forked from facebookincubator/AITemplate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
306 lines (255 loc) · 9.24 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import click
import numpy as np
import torch
from aitemplate.compiler import Model
from aitemplate.testing import detect_target
from aitemplate.testing.benchmark_pt import benchmark_torch_function
from diffusers import StableDiffusionPipeline
from torch import autocast
from transformers import CLIPTokenizer
USE_CUDA = detect_target().name() == "cuda"
access_token = True
pipe = None
def get_int_shape(x):
shape = [it.value() for it in x._attrs["shape"]]
return shape
def mark_output(y):
if type(y) is not tuple:
y = (y,)
for i in range(len(y)):
y[i]._attrs["is_output"] = True
y[i]._attrs["name"] = "output_%d" % (i)
y_shape = [d._attrs["values"][0] for d in y[i]._attrs["shape"]]
print("AIT output_{} shape: {}".format(i, y_shape))
def benchmark_unet(
batch_size=2,
hh=64,
ww=64,
dim=320,
benchmark_pt=False,
verify=False,
):
exe_module = Model("./tmp/UNet2DConditionModel/test.so")
if exe_module is None:
print("Error!! Cannot find compiled module for UNet2DConditionModel.")
exit(-1)
# run PT unet model
pt_mod = pipe.unet
pt_mod = pt_mod.eval()
latent_model_input_pt = torch.randn(batch_size, 4, hh, ww).cuda().half()
text_embeddings_pt = torch.randn(batch_size, 64, 768).cuda().half()
timesteps_pt = torch.Tensor([1, 1]).cuda().half()
with autocast("cuda"):
pt_ys = pt_mod(
latent_model_input_pt,
timesteps_pt,
encoder_hidden_states=text_embeddings_pt,
).sample
# PT benchmark
if benchmark_pt:
args = (latent_model_input_pt, 1, text_embeddings_pt)
pt_time = benchmark_torch_function(100, pt_mod, *args)
print(f"PT batch_size: {batch_size}, {pt_time} ms")
with open("sd_pt_benchmark.txt", "a") as f:
f.write(f"unet batch_size: {batch_size}, latency: {pt_time} ms\n")
print("pt output:", pt_ys.shape)
# run AIT unet model
inputs = {
"input0": latent_model_input_pt.permute((0, 2, 3, 1)).contiguous(),
"input1": timesteps_pt,
"input2": text_embeddings_pt,
}
ys = []
num_ouputs = len(exe_module.get_output_name_to_index_map())
for i in range(num_ouputs):
shape = exe_module.get_output_maximum_shape(i)
ys.append(torch.empty(shape).cuda().half())
exe_module.run_with_tensors(inputs, ys)
# verification
y_transpose = ys[0].permute((0, 3, 1, 2))
if verify:
eps = 1e-1
np.testing.assert_allclose(
pt_ys.detach().cpu().numpy(),
y_transpose.cpu().numpy(),
atol=eps,
rtol=eps,
)
print("UNet2DCondition verification pass")
# AIT benchmark
# warmup
exe_module.benchmark_with_tensors(inputs, ys, count=100, repeat=4)
# benchmark
t, _, _ = exe_module.benchmark_with_tensors(inputs, ys, count=100, repeat=4)
with open("sd_ait_benchmark.txt", "a") as f:
f.write(f"unet batch_size: {batch_size}, latency: {t} ms\n")
def benchmark_clip(
batch_size=1,
seqlen=64,
dim=768,
num_heads=12,
hidden_size=768,
vocab_size=49408,
max_position_embeddings=77,
benchmark_pt=False,
verify=False,
):
mask_seq = 0
version = "openai/clip-vit-large-patch14"
exe_module = Model("./tmp/CLIPTextModel/test.so")
if exe_module is None:
print("Error!! Cannot find compiled module for CLIPTextModel.")
exit(-1)
# run PT clip
pt_mod = pipe.text_encoder
pt_mod = pt_mod.eval()
tokenizer = CLIPTokenizer.from_pretrained(version)
text_input = tokenizer(
["a photo of an astronaut riding a horse on mars"],
padding="max_length",
max_length=seqlen,
truncation=True,
return_tensors="pt",
)
input_ids = text_input["input_ids"].cuda()
attention_mask = torch.ones((batch_size, seqlen))
attention_mask[-1, -mask_seq:] = 0
attention_mask = None
position_ids = torch.arange(seqlen).expand((batch_size, -1)).cuda()
pt_ys = pt_mod(input_ids, attention_mask, position_ids)
print("pt output:", pt_ys[0].shape)
# PT benchmark
if benchmark_pt:
args = (input_ids, attention_mask, position_ids)
pt_time = benchmark_torch_function(100, pt_mod, *args)
print(f"PT batch_size: {batch_size}, {pt_time} ms")
with open("sd_pt_benchmark.txt", "a") as f:
f.write(f"clip batch_size: {batch_size}, latency: {pt_time} ms\n")
# run AIT clip
inputs = {
"input0": input_ids,
"input1": position_ids,
}
ys = []
num_ouputs = len(exe_module.get_output_name_to_index_map())
for i in range(num_ouputs):
shape = exe_module.get_output_maximum_shape(i)
ys.append(torch.empty(shape).cuda().half())
exe_module.run_with_tensors(inputs, ys)
# verification
if verify:
eps = 1e-1
pt_np = pt_ys[0].detach().cpu().numpy()
np.testing.assert_allclose(
pt_np,
ys[0].cpu().numpy(),
atol=eps,
rtol=eps,
)
print("CLIPTextTransformer verification pass")
# AIT benchmark
# warmup
exe_module.benchmark_with_tensors(inputs, ys, count=100, repeat=4)
# benchmark
t, _, _ = exe_module.benchmark_with_tensors(inputs, ys, count=100, repeat=4)
with open("sd_ait_benchmark.txt", "a") as f:
f.write(f"clip batch_size: {batch_size}, latency: {t} ms\n")
def benchmark_vae(batch_size=1, height=64, width=64, benchmark_pt=False, verify=False):
latent_channels = 4
exe_module = Model("./tmp/AutoencoderKL/test.so")
if exe_module is None:
print("Error!! Cannot find compiled module for AutoencoderKL.")
exit(-1)
# run PT vae
pt_vae = pipe.vae
pt_vae = pt_vae.cuda().half()
pt_vae.eval()
pt_input = torch.rand([batch_size, latent_channels, height, width]).cuda().half()
print("pt_input shape", pt_input.shape)
with autocast("cuda"):
pt_output = pt_vae.decode(pt_input).sample
pt_output = pt_output.half()
# PT benchmark
if benchmark_pt:
args = (pt_input,)
pt_time = benchmark_torch_function(100, pt_vae.decode, *args)
print(f"PT batch_size: {batch_size}, {pt_time} ms")
with open("sd_pt_benchmark.txt", "a") as f:
f.write(f"vae batch_size: {batch_size}, latency: {pt_time} ms\n")
# run AIT vae
y = (
torch.empty(
pt_output.size(0),
pt_output.size(2),
pt_output.size(3),
pt_output.size(1),
)
.cuda()
.half()
)
ait_input_pt_tensor = torch.permute(pt_input, (0, 2, 3, 1)).contiguous()
print("input pt tensor size: ", ait_input_pt_tensor.shape)
print("output pt tensor size: ", y.shape)
exe_module.run_with_tensors([ait_input_pt_tensor], [y])
# verification
if verify:
y_pt = torch.permute(y, (0, 3, 1, 2))
eps = 1e-1
np.testing.assert_allclose(
pt_output.detach().cpu().numpy(),
y_pt.cpu().numpy(),
atol=eps,
rtol=eps,
)
logging.info("VAE Verification done!")
# AIT benchmark:
# warmup
exe_module.benchmark_with_tensors([ait_input_pt_tensor], [y], count=100, repeat=4)
# benchmark
t, _, _ = exe_module.benchmark_with_tensors(
[ait_input_pt_tensor], [y], count=100, repeat=4
)
with open("sd_ait_benchmark.txt", "a") as f:
f.write(f"vae batch_size: {batch_size}, latency: {t} ms\n")
@click.command()
@click.option("--token", default="", help="access token")
@click.option("--batch-size", default=1, help="batch size")
@click.option("--verify", type=bool, default=False, help="verify correctness")
@click.option("--benchmark-pt", type=bool, default=False, help="run pt benchmark")
def benchmark_diffusers(token, batch_size, verify, benchmark_pt):
assert batch_size == 1, "batch size must be 1 for submodule verification"
logging.getLogger().setLevel(logging.INFO)
np.random.seed(0)
torch.manual_seed(4896)
global access_token, pipe
if token != "":
access_token = token
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=access_token,
).to("cuda")
# CLIP
benchmark_clip(batch_size=batch_size, benchmark_pt=benchmark_pt, verify=verify)
# UNet
benchmark_unet(batch_size=batch_size * 2, benchmark_pt=benchmark_pt, verify=verify)
# VAE
benchmark_vae(batch_size=batch_size, benchmark_pt=benchmark_pt, verify=verify)
if __name__ == "__main__":
benchmark_diffusers()