-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerator.py
73 lines (61 loc) · 3.09 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import tensorflow_addons as tfa
from tensorflow import keras
from tensorflow.keras import layers
from building_blocks import downsample, upsample, residual_block, ReflectionPadding3D
def get_resnet_generator(
input_img_size=(64, 64, 512, 1),
batch_size=None,
filters=32,
num_downsampling_blocks=2,
num_residual_blocks=6,
num_upsample_blocks=2,
gamma_initializer='he_normal',
kernel_initializer='he_normal',
name=None,
):
"""
Returns a 3D ResNet generator model.
Args: input_img_size (tuple): The size of the input image (height, width, depth, channels). batch_size (int,
optional): The batch size to be used for the model. Defaults to None. filters (int, optional): The number of
filters in the first convolutional layer. Defaults to 32. num_downsampling_blocks (int, optional): The number of
downsampling blocks in the generator. Defaults to 2. num_residual_blocks (int, optional): The number of residual
blocks in the generator. Defaults to 6. num_upsample_blocks (int, optional): The number of upsampling blocks in
the generator. Defaults to 2. gamma_initializer (str, optional): The initializer to be used for the instance
normalization gamma. Defaults to 'he_normal'. kernel_initializer (str, optional): The initializer to be used for
the convolutional kernels. Defaults to 'he_normal'. name (str, optional): The name of the model. Defaults to None.
Returns:
tensorflow.keras.models.Model: The 3D ResNet generator model.
"""
img_input = layers.Input(shape=input_img_size, batch_size=batch_size, name=name + "_img_input")
x = ReflectionPadding3D(padding=(1, 1, 1))(img_input)
for _ in range(1):
x = layers.Conv3D(filters, (7, 7, 7), kernel_initializer=kernel_initializer,
use_bias=False)(x)
x = tfa.layers.InstanceNormalization(gamma_initializer=gamma_initializer)(x)
x = layers.Activation("relu")(x)
x = layers.SpatialDropout3D(0.5)(x)
# Downsampling
for _ in range(num_downsampling_blocks):
filters *= 2
x = downsample(x, filters=filters, activation=layers.Activation("relu"),
kernel_initializer=kernel_initializer,
gamma_initializer=gamma_initializer)
# Residual blocks
for _ in range(num_residual_blocks):
x = residual_block(x, activation=layers.Activation("relu"),
kernel_initializer=kernel_initializer,
gamma_initializer=gamma_initializer)
# Upsampling
for _ in range(num_upsample_blocks):
filters //= 2
x = upsample(x, filters, activation=layers.Activation("relu"),
kernel_initializer=kernel_initializer,
gamma_initializer=gamma_initializer)
# Final block
if num_downsampling_blocks == 2:
x = ReflectionPadding3D(padding=(2, 2, 2))(x)
x = layers.Conv3D(1, (7, 7, 7), padding="same")(x)
x = layers.Activation("tanh")(x)
model = keras.models.Model(img_input, x, name=name)
model.summary()
return model