3 #(
.FALL_THROUGH ( 1'b1 ),
.DEPTH ( UpsizeFactor ),
.dtype ( sel_t )
) i_fifo_r_sel (
.clk_i,
.rst_ni,
.flush_i ( 1'b0 ),
.testmode_i ( 1'b0 ),
.full_o ( r_full ),
.empty_o ( r_empty ),
.usage_o ( /*not used*/ ),
.data_i ( ar_sel ),
.push_i ( r_push ),
.data_o ( r_sel ),
.pop_i ( r_pop )
);
// Pop if there is a R transaction on the slave port.
assign r_pop = slv_res_o.r_valid & slv_req_i.r_ready;
// R channel has to be cut out
assign slv_res_o.r = axi_lite_slv_r_t'{
data: mst_res_i.r.data[(r_sel*AxiSlvPortDataWidth)+:AxiSlvPortDataWidth],
resp: mst_res_i.r.resp,
default: '0
};
// Connect R handshake if there is something in the FIFO.
assign slv_res_o.r_valid = mst_res_i.r_valid & ~r_empty;
assign mst_req_o.r_ready = slv_req_i.r_ready & ~r_empty;
end else begin : gen_passthrough
assign mst_req_o = slv_req_i;
assign slv_res_o = mst_res_i;
end
// Assertions, check params
// pragma translate_off
`ifndef VERILATOR
initial begin
assume (AxiAddrWidth > 0) else $fatal(1, "AXI address width has to be > 0");
assume (AxiSlvPortDataWidth > 8) else $fatal(1, "AxiSlvPortDataWidth has to be > 8");
assume (AxiMstPortDataWidth > 8) else $fatal(1, "AxiMstPortDataWidth has to be > 8");
assume ($onehot(AxiSlvPortDataWidth)) else $fatal(1, "AxiSlvPortDataWidth must be power of 2");
assume ($onehot(AxiMstPortDataWidth)) else $fatal(1, "AxiMstPortDataWidth must be power of 2");
end
default disable iff (~rst_ni);
stable_aw: assert property (@(posedge clk_i)
(mst_req_o.aw_valid && !mst_res_i.aw_ready) |=> $stable(mst_req_o.aw)) else
$fatal(1, "AW must remain stable until handshake happened.");
stable_w: assert property (@(posedge clk_i)
(mst_req_o.w_valid && !mst_res_i.w_ready) |=> $stable(mst_req_o.w)) else
$fatal(1, "W must remain stable until handshake happened.");
stable_b: assert property (@(posedge clk_i)
(slv_res_o.b_valid && !slv_req_i.b_ready) |=> $stable(slv_res_o.b)) else
$fatal(1, "B must remain stable until handshake happened.");
stable_ar: assert property (@(posedge clk_i)
(mst_req_o.ar_valid && !mst_res_i.ar_ready) |=> $stable(mst_req_o.ar)) else
$fatal(1, "AR must remain stable until handshake happened.");
stable_r: assert property (@(posedge clk_i)
(slv_res_o.r_valid && !slv_req_i.r_ready) |=> $stable(slv_res_o.r)) else
$fatal(1, "R must remain stable until handshake happened.");
`endif
// pragma translate_on
endmodule
/// Interface wrapper for `axi_lite_dw_converter`.
`include "axi/typedef.svh"
`include "axi/assign.svh"
module axi_lite_dw_converter_intf #(
/// AXI4-Lite address width of the ports.
parameter int unsigned AXI_ADDR_WIDTH = 32'd0,
/// AXI4-Lite data width of the slave port.
parameter int unsigned AXI_SLV_PORT_DATA_WIDTH = 32'd0,
/// AXI4-Lite data width of the master port.
parameter int unsigned AXI_MST_PORT_DATA_WIDTH = 32'd0
) (
/// Clock, positive edge triggered.
input logic clk_i,
/// Asynchrounous reset, active low.
input logic rst_ni,
/// Slave port interface.
AXI_LITE.Slave slv,
/// Master port interface.
AXI_LITE.Master mst
);
// AXI configuration
localparam int unsigned AxiStrbWidthSlv = AXI_SLV_PORT_DATA_WIDTH / 32'd8;
localparam int unsigned AxiStrbWidthMst = AXI_MST_PORT_DATA_WIDTH / 32'd8;
// Type definitions
typedef logic [AXI_ADDR_WIDTH-1:0] lite_addr_t;
typedef logic [AXI_SLV_PORT_DATA_WIDTH-1:0] lite_data_slv_t;
typedef logic [AxiStrbWidthSlv-1:0] lite_strb_slv_t;
typedef logic [AXI_MST_PORT_DATA_WIDTH-1:0] lite_data_mst_t;
typedef logic [AxiStrbWidthMst-1:0] lite_strb_mst_t;
`AXI_LITE_TYPEDEF_AW_CHAN_T(aw_chan_lite_t, lite_addr_t)
`AXI_LITE_TYPEDEF_W_CHAN_T(w_chan_lite_slv_t, lite_data_slv_t, lite_strb_slv_t)
`AXI_LITE_TYPEDEF_W_CHAN_T(w_chan_lite_mst_t, lite_data_mst_t, lite_strb_mst_t)
`AXI_LITE_TYPEDEF_B_CHAN_T(b_chan_lite_t)
`AXI_LITE_TYPEDEF_AR_CHAN_T(ar_chan_lite_t, lite_addr_t)
`AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_lite_slv_t, lite_data_slv_t)
`AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_lite_mst_t, lite_data_mst_t)
`AXI_LITE_TYPEDEF_REQ_T(req_lite_slv_t, aw_chan_lite_t, w_chan_lite_slv_t, ar_chan_lite_t)
`AXI_LITE_TYPEDEF_RESP_T(res_lite_slv_t, b_chan_lite_t, r_chan_lite_slv_t)
`AXI_LITE_TYPEDEF_REQ_T(req_lite_mst_t, aw_chan_lite_t, w_chan_lite_mst_t, ar_chan_lite_t)
`AXI_LITE_TYPEDEF_RESP_T(res_lite_mst_t, b_chan_lite_t, r_chan_lite_mst_t)
req_lite_slv_t slv_req;
res_lite_slv_t slv_res;
req_lite_mst_t mst_req;
res_lite_mst_t mst_res;
`AXI_LITE_ASSIGN_TO_REQ(slv_req, slv)
`AXI_LITE_ASSIGN_FROM_RESP(slv, slv_res)
`AXI_LITE_ASSIGN_FROM_REQ(mst, mst_req)
`AXI_LITE_ASSIGN_TO_RESP(mst_res, mst)
axi_lite_dw_converter #(
.AxiAddrWidth ( AXI_ADDR_WIDTH ),
.AxiSlvPortDataWidth ( AXI_SLV_PORT_DATA_WIDTH ),
.AxiMstPortDataWidth ( AXI_MST_PORT_DATA_WIDTH ),
.axi_lite_aw_t ( aw_chan_lite_t ),
.axi_lite_slv_w_t ( w_chan_lite_slv_t ),
.axi_lite_mst_w_t ( w_chan_lite_mst_t ),
.axi_lite_b_t ( b_chan_lite_t ),
.axi_lite_ar_t ( ar_chan_lite_t ),
.axi_lite_slv_r_t ( r_chan_lite_slv_t ),
.axi_lite_mst_r_t ( r_chan_lite_mst_t ),
.axi_lite_slv_req_t ( req_lite_slv_t ),
.axi_lite_slv_res_t ( res_lite_slv_t ),
.axi_lite_mst_req_t ( req_lite_mst_t ),
.axi_lite_mst_res_t ( res_lite_mst_t )
) i_axi_lite_dw_converter (
.clk_i,
.rst_ni,
.slv_req_i ( slv_req ),
.slv_res_o ( slv_res ),
.mst_req_o ( mst_req ),
.mst_res_i ( mst_res )
);
endmodule