forked from facebookincubator/AITemplate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
46 lines (39 loc) · 1.51 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import click
import torch
from aitemplate.testing.benchmark_pt import benchmark_torch_function
from pipeline_stable_diffusion_ait import StableDiffusionAITPipeline
@click.command()
@click.option("--token", default="", help="access token")
@click.option("--prompt", default="A vision of paradise, Unreal Engine", help="prompt")
@click.option(
"--benchmark", type=bool, default=False, help="run stable diffusion e2e benchmark"
)
def run(token, prompt, benchmark):
pipe = StableDiffusionAITPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=token,
).to("cuda")
with torch.autocast("cuda"):
image = pipe(prompt).images[0]
if benchmark:
t = benchmark_torch_function(10, pipe, prompt)
print(f"sd e2e: {t} ms")
image.save("example_ait.png")
if __name__ == "__main__":
run()