-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchip8.py
420 lines (336 loc) · 14.8 KB
/
chip8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# encoding: utf8
"""
CHIP-8
https://en.wikipedia.org/wiki/CHIP-8
"""
import os
import sys
import time
import pygame
import pygame.locals
from random import randint
def log_error(fmt, *args):
if args:
print fmt % args
else:
print fmt
def log_info(fmt, *args):
if args:
print fmt % args
else:
print fmt
fonts = [
0xF0, 0x90, 0x90, 0x90, 0xF0, # 0
0x20, 0x60, 0x20, 0x20, 0x70, # 1
0xF0, 0x10, 0xF0, 0x80, 0xF0, # 2
0xF0, 0x10, 0xF0, 0x10, 0xF0, # 3
0x90, 0x90, 0xF0, 0x10, 0x10, # 4
0xF0, 0x80, 0xF0, 0x10, 0xF0, # 5
0xF0, 0x80, 0xF0, 0x90, 0xF0, # 6
0xF0, 0x10, 0x20, 0x40, 0x40, # 7
0xF0, 0x90, 0xF0, 0x90, 0xF0, # 8
0xF0, 0x90, 0xF0, 0x10, 0xF0, # 9
0xF0, 0x90, 0xF0, 0x90, 0x90, # A
0xE0, 0x90, 0xE0, 0x90, 0xE0, # B
0xF0, 0x80, 0x80, 0x80, 0xF0, # C
0xE0, 0x90, 0x90, 0x90, 0xE0, # D
0xF0, 0x80, 0xF0, 0x80, 0xF0, # E
0xF0, 0x80, 0xF0, 0x80, 0x80, # F
]
BLACK = (0xFF, 0xFF, 0xFF)
XXX = 64
YYY = 32
class Chip8(object):
def __init__(self, ui):
self.n = 0
self.ui = ui
self.pc = 0x200 # program counter start at 0x200
self.opcode = 0
# The address register, which is named I, is 16 bits wide and is used with several opcodes that involve memory operations.
self.I = 0
# CHIP-8 has 16 8-bit data registers named from V0 to VF.
# The VF register doubles as a flag for some instructions, thus it should be avoided. In addition operation VF is for carry flag.
# While in subtraction, it is the "no borrow" flag. In the draw instruction the VF is set upon pixel collision.
self.V = bytearray(16)
# The stack is only used to store return addresses when subroutines are called.
# The original 1802 version allocated 48 bytes for up to 24 levels of nesting; modern implementations normally have at least 16 levels.
self.stack = []
# CHIP-8 was most commonly implemented on 4K systems, such as the Cosmac VIP and the Telmac 1800.
# These machines had 4096 (0x1000) memory locations, all of which are 8 bits (a byte) which is where the term CHIP-8 originated. However,
# the CHIP-8 interpreter itself occupies the first 512 bytes of the memory space on these machines.
# For this reason, most programs written for the original system begin at memory location 512 (0x200) and do not access any of the memory below the location 512 (0x200).
# The uppermost 256 bytes (0xF00-0xFFF) are reserved for display refresh, and the 96 bytes below that (0xEA0-0xEFF) were reserved for call stack, internal use, and other variables.
# In modern CHIP-8 implementations, where the interpreter is running natively outside the 4K memory space, there is no need for any of the lower 512 bytes memory space to be used,
# but it is common to store font data in those lower 512 bytes (0x000-0x200).
self.memory = bytearray(4096)
# load font set
for i, V in enumerate(fonts):
self.memory[i] = V
# CHIP-8 has two timers. They both count down at 60 hertz, until they reach 0.
# Delay timer: This timer is intended to be used for timing the events of games. Its value can be set and read.
# Sound timer: This timer is used for sound effects. When its value is nonzero, a beeping sound is made.
self.delay_timer = 0, 0
self.sound_timer = 0
def load_rom(self, file_path):
with open(file_path, "rb") as rom_file:
data = rom_file.read()
length = len(data)
assert(len(self.memory) - self.pc > length)
for i in range(length):
self.memory[i + self.pc] = data[i]
log_info("load_rom %s %s", file_path, length)
def emulate_cycle(self):
V = self.V
I = self.I
memory = self.memory
self.n += 1
# 2 byte
AX = memory[self.pc]
YD = NN = memory[self.pc + 1]
A = (AX & 0xF0) >> 4
X = AX & 0x0F
Y = (YD & 0xF0) >> 4
D = YD & 0x0F
NNN = (X << 8) | YD
F = 0xF
opcode = self.opcode = AX << 8 | YD
# log_info("execute %s %s %s %s", hex(AX), hex(YD), self.n, self.pc)
self.pc += 2
if A == 0x0:
# 00E0 Display disp_clear() Clears the screen.
if NNN == 0x0E0:
self.ui.clear_screen()
# 00EE Flow return; Returns from a subroutine.
elif NNN == 0x0EE:
self.pc = self.stack.pop()
else:
log_error("unkown opcode %s", opcode)
elif A == 0x1:
# 1NNN Flow goto NNN; Jumps to address NNN.
self.pc = NNN
elif A == 0x2:
# 2NNN Flow *(0xNNN)() Calls subroutine at NNN.
self.stack.append(self.pc)
self.pc = NNN
elif A == 0x3:
# 3XNN Cond if(Vx==NN) Skips the next instruction if VX equals NN. (Usually the next instruction is a jump to skip a code block)
if V[X] == NN:
self.pc += 2
elif A == 0x4:
# 4XNN Cond if(Vx!=NN) Skips the next instruction if VX doesn't equal NN. (Usually the next instruction is a jump to skip a code block)
if V[X] != NN:
self.pc += 2
elif A == 0x5:
# 5XY0 Cond if(Vx==Vy) Skips the next instruction if VX equals VY. (Usually the next instruction is a jump to skip a code block)
if V[X] == V[Y]:
self.pc += 2
elif A == 0x9:
# 9XY0 Cond if(Vx!=Vy) Skips the next instruction if VX doesn't equal VY. (Usually the next instruction is a jump to skip a code block)
if V[X] != V[Y]:
self.pc += 2
elif A == 0x6:
# 6XNN Const Vx = NN Sets VX to NN.
V[X] = NN
elif A == 0x7:
# 7XNN Const Vx += NN Adds NN to VX. (Carry flag is not changed)
if V[X] + NN > 0xFF:
V[X] = (V[X] + NN) & 0xFF
else:
V[X] += NN
elif A == 0x8:
# 8XY0 Assign Vx=Vy Sets VX to the value of VY.
if D == 0x0:
V[X] = V[Y]
# 8XY1 BitOp Vx=Vx|Vy Sets VX to VX or VY. (Bitwise OR operation)
elif D == 0x1:
V[X] |= V[Y]
# 8XY2 BitOp Vx=Vx&Vy Sets VX to VX and VY. (Bitwise AND operation)
elif D == 0x2:
V[X] &= V[Y]
# 8XY3 BitOp Vx=Vx^Vy Sets VX to VX xor VY.
elif D == 0x3:
V[X] ^= V[Y]
# 8XY4 Math Vx += Vy Adds VY to VX. VF is set to 1 when there's a carry, and to 0 when there isn't.
elif D == 0x4:
if V[X] + V[Y] > 0xFF:
V[X] = (V[X] + V[Y]) & 0xFF
V[F] = 1
else:
V[X] += V[Y]
V[F] = 0
# 8XY5 Math Vx -= Vy VY is subtracted from VX. VF is set to 0 when there's a borrow, and 1 when there isn't.
elif D == 0x5:
if V[X] < V[Y]:
V[X] = V[Y] - V[X]
V[F] = 0
else:
V[X] -= V[Y]
V[F] = 1
# 8XY6 BitOp Vx>>=1 Stores the least significant bit of VX in VF and then shifts VX to the right by 1.[2]
elif D == 0x6:
V[F] = V[X] & 0x1
V[X] = V[Y] >> 1
# 8XY7 Math Vx=Vy-Vx Sets VX to VY minus VX. VF is set to 0 when there's a borrow, and 1 when there isn't.
elif D == 0x7:
if V[Y] > V[X]:
V[X] = V[Y] - V[X]
V[F] = 1
else:
V[X] = V[X] - V[Y]
V[F] = 0
# 8XYE BitOp Vx<<=1 Stores the most significant bit of VX in VF and then shifts VX to the left by 1.[3]
elif D == 0xE:
V[F] = V[X] >> 7 & 0x1
V[X] = V[X] << 1 & 0xFF
else:
log_error("unkown opcode %s", opcode)
elif A == 0xA:
# ANNN MEM I = NNN Sets I to the address NNN.
self.I = NNN
elif A == 0xB:
# BNNN Flow PC=V0+NNN Jumps to the address NNN plus V0.
self.pc = (NNN + V[0]) & 0xFFFF
elif A == 0xC:
# CXNN Rand Vx=rand()&NN Sets VX to the result of a bitwise and operation on a random number (Typically: 0 to 255) and NN.
V[X] = randint(0, 0xFF) & NN
elif A == 0xD:
# DXYN Disp draw(Vx,Vy,N) Draws a sprite at coordinate (VX, VY) that has a width of 8 pixels and a height of N pixels.
# Each row of 8 pixels is read as bit-coded starting from memory location I;
# I value doesn’t change after the execution of this instruction.
# As described above, VF is set to 1 if any screen pixels are flipped from set to unset when the sprite is drawn, and to 0 if that doesn’t happen
y = V[Y]
height = D
erase = False
for line in memory[I: I + height]:
# a byte as a line, a bit as a pixel
# draw a line here
x = V[X]
for _ in range(8):
if line >> 7 & 0x1:
erase |= self.ui.draw_pixel(x % XXX, y % YYY)
line <<= 1
x += 1
y += 1
self.ui.update()
V[F] = 1 if erase else 0
elif A == 0xE:
# EX9E KeyOp if(key()==Vx) Skips the next instruction if the key stored in VX is pressed. (Usually the next instruction is a jump to skip a code block)
if YD == 0x9E:
if self.ui.keyboard[V[X]]:
self.pc += 2
# EXA1 KeyOp if(key()!=Vx) Skips the next instruction if the key stored in VX isn't pressed. (Usually the next instruction is a jump to skip a code block)
elif YD == 0xA1:
if not self.ui.keyboard[V[X]]:
self.pc += 2
else:
log_error("unkown opcode %s", opcode)
# 下面的还没有检查
elif A == 0xF:
# FX07 Timer Vx = get_delay() Sets VX to the value of the delay timer.
if YD == 0x07:
value, start = self.delay_timer
current = int(value - (time.time() - start) * 60)
V[X] = max(current, 0)
# FX0A KeyOp Vx = get_key() A key press is awaited, and then stored in VX. (Blocking Operation. All instruction halted until next key event)
elif YD == 0x0A:
i = self.ui.wait_key_event()
V[X] = i
# FX15 Timer delay_timer(Vx) Sets the delay timer to VX.
elif YD == 0x15:
self.delay_timer = V[X], time.time()
# FX18 Sound sound_timer(Vx) Sets the sound timer to VX.
elif YD == 0x18:
pass
# FX1E MEM I +=Vx Adds VX to I.[4]
# VF is set to 1 when there is a range overflow (I+VX>0xFFF), and to 0 when there isn't.
# This is an undocumented feature of the CHIP-8 and used by the Spacefight 2091! game.
elif YD == 0x1E:
if I + V[X] > 0xFFF:
V[F] = 1
else:
V[F] = 0
self.I = (V[X] + I) & 0xFFFF
# FX29 MEM I=sprite_addr[Vx] Sets I to the location of the sprite for the character in VX. Characters 0-F (in hexadecimal) are represented by a 4x5 font.
elif YD == 0x29:
self.I = V[X] * 0x5
# FX33 BCD set_BCD(Vx);
# *(I+0)=BCD(3);
# *(I+1)=BCD(2);
# *(I+2)=BCD(1);
# Stores the binary-coded decimal representation of VX, with the most significant of three digits at the address in I, the middle digit at I plus 1, and the least significant digit at I plus 2.
# (In other words, take the decimal representation of VX, place the hundreds digit in memory at location in I, the tens digit at location I+1, and the ones digit at location I+2.)
elif YD == 0x33:
memory[I] = V[X] / 100
memory[I + 1] = V[X] / 10 % 10
memory[I + 2] = V[X] % 100
# FX55 MEM reg_dump(Vx,&I) Stores V0 to VX (including VX) in memory starting at address I.
# The offset from I is increased by 1 for each value written, but I itself is left unmodified.
elif YD == 0x55:
for i in range(X + 1):
memory[I + i] = V[i]
# FX65 MEM reg_load(Vx,&I) Fills V0 to VX (including VX) with values from memory starting at address I.
# The offset from I is increased by 1 for each value written, but I itself is left unmodified.
elif YD == 0x65:
for i in range(X + 1):
V[i] = memory[I + i]
else:
log_error("unkown opcode %s", opcode)
WHITE = (0, 0, 0)
class UI(object):
def __init__(self):
self.X = XXX
self.Y = YYY
self.factor = 10
self.keyboard = [False] * 16
self.screen = pygame.display.set_mode((self.X * self.factor, self.Y * self.factor))
self.interval = 0.01
self.clear_screen()
import pygame.locals as l
self.keys = (
l.K_x,
l.K_1, l.K_2, l.K_3,
l.K_q, l.K_w, l.K_e,
l.K_a, l.K_s, l.K_d,
l.K_z, l.K_c,
l.K_4, l.K_r, l.K_f, l.K_v,
)
def clear_screen(self):
self.buffer = [[False] * self.Y for _ in range(self.X)]
self.screen.fill(BLACK, (0, 0, self.X * self.factor, self.Y * self.factor))
def update(self):
pygame.display.flip()
def handle_input_event(self):
for event in pygame.event.get():
if event.type in (pygame.KEYUP, pygame.KEYDOWN):
if event.key == pygame.locals.K_ESCAPE:
sys.exit(0)
elif event.key in self.keys:
i = self.keys.index(event.key)
self.keyboard[i] = event.type == pygame.KEYDOWN
if event.type == pygame.KEYDOWN:
return i
def wait_key_event(self, key):
while True:
i = self.handle_input_event()
if i is not None:
return i
time.sleep(self.interval)
def draw_pixel(self, x, y):
old = self.buffer[x][y]
new = not old
self.buffer[x][y] = new
color = WHITE if new else BLACK
factor = self.factor
self.screen.fill(color, (x *factor, y * factor, factor, factor))
return old
def beef(self):
log_info("BEEF")
def main():
ui = UI()
c = Chip8(ui)
c.load_rom(sys.argv[1])
while True:
ui.handle_input_event()
c.emulate_cycle()
time.sleep(0.01)
main()