-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdiscriminator.py
124 lines (111 loc) · 4.23 KB
/
discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import tensorflow_addons as tfa
from tensorflow import keras
from tensorflow.keras import layers
from building_blocks import downsample, ReflectionPadding3D
def get_discriminator(
input_img_size=(64, 64, 512, 1),
batch_size=None,
filters=64,
kernel_initializer='he_normal',
num_downsampling=3,
use_dropout=False,
dropout_rate=0.2,
wasserstein=False,
use_SN=False,
use_input_noise=False,
use_layer_noise=False,
use_standardisation=False,
name=None,
noise_std=0.1
):
"""
Creates a discriminator model for a 3D volumetric image using convolutional layers.
Args:
- input_img_size: Tuple, the shape of the input image in the form (height, width, depth, channels).
Default is (64, 64, 512, 1).
- batch_size: Int, the batch size of the input images. Default is None.
- filters: Int, the number of filters to use in the first layer of the model. Default is 64.
- kernel_initializer: The initializer for the convolutional kernels. Default is None.
- num_downsampling: Int, the number of times to downsample the input image with convolutional layers.
Default is 3.
- use_dropout: Bool, whether to use dropout in the model. Default is False.
- wasserstein: Bool, whether the model is a Wasserstein GAN. Default is False.
- use_spec_norm: Bool, whether to use spectral normalization in the convolutional layers. Default is False.
- use_input_noise: Bool, whether to add Gaussian noise to the input image. Default is False.
- use_layer_noise: Bool, whether to add Gaussian noise to the convolutional layers. Default is False.
- name: String, name for the model. Default is None.
- noise_std: Float, the standard deviation of the Gaussian noise to add to the input and/or convolutional layers.
Default is 0.1.
Returns:
- A tensorflow model representing the discriminator.
"""
img_input = layers.Input(
shape=input_img_size, batch_size=batch_size, name=name + "_img_input"
)
x = ReflectionPadding3D()(img_input)
if use_input_noise:
x = layers.GaussianNoise(noise_std)(x)
if use_SN:
x = tfa.layers.SpectralNormalization(layers.Conv3D(
filters,
(4, 4, 4),
strides=(2, 2, 2),
padding="valid",
kernel_initializer=kernel_initializer,
))(x)
else:
x = layers.Conv3D(
filters,
(4, 4, 4),
strides=(2, 2, 2),
padding="valid",
kernel_initializer=kernel_initializer,
)(x)
x = tfa.layers.InstanceNormalization(gamma_initializer=None)(x)
x = layers.LeakyReLU(0.2)(x)
num_filters = filters
for num_downsample_block in range(num_downsampling):
num_filters *= 2
if num_downsample_block < 2:
x = downsample(
x,
filters=num_filters,
activation=layers.LeakyReLU(0.2),
kernel_size=(4, 4, 4),
strides=(2, 2, 2),
use_dropout=use_dropout,
dropout_rate=dropout_rate,
use_spec_norm=use_SN,
use_layer_noise=use_layer_noise,
noise_std=noise_std
)
else:
x = downsample(
x,
filters=num_filters,
activation=layers.LeakyReLU(0.2),
kernel_size=(4, 4, 4),
strides=(1, 1, 1),
use_dropout=use_dropout,
dropout_rate=dropout_rate,
padding='same',
use_spec_norm=use_SN,
use_layer_noise=use_layer_noise,
noise_std=noise_std
)
if use_layer_noise:
x = layers.GaussianNoise(noise_std)(x)
x = layers.Conv3D(
1,
(3, 3, 3),
strides=(1, 1, 1),
padding="same",
kernel_initializer=kernel_initializer,
)(x)
if wasserstein:
x = layers.Flatten()(x)
x = layers.Dropout(0.2)(x)
x = layers.Dense(1)(x)
model = keras.models.Model(inputs=img_input, outputs=x, name=name)
model.summary()
return model